Üç sayının en küçük ortak katı. En Küçük Ortak Kat (LCM) – Tanım, Örnekler ve Özellikler

İki sayının en küçük ortak katı, bu sayıların en büyük ortak böleniyle doğrudan ilişkilidir. Bu GCD ve NOC arasındaki bağlantı aşağıdaki teorem ile belirlenir.

Teorem.

İki pozitif a ve b tam sayısının en küçük ortak katı, a ve b'nin çarpımının a ve b'nin en büyük ortak bölenine bölünmesine eşittir; LCM(a, b)=a b:OBEB(a, b).

Kanıt.

İzin vermek M, a ve b sayılarının bazı katlarıdır. Yani M, a'ya bölünebilir ve bölünebilirliğin tanımı gereği, M=a·k eşitliğinin doğru olmasını sağlayan bir k tamsayısı vardır. Ancak M aynı zamanda b'ye de bölünebilirse a·k b'ye de bölünebilir.

OBEB(a, b)'yi d olarak gösterelim. O zaman a=a 1 ·d ve b=b 1 ·d eşitliklerini yazabiliriz ve a 1 =a:d ve b 1 =b:d göreceli asal sayılar olacaktır. Sonuç olarak, önceki paragrafta elde edilen a · k'nin b'ye bölünebilmesi koşulu şu şekilde yeniden formüle edilebilir: a 1 · d · k, b 1 · d'ye bölünür ve bu, bölünebilirlik özellikleri nedeniyle şu koşula eşdeğerdir: a 1 · k'nin b 1'e bölünebilmesi.

Ayrıca ele alınan teoremin iki önemli sonucunu da yazmanız gerekir.

    İki sayının ortak katları, en küçük ortak katlarının katlarına eşittir.

    Bu gerçekten de böyledir, çünkü a ve b sayılarının herhangi bir ortak katı, bir t tamsayı değeri için M=LMK(a, b)·t eşitliği ile belirlenir.

    Eş asalın en küçük ortak katı pozitif sayılar a ve b çarpımlarına eşittir.

    Bu gerçeğin mantığı oldukça açıktır. a ve b aralarında asal olduğundan, gcd(a, b)=1 olur, dolayısıyla, OBEB(a, b)=a b: OBEB(a, b)=a b:1=a b.

Üç veya daha fazla sayının en küçük ortak katı

Üç veya daha fazla sayının en küçük ortak katını bulmak, iki sayının LCM'sini sırayla bulmaya indirgenebilir. Bunun nasıl yapılacağı aşağıdaki teoremde gösterilmektedir. a 1, a 2, …, a k, m k-1'in ortak katlarıyla ve a k, dolayısıyla m k'nin ortak katlarıyla çakışır. Ve m k sayısının en küçük pozitif katı m k sayısının kendisi olduğundan, a 1, a 2, ..., a k sayılarının en küçük ortak katı m k'dir.

Kaynakça.

  • Vilenkin N.Ya. ve diğerleri. 6. sınıf: genel eğitim kurumları için ders kitabı.
  • Vinogradov I.M. Sayı teorisinin temelleri.
  • Mikhelovich Sh.H. Sayı teorisi.
  • Kulikov L.Ya. ve diğerleri. Cebir ve sayılar teorisindeki problemlerin toplanması: öğretici fizik ve matematik öğrencileri için. pedagoji enstitülerinin uzmanlık alanları.

Çevrimiçi hesap makinesi, iki veya herhangi başka sayıda sayının en büyük ortak bölenini ve en küçük ortak katını hızlı bir şekilde bulmanızı sağlar.

GCD ve LCM'yi bulmak için hesap makinesi

GCD ve LOC'yi bulun

Bulunan GCD ve LOC: 5806

Hesap makinesi nasıl kullanılır?

  • Giriş alanına sayıları girin
  • Yanlış karakterler girerseniz giriş alanı kırmızı renkle vurgulanır
  • "GCD ve LCM'yi Bul" düğmesini tıklayın

Sayılar nasıl girilir

  • Sayılar boşluk, nokta veya virgülle ayrılarak girilir
  • Girilen sayıların uzunluğu sınırlı değildir, dolayısıyla uzun sayıların GCD'sini ve LCM'sini bulmak zor değil

GCD ve NOC nedir?

En büyük ortak böleni Birkaç sayı, tüm orijinal sayıların kalansız bölünebildiği en büyük doğal tamsayıdır. En büyük ortak bölen şu şekilde kısaltılır: GCD.
En küçük ortak Kat birkaç sayı var en küçük sayı orijinal sayıların her birine kalansız bölünebilen bir sayıdır. En küçük ortak kat şu şekilde kısaltılır: NOC.

Bir sayının başka bir sayıya kalansız bölünüp bölünemediği nasıl kontrol edilir?

Bir sayının diğerine kalansız bölünüp bölünemeyeceğini öğrenmek için sayıların bazı bölünebilme özelliklerini kullanabilirsiniz. Daha sonra bunları birleştirerek bazılarının bölünebilirliğini ve kombinasyonlarını kontrol edebilirsiniz.

Sayıların bölünebilirliğine ilişkin bazı işaretler

1. Bir sayının 2'ye bölünebilme testi
Bir sayının ikiye bölünebilir olup olmadığını (çift olup olmadığını) belirlemek için bu sayının son rakamına bakmak yeterlidir: 0, 2, 4, 6 veya 8'e eşitse sayı çifttir, yani 2'ye bölünebilir.
Örnek: 34938 sayısının 2'ye bölünüp bölünemeyeceğini belirleyin.
Çözüm: son rakamına bakın: 8 sayının ikiye bölünebildiği anlamına gelir.

2. Bir sayının 3'e bölünebilme testi
Bir sayının rakamlarının toplamı üçe bölünüyorsa bu sayı 3'e bölünür. Dolayısıyla bir sayının 3'e bölünüp bölünmediğini belirlemek için rakamların toplamını hesaplayıp 3'e bölünüp bölünmediğini kontrol etmeniz gerekir. Rakamların toplamı çok büyük olsa bile aynı işlemi tekrarlayabilirsiniz.
Örnek: 34938 sayısının 3'e bölünüp bölünemeyeceğini belirleyin.
Çözüm: Sayıların toplamını sayıyoruz: 3+4+9+3+8 = 27. 27, 3'e bölünüyor, yani sayı 3'e bölünüyor.

3. Bir sayının 5'e bölünebilme testi
Bir sayının son rakamı sıfır veya beş ise 5'e bölünür.
Örnek: 34938 sayısının 5'e bölünüp bölünemeyeceğini belirleyin.
Çözüm: son rakama bakın: 8, sayının beşe bölünmediği anlamına gelir.

4. Bir sayının 9'a bölünebilme testi
Bu işaