Karmaşık bir fonksiyonun türevi üzerine bir proje. Bir fonksiyonun türevi

Tanımı takip ederseniz, bir fonksiyonun bir noktadaki türevi, Δ fonksiyonunun artış oranının limitidir. sen argüman artışına Δ X:

Her şey açık görünüyor. Ancak fonksiyonun türevini hesaplamak için bu formülü kullanmayı deneyin. F(X) = X 2 + (2X+ 3) · e X günah X. Her şeyi tanımı gereği yaparsanız, birkaç sayfalık hesaplamalardan sonra uykuya dalacaksınız. Bu nedenle daha basit ve etkili yollar var.

Başlangıç ​​olarak, tüm fonksiyon çeşitliliğinden, temel fonksiyonlar olarak adlandırılanları ayırt edebildiğimizi not ediyoruz. Bu göreceli basit ifadeler türevleri uzun süredir hesaplanan ve tabloda listelenen. Bu tür fonksiyonların türevleriyle birlikte hatırlanması oldukça kolaydır.

Temel fonksiyonların türevleri

Temel işlevler aşağıda listelenenlerin tamamıdır. Bu fonksiyonların türevlerinin ezbere bilinmesi gerekir. Üstelik bunları ezberlemek hiç de zor değil; bu yüzden temel düzeydedirler.

Yani türevler temel işlevler:

İsim İşlev Türev
Devamlı F(X) = C, CR 0 (evet, sıfır!)
Rasyonel üslü kuvvet F(X) = X N N · X N − 1
Sinüs F(X) = günah X çünkü X
Kosinüs F(X) = çünkü X −günah X(eksi sinüs)
Teğet F(X) = tg X 1/çünkü 2 X
Kotanjant F(X) = ctg X − 1/günah 2 X
Doğal logaritma F(X) = günlük X 1/X
Keyfi logaritma F(X) = günlük A X 1/(X içinde A)
Üstel fonksiyon F(X) = e X e X(hiçbir şey değişmedi)

Bir temel fonksiyon keyfi bir sabitle çarpılırsa, yeni fonksiyonun türevi de kolaylıkla hesaplanır:

(C · F)’ = C · F ’.

Genel olarak sabitler türevin işaretinden çıkarılabilir. Örneğin:

(2X 3)’ = 2 · ( X 3)’ = 2 3 X 2 = 6X 2 .

Açıkçası, temel işlevler birbirine eklenebilir, çarpılabilir, bölünebilir ve çok daha fazlası yapılabilir. Bu şekilde, artık özellikle basit olmayan, aynı zamanda aşağıdakilere göre türevlenebilir yeni işlevler ortaya çıkacaktır: belirli kurallar. Bu kurallar aşağıda tartışılmaktadır.

Toplam ve farkın türevi

Fonksiyonlar verilsin F(X) Ve G(X), türevleri tarafımızca bilinmektedir. Örneğin yukarıda tartışılan temel işlevleri alabilirsiniz. Daha sonra bu fonksiyonların toplamının ve farkının türevini bulabilirsiniz:

  1. (F + G)’ = F ’ + G
  2. (FG)’ = F ’ − G

Yani iki fonksiyonun toplamının (farkının) türevi, türevlerin toplamına (farkına) eşittir. Daha fazla şart olabilir. Örneğin, ( F + G + H)’ = F ’ + G ’ + H ’.

Açıkça söylemek gerekirse cebirde “çıkarma” kavramı yoktur. Bir kavram var" negatif eleman" Bu nedenle fark FG toplam olarak yeniden yazılabilir F+ (−1) G ve sonra yalnızca bir formül kalır - toplamın türevi.

F(X) = X 2 + günah x; G(X) = X 4 + 2X 2 − 3.

İşlev F(X) iki temel fonksiyonun toplamıdır, dolayısıyla:

F ’(X) = (X 2 + günah X)’ = (X 2)’ + (günah X)’ = 2X+ çünkü x;

İşlev için de benzer şekilde mantık yürütüyoruz G(X). Sadece zaten üç terim var (cebir açısından):

G ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Cevap:
F ’(X) = 2X+ çünkü x;
G ’(X) = 4X · ( X 2 + 1).

Ürünün türevi

Matematik mantıksal bir bilimdir, pek çok kişi bir toplamın türevinin türevlerin toplamına eşit olması durumunda çarpımın türevinin alınacağına inanır. çarpmak">türevlerin çarpımına eşittir. Ama canınız cehenneme! Bir çarpımın türevi tamamen farklı bir formül kullanılarak hesaplanır. Yani:

(F · G) ’ = F ’ · G + F · G

Formül basit ama sıklıkla unutuluyor. Ve sadece okul çocukları değil, öğrenciler de. Sonuç yanlış çözülmüş problemlerdir.

Görev. Fonksiyonların türevlerini bulun: F(X) = X 3 çünkü x; G(X) = (X 2 + 7X− 7) · e X .

İşlev F(X) iki temel fonksiyonun ürünüdür, dolayısıyla her şey basittir:

F ’(X) = (X 3 çünkü X)’ = (X 3) çünkü X + X 3 (çünkü X)’ = 3X 2 çünkü X + X 3 (−sin X) = X 2 (3cos XX günah X)

İşlev G(X) ilk faktör biraz daha karmaşıktır, ancak genel şema bu değişmez. Açıkçası, fonksiyonun ilk faktörü G(X) bir polinomdur ve türevi toplamın türevidir. Sahibiz:

G ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) · ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X· (2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Cevap:
F ’(X) = X 2 (3cos XX günah X);
G ’(X) = X(X+ 9) · e X .

Lütfen son adımda türevin çarpanlara ayrıldığını unutmayın. Resmi olarak bunun yapılmasına gerek yoktur, ancak çoğu türev kendi başına hesaplanmaz, fonksiyonu incelemek için hesaplanır. Bu, türevin ayrıca sıfıra eşitleneceği, işaretlerinin belirleneceği vb. anlamına gelir. Böyle bir durumda, bir ifadenin çarpanlara ayrılması daha iyidir.

İki fonksiyon varsa F(X) Ve G(X), Ve G(X) ≠ 0 ilgilendiğimiz kümede tanımlayabiliriz yeni özellik H(X) = F(X)/G(X). Böyle bir fonksiyonun türevini de bulabilirsiniz:

Zayıf değil, değil mi? Eksi nereden geldi? Neden G 2? Ve bu yüzden! Bu en çok biri karmaşık formüller- Şişe olmadan çözemezsin. Bu nedenle, üzerinde çalışmak daha iyidir spesifik örnekler.

Görev. Fonksiyonların türevlerini bulun:

Her kesrin payı ve paydası temel fonksiyonlar içerir, bu nedenle ihtiyacımız olan tek şey bölümün türevinin formülüdür:


Geleneğe göre, payı çarpanlara ayıralım - bu, cevabı büyük ölçüde basitleştirecektir:

Karmaşık bir fonksiyonun mutlaka yarım kilometre uzunluğunda bir formül olması gerekmez. Örneğin fonksiyonu almanız yeterli F(X) = günah X ve değişkeni değiştirin X diyelim ki X 2 + ln X. İşe yarayacak F(X) = günah ( X 2 + ln X) - bu karmaşık bir fonksiyondur. Onun da bir türevi var ama yukarıda tartışılan kuralları kullanarak onu bulmak mümkün olmayacak.

Ne yapmalıyım? Bu gibi durumlarda değişkeni ve türev formülünü değiştirmek yardımcı olur karmaşık fonksiyon:

F ’(X) = F ’(T) · T', Eğer Xşununla değiştirilir: T(X).

Kural olarak, bu formülün anlaşılmasındaki durum, bölümün türevinden daha da üzücüdür. Bu nedenle spesifik örneklerle açıklamak daha doğru olacaktır. detaylı açıklama her adımda.

Görev. Fonksiyonların türevlerini bulun: F(X) = e 2X + 3 ; G(X) = günah ( X 2 + ln X)

Fonksiyonda ise şunu unutmayın F(X) ifade 2 yerine X+3 kolay olacak X sonra temel bir fonksiyon elde ederiz F(X) = e X. Bu nedenle bir değişiklik yapıyoruz: 2 olsun X + 3 = T, F(X) = F(T) = e T. Aşağıdaki formülü kullanarak karmaşık bir fonksiyonun türevini ararız:

F ’(X) = F ’(T) · T ’ = (e T)’ · T ’ = e T · T

Ve şimdi - dikkat! Ters değiştirme işlemini gerçekleştiriyoruz: T = 2X+ 3. Şunu elde ederiz:

F ’(X) = e T · T ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Şimdi fonksiyona bakalım G(X). Açıkçası değiştirilmesi gerekiyor X 2 + ln X = T. Sahibiz:

G ’(X) = G ’(T) · T' = (günah T)’ · T' = çünkü T · T

Ters değiştirme: T = X 2 + ln X. Daha sonra:

G ’(X) = çünkü ( X 2 + ln X) · ( X 2 + ln X)’ = çünkü ( X 2 + ln X) · (2 X + 1/X).

İşte bu! Buradan görülebileceği gibi son ifade, tüm sorun türev toplamının hesaplanmasına indirgenmişti.

Cevap:
F ’(X) = 2 · e 2X + 3 ;
G ’(X) = (2X + 1/X) çünkü ( X 2 + ln X).

Derslerimde sıklıkla "türev" terimi yerine "asal" kelimesini kullanıyorum. Örneğin, miktardan bir asal sayı toplamına eşit vuruşlar. Bu daha açık mı? Bu iyi.

Dolayısıyla türevi hesaplamak, yukarıda tartışılan kurallara göre aynı vuruşlardan kurtulmak anlamına gelir. Gibi son örnek Rasyonel bir üsle türev gücüne dönelim:

(X N)’ = N · X N − 1

Bu rolde çok az kişi bunu biliyor N iyi davranabilir kesirli sayı. Örneğin, kök X 0,5. Ya kökün altında süslü bir şey varsa? Sonuç yine karmaşık bir işlev olacaktır; bu tür yapıları testler ah bir de sınavlar.

Görev. Fonksiyonun türevini bulun:

Öncelikle kökü rasyonel üssü olan bir kuvvet olarak yeniden yazalım:

F(X) = (X 2 + 8X − 7) 0,5 .

Şimdi bir değişiklik yapıyoruz: izin ver X 2 + 8X − 7 = T. Türevi aşağıdaki formülü kullanarak buluruz:

F ’(X) = F ’(T) · T ’ = (T 0,5)' · T' = 0,5 · T−0,5 · T ’.

Ters değiştirme işlemini yapalım: T = X 2 + 8X− 7. Elimizde:

F ’(X) = 0,5 · ( X 2 + 8X− 7) −0,5 · ( X 2 + 8X− 7)’ = 0,5 (2) X+ 8) ( X 2 + 8X − 7) −0,5 .

Son olarak köklere dönelim:

Karmaşık bir fonksiyonun türevi. Çözüm örnekleri

Bu dersimizde nasıl bulacağımızı öğreneceğiz. karmaşık bir fonksiyonun türevi. Ders dersin mantıksal bir devamıdır Türevi nasıl bulunur?Üzerinde en basit türevleri incelediğimiz ve aynı zamanda türev alma kuralları ve bazı konularda bilgi sahibi olduğumuz teknik yöntemler türevlerini bulmak. Bu nedenle, fonksiyonların türevleri konusunda pek iyi değilseniz veya bu makaledeki bazı noktalar tam olarak net değilse, önce yukarıdaki dersi okuyun. Lütfen ciddi bir ruh hali içine girin - materyal basit değil, ama yine de onu basit ve net bir şekilde sunmaya çalışacağım.

Uygulamada, karmaşık bir fonksiyonun türeviyle çok sık uğraşmanız gerekir, hatta diyebilirim ki, size türevleri bulma görevi verildiğinde hemen hemen her zaman.

Karmaşık bir fonksiyonun türevini almak için kuraldaki (No. 5) tabloya bakıyoruz:

Hadi çözelim. Öncelikle girişe dikkat edelim. Burada iki fonksiyonumuz var - ve mecazi anlamda konuşursak, fonksiyon fonksiyonun içinde yuvalanmıştır. Bu türdeki bir fonksiyona (bir fonksiyon diğerinin içine yerleştirildiğinde) karmaşık fonksiyon denir.

Fonksiyonu çağıracağım harici fonksiyon ve fonksiyon – dahili (veya iç içe geçmiş) fonksiyon.

! Bu tanımlar teorik değildir ve ödevlerin nihai tasarımında yer almamalıdır. başvuruyorum resmi olmayan ifadeler“harici fonksiyon”, “dahili” fonksiyon sadece materyali anlamanızı kolaylaştırmak içindir.

Durumu açıklığa kavuşturmak için şunları göz önünde bulundurun:

Örnek 1

Bir fonksiyonun türevini bulun

Sinüs altında sadece "X" harfi değil, ifadenin tamamı var, dolayısıyla türevi tablodan hemen bulmak işe yaramayacak. Ayrıca ilk dört kuralın burada uygulanmasının imkansız olduğunu da fark ettik, bir fark var gibi görünüyor, ancak gerçek şu ki sinüs "parçalara ayrılamaz":

İÇİNDE bu örnekte Açıklamalarımdan, bir fonksiyonun karmaşık bir fonksiyon olduğu ve polinomun bir iç fonksiyon (gömme) ve bir dış fonksiyon olduğu zaten sezgisel olarak açıktır.

İlk adım Karmaşık bir fonksiyonun türevini bulurken yapmanız gereken şey Hangi fonksiyonun dahili, hangisinin harici olduğunu anlayın.

Durumunda basit örnekler Sinüs altına bir polinomun gömülü olduğu açık görünüyor. Peki ya her şey açık değilse? Hangi fonksiyonun harici ve hangisinin dahili olduğunu doğru bir şekilde nasıl belirleyebilirim? Bunu yapmak için zihinsel olarak veya taslak halinde yapılabilecek aşağıdaki tekniği kullanmanızı öneririm.

İfadesinin değerini hesaplamak için bir hesap makinesi kullanmamız gerektiğini hayal edelim (bir yerine herhangi bir sayı olabilir).

İlk önce neyi hesaplayacağız? Öncelikle aşağıdaki eylemi gerçekleştirmeniz gerekecek: bu nedenle polinom bir iç fonksiyon olacaktır:

ikinci olarak bulunması gerekecek, dolayısıyla sinüs - harici bir fonksiyon olacak:

Bizden sonra HEPSİ SATILDIİç ve dış fonksiyonlarda, karmaşık fonksiyonların farklılaşması kuralını uygulamanın zamanı geldi.

Karar vermeye başlayalım. Sınıftan Türevi nasıl bulunur? herhangi bir türevin çözümünün tasarımının her zaman böyle başladığını hatırlıyoruz - ifadeyi parantez içine alıyoruz ve sağ üst köşeye bir çizgi koyuyoruz:

Başta dış fonksiyonun türevini (sinüs) buluruz, temel fonksiyonların türevleri tablosuna bakarız ve şunu fark ederiz. Tüm tablo formülleri, "x" yerine karmaşık bir ifade konulursa da geçerlidir, V bu durumda:

Lütfen iç fonksiyonun değişmedi, dokunmuyoruz.

Peki, oldukça açık ki

Formülün uygulanmasının nihai sonucu şöyle görünür:

Sabit çarpan genellikle ifadenin başına yerleştirilir:

Herhangi bir yanlış anlaşılma varsa çözümü bir kağıda yazıp açıklamaları tekrar okuyun.

Örnek 2

Bir fonksiyonun türevini bulun

Örnek 3

Bir fonksiyonun türevini bulun

Her zaman olduğu gibi şunu yazıyoruz:

Nerede harici bir fonksiyona sahip olduğumuzu ve nerede dahili bir fonksiyona sahip olduğumuzu bulalım. Bunu yapmak için (zihinsel olarak veya taslak halinde) ifadenin değerini hesaplamaya çalışırız. İlk önce ne yapmalısınız? Her şeyden önce, tabanın neye eşit olduğunu hesaplamanız gerekir: bu nedenle polinom bir iç fonksiyondur:

Ve ancak o zaman üs alma işlemi gerçekleştirilir, bu nedenle kuvvet fonksiyonu harici bir fonksiyondur:

Formüle göre öncelikle dış fonksiyonun türevini, bu durumda derecesini bulmanız gerekir. Tabloda arıyorum gerekli formül: . Bir kez daha tekrarlıyoruz: herhangi tablo formülü yalnızca “x” için değil aynı zamanda karmaşık ifadeler için de geçerlidir. Dolayısıyla, karmaşık bir fonksiyonun türevini alma kuralını uygulamanın sonucu aşağıdaki gibidir:

Dış fonksiyonun türevini aldığımızda iç fonksiyonumuzun değişmediğini bir kez daha vurguluyorum:

Şimdi geriye kalan tek şey iç fonksiyonun çok basit bir türevini bulmak ve sonucu biraz değiştirmek:

Örnek 4

Bir fonksiyonun türevini bulun

Bu bir örnektir bağımsız karar(Dersin sonunda cevap verin).

Karmaşık bir fonksiyonun türevine ilişkin anlayışınızı pekiştirmek için yorumsuz bir örnek vereceğim, kendi başınıza anlamaya çalışın, dış fonksiyonun nerede ve iç fonksiyonun nerede olduğunu, görevlerin neden bu şekilde çözüldüğünü düşünün.

Örnek 5

a) Fonksiyonun türevini bulun

b) Fonksiyonun türevini bulun

Örnek 6

Bir fonksiyonun türevini bulun

Burada bir kökümüz var ve kökü farklılaştırabilmek için onun bir güç olarak temsil edilmesi gerekiyor. Böylece öncelikle fonksiyonu türev almaya uygun forma getiriyoruz:

Fonksiyonu analiz ettiğimizde, üç terimin toplamının bir iç fonksiyon olduğu, bir güce yükselmenin ise bir dış fonksiyon olduğu sonucuna varıyoruz. Karmaşık fonksiyonların farklılaşma kuralını uyguluyoruz:

Dereceyi yine bir radikal (kök) olarak temsil ediyoruz ve iç fonksiyonun türevi için toplamın türevini almak için basit bir kural uyguluyoruz:

Hazır. Ayrıca parantez içindeki ifadeyi de verebilirsiniz. ortak payda ve her şeyi bir kesir olarak yazın. Elbette güzel, ancak hantal uzun türevler elde ettiğinizde bunu yapmamak daha iyidir (kafanın karışması, gereksiz bir hata yapılması kolaydır ve öğretmenin kontrol etmesi sakıncalı olacaktır).

Örnek 7

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Bazen karmaşık bir fonksiyonun türevini alma kuralı yerine bir bölümün türevini alma kuralını kullanabileceğinizi belirtmek ilginçtir. , ancak böyle bir çözüm komik bir sapkınlık gibi görünecektir. İşte tipik bir örnek:



Örnek 8

Bir fonksiyonun türevini bulun

Burada bölümün farklılaşma kuralını kullanabilirsiniz ancak karmaşık bir fonksiyonun türev alma kuralına göre türevini bulmak çok daha karlı:

Fonksiyonu türev için hazırlıyoruz - eksiyi türev işaretinden çıkarıyoruz ve kosinüsü paya yükseltiyoruz:

Kosinüs bir iç fonksiyondur, üstel ise harici bir fonksiyondur.
Kuralımızı kullanalım:

Dahili fonksiyonun türevini buluyoruz ve kosinüsü tekrar sıfırlıyoruz:

Hazır. Ele alınan örnekte işaretlerin karıştırılmaması önemlidir. Bu arada kuralı kullanarak çözmeye çalışın , yanıtların eşleşmesi gerekir.

Örnek 9

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Şu ana kadar karmaşık bir fonksiyonda yalnızca bir yuvalamanın olduğu durumlara baktık. Pratik görevlerde, iç içe geçmiş bebekler gibi, 3 veya hatta 4-5 fonksiyonun aynı anda iç içe geçtiği türevleri sıklıkla bulabilirsiniz.

Örnek 10

Bir fonksiyonun türevini bulun

Bu fonksiyonun eklerini anlayalım. Deneysel değeri kullanarak ifadeyi hesaplamaya çalışalım. Hesap makinesine nasıl güvenebiliriz?

İlk önce bulmanız gerekir; bu, ark sinüsünün en derin gömme olduğu anlamına gelir:

Bu birin ark sinüsünün karesi alınmalıdır:

Ve son olarak yedinin bir kuvvetini alıyoruz:

Yani bu örnekte üç tane var farklı işlevler ve en içteki fonksiyon ark sinüs ve en dıştaki fonksiyon üstel fonksiyon olmak üzere iki yerleştirme.

Karar vermeye başlayalım

Kurala göre öncelikle dış fonksiyonun türevini almanız gerekir. Türev tablosuna bakıyoruz ve türevi buluyoruz üstel fonksiyon: Tek farkımız “X” yerine elimizde karmaşık ifade bu formülün geçerliliğini ortadan kaldırmaz. Dolayısıyla, karmaşık bir fonksiyonun türevini alma kuralını uygulamanın sonucu aşağıdaki gibidir:

Vuruş altında yine karmaşık bir işlevimiz var! Ama zaten daha basit. İç fonksiyonun ark sinüs, dış fonksiyonun ise derece olduğunu doğrulamak kolaydır. Karmaşık bir fonksiyonun türevini alma kuralına göre, önce kuvvetin türevini almanız gerekir.

Buraya geldiğinizden beri muhtemelen bu formülü ders kitabında zaten görmüşsünüzdür.

ve şöyle bir yüz yapın:

Dostum, endişelenme! Aslında her şey çok çirkin. Kesinlikle her şeyi anlayacaksınız. Sadece bir istek - makaleyi okuyun zamanını ayır, her adımı anlamaya çalışın. Olabildiğince basit ve net yazdım ama yine de fikri anlamanız gerekiyor. Ve makaledeki görevleri çözdüğünüzden emin olun.

Karmaşık fonksiyon nedir?

Başka bir daireye taşındığınızı ve bu nedenle eşyaları büyük kutulara paketlediğinizi hayal edin. Okul yazı malzemeleri gibi bazı küçük eşyaları toplamanız gerektiğini varsayalım. Onları büyük bir kutuya atarsanız, diğer şeylerin arasında kaybolurlar. Bunu önlemek için, önce bunları örneğin bir torbaya koyarsınız, sonra onu büyük bir kutuya koyarsınız ve ardından mühürlersiniz. Bu “karmaşık” süreç aşağıdaki şemada gösterilmektedir:

Görünüşe göre matematiğin bununla ne ilgisi var? Evet, karmaşık bir fonksiyonun TAMAMEN AYNI şekilde oluşmasına rağmen! Sadece defterleri ve kalemleri değil, \(x\) “paketliyoruz”, ancak “paketler” ve “kutular” farklı.

Örneğin, x'i alıp onu bir fonksiyona "paketleyelim":


Sonuç olarak elbette \(\cos⁡x\) elde ederiz. Bu bizim “şey çantamız”. Şimdi bunu bir "kutuya" koyalım - örneğin kübik bir fonksiyona paketleyelim.


Sonunda ne olacak? Evet, doğru, "bir kutuda bir torba eşya" olacak, yani "kosinüs X küp".

Ortaya çıkan tasarım karmaşık bir fonksiyondur. Basit olandan şu bakımdan farklıdır: BİR X'e arka arkaya BİRÇOK "etki" (paket) uygulanır ve "işlevden işleve" - ​​"ambalaj içinde ambalaj" ortaya çıkıyor.

İÇİNDE okul kursu Bu “paketlerin” çok az türü vardır, yalnızca dört tanesi:

Şimdi X'i önce 7 tabanlı bir üstel fonksiyona, sonra da bir trigonometrik fonksiyona "paketleyelim". Şunu elde ederiz:

\(x → 7^x → tg⁡(7^x)\)

Şimdi X'i iki kez "paketleyelim" trigonometrik fonksiyonlar, önce içinde , sonra da içinde:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Basit, değil mi?

Şimdi fonksiyonları kendiniz yazın; burada x:
- önce bir kosinüse, ardından \(3\) tabanıyla üstel bir fonksiyona "paketlenir";
- önce beşinci kuvvete, sonra da teğete;
- ilk olarak \(4\) tabanının logaritmasına göre , sonra kuvvet \(-2\).

Makalenin sonunda bu görevin cevaplarını bulun.

X'i iki değil üç kez “paketleyebilir miyiz”? Evet, sorun değil! Ve dört, beş ve yirmi beş kere. Örneğin burada x'in \(4\) kez "paketlendiği" bir fonksiyon var:

\(y=5^(\log_2⁡(\sin⁡(x^4))))\)

Ama bu tür formüller okul uygulaması buluşamayacaklar (öğrenciler daha şanslı - onlar için işler daha zor olabilir☺).

Karmaşık bir işlevi "paketten çıkarmak"

Önceki fonksiyona tekrar bakın. “Paketleme” sırasını çözebilir misiniz? X'in ilk önce neye doldurulduğu, sonra ne olduğu vb. sonuna kadar devam eder. Yani hangi fonksiyon hangisinin içinde yer alıyor? Bir parça kağıt alın ve ne düşündüğünüzü yazın. Bunu yukarıda yazdığımız gibi oklu bir zincirle veya başka bir şekilde yapabilirsiniz.

Şimdi doğru cevap şu: önce x, \(4\)'üncü kuvvete "paketlendi", sonra sonuç sinüse paketlendi, o da \(2\) tabanına göre logaritmaya yerleştirildi. ve sonunda tüm bu yapı beşli güçlere itildi.

Yani diziyi TERS SİPARİŞTE geri sarmanız gerekir. Ve işte bunu nasıl daha kolay yapabileceğinize dair bir ipucu: hemen X'e bakın - ondan dans etmelisiniz. Birkaç örneğe bakalım.

Örneğin, şu fonksiyon şöyledir: \(y=tg⁡(\log_2⁡x)\). X'e bakıyoruz - önce ona ne olacak? Ondan alınmıştır. Ve daha sonra? Sonucun tanjantı alınır. Sıra aynı olacaktır:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Başka bir örnek: \(y=\cos⁡((x^3))\). Analiz edelim - önce X'in küpünü aldık, sonra sonucun kosinüsünü aldık. Bu, dizinin şöyle olacağı anlamına gelir: \(x → x^3 → \cos⁡((x^3))\). Dikkat edin, işlev ilkine (resimlerin olduğu yer) benziyor. Ancak bu tamamen farklı bir fonksiyondur: burada küpün içinde x var (yani, \(\cos⁡((x·x·x))))\) ve küpün içinde kosinüs \(x\) ( yani, \(\cos⁡ x·\cos⁡x·\cos⁡x\)). Bu fark, farklı "paketleme" dizilerinden kaynaklanmaktadır.

Son örnek (ile önemli bilgi içinde): \(y=\sin⁡((2x+5))\). Burada ilk ne yaptıkları belli aritmetik işlemler x ile sonucun sinüsünü aldım: \(x → 2x+5 → \sin⁡((2x+5))\). Ve bu önemli nokta: Aritmetik işlemler kendi başlarına fonksiyon olmamasına rağmen burada aynı zamanda bir “paketleme” yöntemi olarak da hareket ederler. Gelin bu inceliği biraz daha derinlemesine inceleyelim.

Yukarıda söylediğim gibi, basit fonksiyonlarda x bir kez, karmaşık fonksiyonlarda ise iki veya daha fazla "paketlenir". Ayrıca, basit fonksiyonların herhangi bir kombinasyonu (toplamları, farkları, çarpmaları veya bölmeleri) de basit fonksiyon. Örneğin, \(x^7\) basit bir fonksiyondur ve \(ctg x\) de öyle. Bu, tüm kombinasyonlarının basit işlevler olduğu anlamına gelir:

\(x^7+ ctg x\) - basit,
\(x^7· cot x\) – basit,
\(\frac(x^7)(ctg x)\) – basit, vb.

Ancak böyle bir kombinasyona bir fonksiyon daha uygulanırsa iki “paket” olacağından karmaşık bir fonksiyon haline gelecektir. Diyagrama bakınız:



Tamam, şimdi devam et. “Sarma” fonksiyonlarının sırasını yazın:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Cevaplar yine yazının sonunda.

İç ve dış işlevler

Neden işlev yerleştirmeyi anlamamız gerekiyor? Bu bize ne sağlıyor? Gerçek şu ki, böyle bir analiz olmadan yukarıda tartışılan fonksiyonların türevlerini güvenilir bir şekilde bulamayız.

Devam etmek için iki kavrama daha ihtiyacımız olacak: iç ve dış işlevler. Bu çok basit şeyüstelik aslında bunları yukarıda zaten analiz etmiştik: En baştaki benzetmemizi hatırlarsak, iç fonksiyon bir "paket", dış fonksiyon ise bir "kutu" dur. Onlar. X'in ilk olarak "sarıldığı" şey bir iç fonksiyondur ve dahili fonksiyonun "sarıldığı" şey zaten dıştır. Neden olduğu açık - dışarıda, bu da dış anlamına geliyor.

Bu örnekte: \(y=tg⁡(log_2⁡x)\), \(\log_2⁡x\) işlevi dahilidir ve
- harici.

Ve bunda: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) dahilidir ve
- harici.

Karmaşık fonksiyonların analizine ilişkin son uygulamayı tamamlayın ve sonunda hepimizin başladığı noktaya geçelim; karmaşık fonksiyonların türevlerini bulacağız:

Tablodaki boşlukları doldurun:


Karmaşık bir fonksiyonun türevi

Bravo, nihayet bu konunun "patronuna" ulaştık - aslında karmaşık bir fonksiyonun türevine ve özellikle de makalenin başındaki o çok korkunç formüle.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Bu formül şu şekilde okunur:

Karmaşık bir fonksiyonun türevi, dış fonksiyonun sabit bir iç fonksiyona göre türevi ile iç fonksiyonun türevinin çarpımına eşittir.

Ve hemen kelimelere göre ayrıştırma şemasına bakın, böylece neyle ne yapacağınızı anlarsınız:

“Türev” ve “ürün” tabirlerinin sıkıntı yaratmamasını diliyorum. “Karmaşık fonksiyon” - bunu zaten çözdük. İşin püf noktası "bir dış fonksiyonun sabit bir iç fonksiyona göre türevi"dir. Nedir?

Cevap: Bu, yalnızca dış fonksiyonun değiştiği ve iç fonksiyonun aynı kaldığı bir dış fonksiyonun olağan türevidir. Hala net değil mi? Tamam, bir örnek kullanalım.

Bir \(y=\sin⁡(x^3)\) fonksiyonumuz olsun. Buradaki iç fonksiyonun \(x^3\) olduğu ve dış fonksiyonun olduğu açıktır.
. Şimdi dış kısmın sabit iç bölgeye göre türevini bulalım.

Kompleks türevler. Logaritmik türev.
Bir üstel fonksiyonun türevi

Farklılaştırma tekniğimizi geliştirmeye devam ediyoruz. Bu derste ele aldığımız materyali pekiştireceğiz, daha karmaşık türevlere bakacağız ve ayrıca özellikle logaritmik türev olmak üzere türev bulma konusunda yeni teknikler ve püf noktaları hakkında bilgi sahibi olacağız.

Sahip olan okuyuculara düşük seviye hazırlık, makaleye başvurmalısınız Türevi nasıl bulunur? Çözüm örnekleri Bu da becerilerinizi neredeyse sıfırdan geliştirmenize olanak tanır. Daha sonra sayfayı dikkatlice incelemeniz gerekiyor Karmaşık bir fonksiyonun türevi anla ve çöz Tüm verdiğim örnekler. Bu ders mantıksal olarak üçüncü derstir ve bu konuda uzmanlaştıktan sonra oldukça karmaşık işlevleri güvenle ayırt edeceksiniz. “Başka nerede?” pozisyonunu almak istenmez. Bu kadar yeter!”, çünkü tüm örnekler ve çözümler gerçek testlerden alınmıştır ve pratikte sıklıkla karşılaşılmaktadır.

Tekrarlarla başlayalım. sınıfta Karmaşık bir fonksiyonun türevi Ayrıntılı yorumlarla birlikte birkaç örneğe baktık. Diferansiyel hesabın ve diğer bölümlerin incelenmesi sırasında matematiksel analiz– çok sık farklılaştırma yapmak zorunda kalacaksınız ve örnekleri ayrıntılı bir şekilde açıklamak her zaman uygun olmayabilir (ve her zaman gerekli de olmayabilir). Bu nedenle sözlü olarak türev bulma alıştırması yapacağız. Bunun için en uygun "adaylar" en basit karmaşık fonksiyonların türevleridir, örneğin:

Karmaşık fonksiyonların farklılaşması kuralına göre :

Gelecekte diğer matan konularını incelerken, bu kadar ayrıntılı bir kayıt çoğu zaman gerekli değildir; öğrencinin bu tür türevleri otomatik pilotta nasıl bulacağını bildiği varsayılır. Sabah saat 3'te bir olay olduğunu hayal edelim. telefon görüşmesi, Ve hoş ses"İki X'in tanjantının türevi nedir?" diye sordu. Bunu neredeyse anında ve kibar bir yanıt takip etmelidir: .

İlk örnek hemen bağımsız bir çözüme yönelik olacaktır.

Örnek 1

Aşağıdaki türevleri tek bir işlemle sözlü olarak bulun, örneğin: . Görevi tamamlamak için yalnızca kullanmanız gerekir temel fonksiyonların türevleri tablosu(henüz hatırlamadıysanız). Herhangi bir zorlukla karşılaşırsanız dersi tekrar okumanızı tavsiye ederim Karmaşık bir fonksiyonun türevi.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Cevaplar dersin sonunda

Karmaşık türevler

Ön topçu hazırlığından sonra, 3-4-5 işlevin iç içe geçtiği örnekler daha az korkutucu olacaktır. Belki aşağıdaki iki örnek bazılarına karmaşık gelebilir, ancak eğer bunları anlarsanız (birisi acı çekecektir), o zaman hemen hemen her şey diferansiyel hesap Bir çocuğun şakası gibi görünecek.

Örnek 2

Bir fonksiyonun türevini bulun

Daha önce belirtildiği gibi, karmaşık bir fonksiyonun türevini bulurken her şeyden önce gereklidir Sağ Yatırımlarınızı ANLAYIN. Şüphelenilen durumlarda hatırlatırım faydalı numara: Örneğin “x”in deneysel anlamını alıyoruz ve (zihnimizde veya taslakta) bu anlamı “korkunç ifade”nin yerine koymaya çalışıyoruz.

1) Öncelikle toplamın en derin gömülü olduğu anlamına gelen ifadeyi hesaplamamız gerekir.

2) O zaman logaritmayı hesaplamanız gerekir:

4) Daha sonra kosinüsün küpünü alın:

5) Beşinci adımda fark:

6) Ve son olarak en dış fonksiyon karekök:

Karmaşık bir fonksiyonun türevini almak için formül kullanılacak ters sıra, en dıştaki fonksiyondan en içteki fonksiyona doğru. Biz karar veriyoruz:

Hiçbir hata yok gibi görünüyor...

(1) Karekökün türevini alın.

(2) Kuralı kullanarak farkın türevini alırız

(3) Bir üçlünün türevi sıfırdır. İkinci terimde derecenin (küp) türevini alıyoruz.

(4) Kosinüsün türevini alın.

(5) Logaritmanın türevini alın.

(6) Ve son olarak en derin gömmenin türevini alıyoruz.

Çok zor görünebilir ama bu en acımasız örnek değil. Örneğin Kuznetsov'un koleksiyonunu ele aldığımızda, analiz edilen türevin tüm güzelliğini ve sadeliğini takdir edeceksiniz. Bir öğrencinin karmaşık bir fonksiyonun türevini nasıl bulacağını anlayıp anlamadığını kontrol etmek için sınavda benzer bir şey vermeyi sevdiklerini fark ettim.

Aşağıdaki örnek kendi başınıza çözmeniz içindir.

Örnek 3

Bir fonksiyonun türevini bulun

İpucu: Öncelikle doğrusallık kurallarını ve ürün farklılaştırma kuralını uyguluyoruz

Dersin sonunda tam çözüm ve cevap.

Daha küçük ve daha güzel bir şeye geçmenin zamanı geldi.
Bir örnekte ikinin çarpımının gösterilmesi alışılmadık bir durum değildir, ancak üç fonksiyon. Türevi nasıl bulunur? üçlü ürünlerçarpanlar?

Örnek 4

Bir fonksiyonun türevini bulun

Öncelikle üç fonksiyonun çarpımını iki fonksiyonun çarpımına çevirmenin mümkün olup olmadığına bakalım. Örneğin çarpımda iki polinom olsaydı parantezleri açabilirdik. Ancak söz konusu örnekte tüm işlevler farklıdır: derece, üs ve logaritma.

Bu gibi durumlarda gerekli sıraylaürün farklılaştırma kuralını uygulayın iki kere

İşin püf noktası, "y" ile iki fonksiyonun çarpımını belirtmemizdir: ve "ve" ile logaritmayı belirtmemizdir: . Bu neden yapılabilir? Gerçekten mi – bu iki faktörün bir ürünü değil ve kural işe yaramıyor mu? Karmaşık bir şey yok:

Şimdi kuralı ikinci kez uygulamaya devam ediyor parantez içine almak için:

Ayrıca bükülebilir ve parantezlerden bir şeyler çıkarabilirsiniz, ancak bu durumda cevabı tam olarak bu formda bırakmak daha iyidir - kontrol edilmesi daha kolay olacaktır.

Ele alınan örnek ikinci şekilde çözülebilir:

Her iki çözüm de kesinlikle eşdeğerdir.

Örnek 5

Bir fonksiyonun türevini bulun

Bu, kendi başınıza çözmeniz için bir örnektir; örnekte ilk yöntem kullanılarak çözülmüştür.

Kesirlerle benzer örneklere bakalım.

Örnek 6

Bir fonksiyonun türevini bulun

Buraya gidebileceğiniz birkaç yol var:

Veya bunun gibi:

Ancak öncelikle bölümün türev alma kuralını kullanırsak çözüm daha kısa bir şekilde yazılacaktır. , payın tamamını alarak:

Prensip olarak örnek çözülmüştür ve olduğu gibi bırakılırsa hata olmayacaktır. Ancak zamanınız varsa, cevabın basitleştirilip basitleştirilemeyeceğini görmek için her zaman taslağı kontrol etmeniz önerilir. Payın ifadesini ortak bir paydaya indirgeyelim ve hadi üç katlı kesirden kurtulalım:

Ek basitleştirmelerin dezavantajı, türevi bulurken değil, sıradan okul dönüşümleri sırasında hata yapma riskinin olmasıdır. Öte yandan öğretmenler sıklıkla ödevi reddediyor ve türevi “akla getirmesini” istiyorlar.

Kendi başınıza çözebileceğiniz daha basit bir örnek:

Örnek 7

Bir fonksiyonun türevini bulun

Türevi bulma yöntemlerinde uzmanlaşmaya devam ediyoruz ve şimdi türev için "korkunç" bir logaritmanın önerildiği tipik bir durumu ele alacağız.

Örnek 8

Bir fonksiyonun türevini bulun

Burada karmaşık bir fonksiyonun türevini alma kuralını kullanarak uzun bir yol kat edebilirsiniz:

Ancak ilk adım sizi anında umutsuzluğa sürükler - hoş olmayan bir türevi almak zorundasınız. kesirli güç, ve sonra da kesirden.

Bu yüzden önce"Gelişmiş" bir logaritmanın türevinin nasıl alınacağı, ilk olarak iyi bilinen okul özellikleri kullanılarak basitleştirilmiştir:



! Elinizde bir alıştırma defteriniz varsa, bu formülleri doğrudan oraya kopyalayın. Not defteriniz yoksa bunları bir kağıda kopyalayın, çünkü dersin geri kalan örnekleri bu formüller etrafında şekillenecektir.

Çözümün kendisi şöyle yazılabilir:

Fonksiyonu dönüştürelim:

Türevi bulma:

Fonksiyonun önceden dönüştürülmesi çözümü büyük ölçüde basitleştirdi. Bu nedenle, türev için benzer bir logaritma önerildiğinde, her zaman onu "parçalamak" tavsiye edilir.

Şimdi kendi başınıza çözebileceğiniz birkaç basit örnek:

Örnek 9

Bir fonksiyonun türevini bulun

Örnek 10

Bir fonksiyonun türevini bulun

Tüm dönüşümler ve cevaplar dersin sonundadır.

Logaritmik türev

Logaritmanın türevi bu kadar tatlı müzikse, o zaman şu soru ortaya çıkıyor: Bazı durumlarda logaritmayı yapay olarak düzenlemek mümkün mü? Olabilmek! Ve hatta gerekli.

Örnek 11

Bir fonksiyonun türevini bulun

Yakın zamanda benzer örneklere baktık. Ne yapalım? Bölümün farklılaşma kuralını ve ardından çarpımın farklılaşma kuralını sırayla uygulayabilirsiniz. Bu yöntemin dezavantajı, hiç uğraşmak istemeyeceğiniz devasa bir üç katlı kesirle karşı karşıya kalmanızdır.

Ancak teoride ve pratikte logaritmik türev diye harika bir şey var. Logaritmalar her iki tarafa "asılarak" yapay olarak düzenlenebilir:

Şimdi sağ tarafın logaritmasını mümkün olduğunca “parçalamanız” gerekiyor (gözünüzün önündeki formüller?). Bu süreci çok detaylı bir şekilde anlatacağım:

Farklılaştırmayla başlayalım.
Her iki bölümü de ana başlık altında sonlandırıyoruz:

Sağ tarafın türevi oldukça basittir; bu konuda yorum yapmayacağım, çünkü bu metni okuyorsanız, bunu kendinizden emin bir şekilde yapabilmeniz gerekir.

Peki sol taraf?

Sol tarafta elimizde karmaşık fonksiyon. “Neden logaritmanın altında bir tane “Y” harfi var?” sorusunu öngörüyorum.

Gerçek şu ki, bu "tek harfli oyun" - KENDİSİ BİR FONKSİYONDUR(çok açık değilse örtülü olarak belirtilen bir fonksiyonun türevi makalesine bakın). Bu nedenle logaritma bir dış fonksiyondur ve “y” bir iç fonksiyondur. Ve karmaşık bir fonksiyonun türevini almak için kuralı kullanıyoruz :

Sol tarafta sanki sihir varmış gibi sihirli değnek bir türevimiz var. Daha sonra orantı kuralına göre “y”yi sol taraftaki paydadan sağ tarafın üstüne aktarıyoruz:

Şimdi farklılaşma sırasında nasıl bir “oyuncu” işlevinden bahsettiğimizi hatırlayalım. Şimdi duruma bakalım:

Son cevap:

Örnek 12

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir. Örnek tasarım örneği bu türden dersin sonunda.

Logaritmik türevi kullanarak 4-7 numaralı örneklerden herhangi birini çözmek mümkündü, başka bir şey de oradaki fonksiyonların daha basit olması ve belki de logaritmik türevin kullanımının pek haklı olmamasıdır.

Bir üstel fonksiyonun türevi

Bu fonksiyonu henüz değerlendirmedik. Bir üstel fonksiyon fonksiyonu, bunun için bir fonksiyondur. hem derece hem de taban “x”e bağlıdır. Klasik örnek, size herhangi bir ders kitabında veya herhangi bir derste verilecektir:

Bir üstel fonksiyonun türevi nasıl bulunur?

Az önce tartışılan tekniğin (logaritmik türev) kullanılması gereklidir. Her iki tarafa da logaritma asıyoruz:

Kural olarak, sağ tarafta derece logaritmanın altından çıkarılır:

Sonuç olarak, sağ tarafta, şu şekilde farklılaştırılacak iki fonksiyonun çarpımı var: standart formül .

Türevi buluyoruz; bunu yapmak için her iki parçayı da konturların altına alıyoruz:

Diğer eylemler basittir:

Nihayet:

Herhangi bir dönüşüm tamamen açık değilse, lütfen Örnek #11'in açıklamalarını dikkatlice tekrar okuyun.

İÇİNDE pratik görevler Kuvvet-üstel fonksiyon her zaman derste tartışılan örnekten daha karmaşık olacaktır.

Örnek 13

Bir fonksiyonun türevini bulun

Logaritmik türevi kullanıyoruz.

Sağ tarafta bir sabitimiz ve iki faktörün çarpımı var - “x” ve “logaritmanın logaritması x” (başka bir logaritma logaritmanın altına yerleştirilmiştir). Hatırladığımız gibi, türev alırken, yolunuza çıkmaması için sabiti hemen türev işaretinin dışına taşımak daha iyidir; ve elbette tanıdık kuralı uyguluyoruz :


Gördüğünüz gibi, logaritmik türevi kullanma algoritması herhangi bir özel hile veya püf noktası içermez ve bir üstel fonksiyonun türevini bulmak genellikle "eziyet" ile ilişkili değildir.

Giriş seviyesi

Bir fonksiyonun türevi. Kapsamlı Kılavuz (2019)

Tepelik bir alandan geçen düz bir yol düşünelim. Yani yukarı aşağı gidiyor ama sağa sola dönmüyor. Eksen yol boyunca yatay ve dikey olarak yönlendirilirse, yol çizgisi bazı sürekli fonksiyonların grafiğine çok benzer olacaktır:

Eksen belli bir seviyede sıfır rakımdır; yaşamda deniz seviyesini öyle kullanırız.

Böyle bir yolda ilerlerken aynı zamanda yukarı veya aşağı da hareket ediyoruz. Şunu da söyleyebiliriz: argüman değiştiğinde (apsis ekseni boyunca hareket), fonksiyonun değeri de değişir (ordinat ekseni boyunca hareket). Şimdi yolumuzun "dikliğini" nasıl belirleyeceğimizi düşünelim mi? Bu nasıl bir değer olabilir? Çok basit: Belirli bir mesafeye doğru ilerlerken yüksekliğin ne kadar değişeceği. Sonuçta, farklı alanlar yollarda (x ekseni boyunca) bir kilometre ilerleyerek yükselecek veya alçalacağız farklı miktarlar deniz seviyesine göre metre (koordinat ekseni boyunca).

İlerlemeyi gösterelim (“delta x” okuyun).

Yunanca harf (delta), matematikte "değişim" anlamına gelen bir önek olarak yaygın olarak kullanılır. Yani - bu nicelikteki bir değişikliktir - bir değişikliktir; peki o nedir? Doğru, büyüklükte bir değişiklik.

Önemli: Bir ifade tek bir bütündür, tek bir değişkendir. “Delta”yı asla “x”ten veya başka bir harften ayırmayın!

Yani örneğin .

Böylece yatay olarak ileriye doğru ilerledik. Yolun çizgisini fonksiyonun grafiğiyle karşılaştırırsak yükselişi nasıl gösteririz? Kesinlikle, . Yani ilerledikçe daha da yükseliriz. Değerin hesaplanması kolaydır: Başlangıçta yüksekteysek ve hareket ettikten sonra kendimizi yüksekte bulursak, o zaman. Eğer bitiş noktası

ilkinden daha düşük olduğu ortaya çıktı, negatif olacak - bu, yükseldiğimiz değil alçaldığımız anlamına geliyor.

Tekrar "diklik" konusuna dönelim: Bu, bir birim ileri gidildiğinde yüksekliğin ne kadar (dik) arttığını gösteren bir değerdir:

Şimdi bir tepenin zirvesine bakalım. Bölümün başlangıcını zirveden yarım kilometre önce ve sonunu yarım kilometre sonra alırsanız yüksekliğin hemen hemen aynı olduğunu görürsünüz.

Yani bizim mantığımıza göre buradaki eğimin neredeyse sıfıra eşit olduğu ortaya çıkıyor ki bu kesinlikle doğru değil. Kilometrelerce uzakta çok şey değişebilir. Daha yeterli ve daha küçük alanların dikkate alınması gerekir. doğru değerlendirme diklik. Örneğin bir metre hareket ettikçe yükseklikteki değişimi ölçerseniz sonuç çok daha doğru olacaktır. Ancak bu doğruluk bile bizim için yeterli olmayabilir - sonuçta yolun ortasında bir direk varsa onu kolayca geçebiliriz. O halde hangi mesafeyi seçmeliyiz? Santimetre? Milimetre? Daha azı daha fazladır!

İÇİNDE gerçek hayat Mesafeleri en yakın milimetreye kadar ölçmek fazlasıyla yeterlidir. Ancak matematikçiler her zaman mükemmellik için çabalarlar. Bu nedenle kavram icat edildi sonsuz küçük yani mutlak değer isimlendirebileceğimiz herhangi bir sayıdan küçüktür. Örneğin şöyle diyorsunuz: trilyonuncu! Ne kadar az? Ve bu sayıyı -'ye bölerseniz daha da az olacaktır. Ve benzeri. Bir niceliğin sonsuz küçük olduğunu yazmak istersek şöyle yazarız: (“x sıfıra doğru gider” şeklinde okuruz). Anlamak çok önemli bu sayının sıfır olmadığını! Ama buna çok yakın. Bu, ona bölebileceğiniz anlamına gelir.

Sonsuz küçük kavramının karşısındaki kavram sonsuz büyüktür (). Muhtemelen eşitsizlikler üzerinde çalışırken bununla zaten karşılaşmışsınızdır: bu sayı, aklınıza gelebilecek herhangi bir sayıdan modülo daha büyüktür. Mümkün olan en büyük sayıyı bulursanız, bunu ikiyle çarpın, daha da büyük bir sayı elde edeceksiniz. Ve hala sonsuzluk Dahası ne olacak? Aslında sonsuz büyük ve sonsuz küçük birbirinin tersidir, yani at ve tam tersi: at.

Şimdi yolumuza geri dönelim. İdeal olarak hesaplanan eğim, yolun sonsuz küçük bir bölümü için hesaplanan eğimdir, yani:

Sonsuz küçük bir yer değiştirmeyle yükseklikteki değişimin de sonsuz küçük olacağını not ediyorum. Ama size sonsuz küçüklüğün şu anlama gelmediğini hatırlatmama izin verin: sıfıra eşit. Sonsuz küçük sayıları birbirine bölerseniz oldukça fazla sonuç elde edebilirsiniz. normal numara, Örneğin, . Yani küçük bir değer diğerinden tam olarak kat daha büyük olabilir.

Bütün bunlar ne için? Yol, diklik... Araba rallisine gitmiyoruz ama matematik öğretiyoruz. Ve matematikte her şey tamamen aynıdır, yalnızca farklı adlandırılır.

Türev kavramı

Bir fonksiyonun türevi, argümanın sonsuz küçük bir artışı için fonksiyonun artışının argümanın artışına oranıdır.

Kademeli olarak matematikte değişim diyorlar. Bağımsız değişkenin () eksen boyunca hareket ettikçe ne ölçüde değiştiğine denir argüman artışı Eksen boyunca bir mesafe kadar ileriye doğru hareket edildiğinde fonksiyonun (yüksekliğin) ne kadar değiştiğine denir. fonksiyon artışı ve belirlenir.

Yani bir fonksiyonun türevi ne zamana oranıdır. Türevi fonksiyonla aynı harfle, yalnızca sağ üstte bir asal sayıyla veya basitçe belirtiriz. Şimdi bu gösterimleri kullanarak türev formülünü yazalım:

Yol benzetmesinde olduğu gibi burada fonksiyon arttığında türev pozitif, azaldığında ise negatif olur.

Türev sıfıra eşit olabilir mi? Kesinlikle. Örneğin düz yatay bir yolda gidiyorsak diklik sıfırdır. Ve bu doğru, yükseklik hiç değişmiyor. Türevde de durum aynıdır: Sabit bir fonksiyonun (sabit) türevi sıfıra eşittir:

çünkü böyle bir fonksiyonun artışı herhangi biri için sıfıra eşittir.

Tepe örneğini hatırlayalım. Segmentin uçlarını birlikte düzenlemenin mümkün olduğu ortaya çıktı farklı taraflar uçlardaki yükseklik aynı olacak, yani bölüm eksene paralel olacak şekilde üstten:

Ancak büyük segmentler yanlış ölçümün işaretidir. Segmentimizi kendine paralel olarak yukarı kaldıracağız, sonra uzunluğu azalacak.

Sonunda tepeye sonsuz derecede yaklaştığımızda, parçanın uzunluğu sonsuz derecede küçük olacaktır. Ancak aynı zamanda eksene paralel kalmıştır, yani uçlarındaki yükseklik farkı sıfıra eşittir (eğiliminde değildir ancak eşittir). Yani türev

Bu şu şekilde anlaşılabilir: En tepede durduğumuzda, sola veya sağa doğru küçük bir kayma, boyumuzu ihmal edilebilecek kadar değiştirir.

Ayrıca tamamen cebirsel bir açıklama da var: Tepe noktasının solunda fonksiyon artar ve sağında azalır. Daha önce öğrendiğimiz gibi, bir fonksiyon arttığında türevi pozitif, azaldığında ise negatif olur. Ancak atlamalar olmadan sorunsuz bir şekilde değişir (çünkü yol eğimini hiçbir yerde keskin bir şekilde değiştirmez). Bu nedenle negatif ile negatif arasında pozitif değerler mutlaka bulunması gerekir. Tepe noktasında, fonksiyonun ne arttığı ne de azaldığı yer olacaktır.

Aynı durum çukur (soldaki fonksiyonun azaldığı, sağdaki fonksiyonun arttığı alan) için de geçerlidir:

Artışlar hakkında biraz daha.

Bu yüzden argümanı büyüklük olarak değiştiriyoruz. Hangi değerden değişiyoruz? Şimdi bu (tartışma) ne hale geldi? Herhangi bir noktayı seçebiliriz ve şimdi oradan dans edeceğiz.

Koordinatı olan bir nokta düşünün. İçindeki fonksiyonun değeri eşittir. Sonra aynı artışı yapıyoruz: koordinatı artırıyoruz. Şimdi argüman nedir? Çok kolay: . Şimdi fonksiyonun değeri nedir? Argüman nereye giderse fonksiyon da oraya gider: . Peki ya fonksiyon artışı? Yeni bir şey yok: Bu hala fonksiyonun değişme miktarıdır:

Artışları bulma alıştırması yapın:

  1. Bağımsız değişkenin artışının eşit olduğu bir noktada fonksiyonun artışını bulun.
  2. Aynı şey bir noktada fonksiyon için de geçerlidir.

Çözümler:

İÇİNDE farklı noktalar aynı argüman artışıyla, fonksiyon artışı farklı olacaktır. Bu, her noktadaki türevin farklı olduğu anlamına gelir (bunu en başta tartıştık - yolun dikliği farklı noktalarda farklıdır). Bu nedenle bir türev yazarken hangi noktada olduğunu belirtmeliyiz:

Güç fonksiyonu.

Güç fonksiyonu, argümanın bir dereceye kadar (mantıklı, değil mi?) geçerli olduğu bir fonksiyondur.

Üstelik - herhangi bir ölçüde: .

En basit durum- bu durumda üs:

Bir noktadaki türevini bulalım. Türevin tanımını hatırlayalım:

Yani argüman 'dan 'a değişir. Fonksiyonun artışı nedir?

Artış şudur. Ancak herhangi bir noktadaki bir fonksiyon argümanına eşittir. Bu yüzden:

Türev şuna eşittir:

Türevi şuna eşittir:

b) Şimdi düşünün ikinci dereceden fonksiyon (): .

Şimdi şunu hatırlayalım. Bu, artışın değerinin ihmal edilebileceği anlamına gelir, çünkü bu son derece küçüktür ve bu nedenle diğer terimin arka planına göre önemsizdir:

Böylece başka bir kural bulduk:

c) Mantıksal seriye devam ediyoruz: .

Bu ifade farklı şekillerde basitleştirilebilir: toplamın küpünün kısaltılmış çarpımı formülünü kullanarak ilk parantezi açın veya küp farkı formülünü kullanarak ifadenin tamamını çarpanlara ayırın. Önerilen yöntemlerden herhangi birini kullanarak bunu kendiniz yapmaya çalışın.

Böylece aşağıdakileri elde ettim:

Ve şunu bir kez daha hatırlayalım. Bu, aşağıdakileri içeren tüm terimleri ihmal edebileceğimiz anlamına gelir:

Şunu alıyoruz: .

d) Büyük kuvvetler için de benzer kurallar elde edilebilir:

e) Bu kuralın, tamsayı bile olmayan, keyfi bir üssü olan bir kuvvet fonksiyonu için genelleştirilebileceği ortaya çıktı:

(2)

Kural şu ​​şekilde formüle edilebilir: "Derece bir katsayı olarak öne çıkarılır ve ardından azaltılır."

Bu kuralı daha sonra kanıtlayacağız (neredeyse en sonunda). Şimdi birkaç örneğe bakalım. Fonksiyonların türevini bulun:

  1. (iki şekilde: formülle ve türev tanımını kullanarak - fonksiyonun artışını hesaplayarak);
  1. . İster inanın ister inanmayın, bu bir güç işlevidir. “Bu nasıl?” gibi sorularınız varsa. Derece nerede?”, “” konusunu hatırlayın!
    Evet, evet, kök de bir derecedir, yalnızca kesirlidir: .
    Bu, karekökümüzün sadece üssü olan bir kuvvet olduğu anlamına gelir:
    .
    Yakın zamanda öğrenilen formülü kullanarak türevi arıyoruz:

    Bu noktada yine belirsizleşirse “” konusunu tekrarlayın!!! (derece hakkında negatif gösterge)

  2. . Şimdi üs:

    Ve şimdi tanım üzerinden (henüz unuttunuz mu?):
    ;
    .
    Şimdi her zamanki gibi aşağıdakileri içeren terimi ihmal ediyoruz:
    .

  3. . Önceki vakaların kombinasyonu: .

Trigonometrik fonksiyonlar.

Burada yüksek matematikten bir olguyu kullanacağız:

İfade ile.

Kanıtı enstitünün ilk yılında öğreneceksiniz (ve oraya ulaşmak için Birleşik Devlet Sınavını iyi bir şekilde geçmeniz gerekir). Şimdi bunu grafiksel olarak göstereceğim:

Fonksiyon mevcut olmadığında grafikteki noktanın kesildiğini görüyoruz. Ama değere ne kadar yakınsa fonksiyon da o kadar yakın demektir.

Ek olarak, bir hesap makinesi kullanarak bu kuralı kontrol edebilirsiniz. Evet, evet, utanmayın, bir hesap makinesi alın, henüz Birleşik Devlet Sınavında değiliz.

O halde deneyelim: ;

Hesap makinenizi Radyan moduna geçirmeyi unutmayın!

vesaire. Ne kadar az olursa o kadar çok olduğunu görüyoruz. daha yakın değer ile ilişki

a) Fonksiyonu düşünün. Her zamanki gibi, artışını bulalım:

Sinüs farkını çarpıma dönüştürelim. Bunu yapmak için şu formülü kullanıyoruz (“” konusunu hatırlayın): .

Şimdi türev:

Bir değişiklik yapalım: . O halde sonsuz küçük için aynı zamanda sonsuz küçüktür: . için ifade şu şekli alır:

Şimdi de bunu şu ifadeyle hatırlıyoruz. Ve ayrıca, toplamda sonsuz küçük bir miktar (yani, at) ihmal edilebilirse ne olur?

Yani anlıyoruz sonraki kural:sinüsün türevi kosinüse eşittir:

Bunlar temel (“tablo”) türevlerdir. İşte tek bir listedeler:

Daha sonra bunlara birkaç tane daha ekleyeceğiz, ancak bunlar en sık kullanıldıkları için en önemlileridir.

Pratik:

  1. Fonksiyonun bir noktadaki türevini bulun;
  2. Fonksiyonun türevini bulun.

Çözümler:

  1. İlk önce türevi bulalım genel görünüm ve ardından değerini değiştirin:
    ;
    .
  2. Burada buna benzer bir şeyimiz var güç fonksiyonu. Onu kendine getirmeye çalışalım
    normal görünüm:
    .
    Harika, artık formülü kullanabilirsiniz:
    .
    .
  3. . Eeeeee.....Bu nedir????

Tamam haklısın, bu tür türevleri nasıl bulacağımızı henüz bilmiyoruz. Burada çeşitli fonksiyon türlerinin bir kombinasyonu var. Onlarla çalışmak için birkaç kural daha öğrenmeniz gerekir:

Üs ve doğal logaritma.

Matematikte herhangi bir değer için türevi aynı zamanda fonksiyonun kendi değerine eşit olan bir fonksiyon vardır. Buna "üs" denir ve üstel bir fonksiyondur

Bu fonksiyonun temeli bir sabittir; sonsuzdur ondalık yani irrasyonel bir sayı (gibi). Buna “Euler numarası” denir, bu yüzden bir harfle gösterilir.

Yani kural:

Hatırlanması çok kolay.

Neyse fazla uzağa gitmeyelim hemen bakalım ters fonksiyon. Üstel fonksiyonun tersi hangi fonksiyondur? Logaritma:

Bizim durumumuzda taban sayıdır:

Böyle bir logaritma (yani tabanlı bir logaritma) "doğal" olarak adlandırılır ve bunun için özel bir gösterim kullanırız: onun yerine yazarız.

Neye eşittir? Elbette.

Doğal logaritmanın türevi de çok basittir:

Örnekler:

  1. Fonksiyonun türevini bulun.
  2. Fonksiyonun türevi nedir?

Cevaplar: Katılımcı ve doğal logaritma- fonksiyonlar türev açısından benzersiz derecede basittir. Başka herhangi bir tabana sahip üstel ve logaritmik fonksiyonların farklı bir türevi olacaktır ve bunu daha sonra analiz edeceğiz. hadi kuralları gözden geçirelim farklılaşma.

Farklılaşma kuralları

Neyin kuralları? Tekrar yeni dönem, Tekrar?!...

Farklılaşma türevi bulma işlemidir.

Hepsi bu. Bu sürece tek kelimeyle başka ne diyebilirsiniz? Türev değil... Matematikçilerin diferansiyeli, bir fonksiyonun aynı artışıdır. Bu terim Latince diferansiyel - farklılık kelimesinden gelir. Burada.

Tüm bu kuralları türetirken iki işlevi kullanacağız, örneğin ve. Ayrıca artışları için formüllere de ihtiyacımız olacak:

Toplamda 5 kural bulunmaktadır.

Sabit türev işaretinden çıkarılır.

Eğer - bazı sabit sayı(sabit), o halde.

Açıkçası, bu kural aynı zamanda şu fark için de işe yarar: .

Hadi kanıtlayalım. Bırakın ya da daha basit.

Örnekler.

Fonksiyonların türevlerini bulun:

  1. bir noktada;
  2. bir noktada;
  3. bir noktada;
  4. noktada.

Çözümler:

  1. (türev her noktada aynıdır, çünkü bu doğrusal fonksiyon, Unutma?);

Ürünün türevi

Burada her şey benzer: yeni bir fonksiyon tanıtalım ve onun artışını bulalım:

Türev:

Örnekler:

  1. Fonksiyonların türevlerini bulun ve;
  2. Fonksiyonun bir noktadaki türevini bulun.

Çözümler:

Üstel bir fonksiyonun türevi

Artık bilginiz, yalnızca üstel sayıları değil, herhangi bir üstel fonksiyonun türevini nasıl bulacağınızı öğrenmek için yeterlidir (bunun ne olduğunu henüz unuttunuz mu?).

Peki, bazı sayılar nerede?

Fonksiyonun türevini zaten biliyoruz, o yüzden fonksiyonumuzu yeni bir temele taşımaya çalışalım:

Bunun için kullanacağız basit kural: . Daha sonra:

İşe yaradı. Şimdi türevi bulmaya çalışın ve bu fonksiyonun karmaşık olduğunu unutmayın.

İşe yaradı mı?

İşte, kendinizi kontrol edin:

Formülün bir üssün türevine çok benzediği ortaya çıktı: olduğu gibi aynı kalıyor, yalnızca bir sayı olan ancak değişken olmayan bir faktör ortaya çıktı.

Örnekler:
Fonksiyonların türevlerini bulun:

Cevaplar:

Bu sadece hesap makinesi olmadan hesaplanamayan, yani artık yazılamayan bir sayıdır. basit biçimde. Bu nedenle cevapta bu formda bırakıyoruz.

Logaritmik bir fonksiyonun türevi

Burada da durum benzer: Doğal logaritmanın türevini zaten biliyorsunuz:

Bu nedenle, farklı bir tabana sahip keyfi bir logaritma bulmak için, örneğin:

Bu logaritmayı tabana indirmemiz gerekiyor. Logaritmanın tabanını nasıl değiştirirsiniz? Umarım bu formülü hatırlarsınız:

Ancak şimdi onun yerine şunu yazacağız:

Payda basitçe bir sabittir (değişkeni olmayan sabit bir sayı). Türev çok basit bir şekilde elde edilir:

Üstel türevleri ve logaritmik fonksiyonlar Birleşik Devlet Sınavında neredeyse hiç görünmezler, ancak onları bilmekten zarar gelmez.

Karmaşık bir fonksiyonun türevi.

"Karmaşık fonksiyon" nedir? Hayır, bu bir logaritma değil, arktanjant da değil. Bu fonksiyonların anlaşılması zor olabilir (gerçi logaritmayı zor buluyorsanız, "Logaritmalar" konusunu okuyun ve sorun yaşamazsınız), ancak matematiksel açıdan "karmaşık" kelimesi "zor" anlamına gelmez.

Küçük bir taşıma bandı hayal edin: iki kişi oturuyor ve bazı nesnelerle bazı eylemler yapıyor. Örneğin, ilki bir çikolatayı bir ambalaj kağıdına sarar ve ikincisi onu bir kurdele ile bağlar. Sonuç, kompozit bir nesnedir: bir kurdele ile sarılmış ve bağlanmış bir çikolata çubuğu. Çikolata yemek için yapmanız gerekenler ters eylemler ters sırada.

Benzer bir matematiksel işlem hattı oluşturalım: önce bir sayının kosinüsünü bulacağız, sonra da elde edilen sayının karesini alacağız. Yani bize bir sayı veriliyor (çikolata), ben onun kosinüsünü buluyorum (paketleyici) ve sonra elde ettiğimin karesini alıyorsunuz (bunu bir kurdele ile bağlıyorsunuz). Ne oldu? İşlev. Bu, karmaşık bir fonksiyonun bir örneğidir: değerini bulmak için, ilk eylemi doğrudan değişkenle gerçekleştirdiğimizde ve ardından ilk eylemin sonucuyla ikinci bir eylemi gerçekleştirdiğimizde.

Aynı adımları ters sırada da kolaylıkla yapabiliriz: önce bunun karesini alırsınız, sonra da ortaya çıkan sayının kosinüsünü ararım: . Sonucun neredeyse her zaman farklı olacağını tahmin etmek kolaydır. Önemli Özellik Karmaşık işlevler: Eylemlerin sırası değiştiğinde işlev de değişir.

Başka bir deyişle, karmaşık bir fonksiyon, argümanı başka bir fonksiyon olan bir fonksiyondur: .

İlk örnek için, .

İkinci örnek: (aynı şey). .

En son yaptığımız eylem çağrılacak "harici" işlev ve buna göre ilk gerçekleştirilen eylem "dahili" işlev(bunlar resmi olmayan isimlerdir, bunları yalnızca materyali basit bir dille açıklamak için kullanıyorum).

Hangi fonksiyonun harici ve hangisinin dahili olduğunu kendiniz belirlemeye çalışın:

Cevaplar:İç ve dış fonksiyonları ayırmak değişkenleri değiştirmeye çok benzer: örneğin bir fonksiyonda

  1. İlk önce hangi eylemi gerçekleştireceğiz? İlk önce sinüsü hesaplayalım ve ancak o zaman küpünü alalım. Bu, bunun dahili bir fonksiyon olduğu, ancak harici bir fonksiyon olduğu anlamına gelir.
    Ve asıl işlev bunların bileşimidir: .
  2. Dahili: ; harici: .
    Muayene: .
  3. Dahili: ; harici: .
    Muayene: .
  4. Dahili: ; harici: .
    Muayene: .
  5. Dahili: ; harici: .
    Muayene: .

Değişkenleri değiştirip bir fonksiyon elde ediyoruz.

Şimdi çikolatamızı çıkarıp türevini arayacağız. Prosedür her zaman tersidir: önce dış fonksiyonun türevini ararız, sonra sonucu iç fonksiyonun türeviyle çarparız. Orijinal örnekle ilgili olarak şöyle görünür:

Başka bir örnek:

O halde nihayet resmi kuralı formüle edelim:

Karmaşık bir fonksiyonun türevini bulma algoritması:

Basit görünüyor, değil mi?

Örneklerle kontrol edelim:

Çözümler:

1) Dahili: ;

Harici: ;

2) Dahili: ;

(şimdiye kadar kesmeye çalışmayın! Kosinüsün altından hiçbir şey çıkmaz, hatırladınız mı?)

3) Dahili: ;

Harici: ;

Bunun üç seviyeli karmaşık bir işlev olduğu hemen anlaşılıyor: sonuçta, bu zaten kendi içinde karmaşık bir işlev ve biz de ondan kökü çıkarıyoruz, yani üçüncü eylemi gerçekleştiriyoruz (çikolatayı bir ambalaja koyun) ve evrak çantasında bir kurdeleyle). Ancak korkmanıza gerek yok: Bu işlevi yine de her zamanki gibi aynı sırayla "paketinden çıkaracağız": sondan itibaren.

Yani, önce kökü, sonra kosinüsü ve ancak o zaman parantez içindeki ifadeyi farklılaştırıyoruz. Daha sonra hepsini çarpıyoruz.

Bu gibi durumlarda eylemlerin numaralandırılması uygundur. Yani, bildiklerimizi hayal edelim. Bu ifadenin değerini hesaplamak için işlemleri hangi sırayla gerçekleştireceğiz? Bir örneğe bakalım:

Eylem ne kadar geç gerçekleştirilirse, karşılık gelen işlev o kadar "harici" olacaktır. Eylem sırası öncekiyle aynıdır:

Burada yuvalama genellikle 4 seviyelidir. Hareket tarzını belirleyelim.

1. Radikal ifade. .

2. Kök. .

3. Sinüs. .

4. Kare. .

5. Hepsini bir araya getirmek:

TÜREV. ANA ŞEYLER HAKKINDA KISACA

Bir fonksiyonun türevi- argümanın sonsuz küçük bir artışı için fonksiyonun artışının argümanın artışına oranı:

Temel türevler:

Farklılaşma kuralları:

Sabit türev işaretinden çıkarılır:

Toplamın türevi:

Ürünün türevi:

Bölümün türevi:

Karmaşık bir fonksiyonun türevi:

Karmaşık bir fonksiyonun türevini bulma algoritması:

  1. “İç” fonksiyonu tanımlayıp türevini buluyoruz.
  2. “Harici” fonksiyonu tanımlayıp türevini buluyoruz.
  3. Birinci ve ikinci noktaların sonuçlarını çarpıyoruz.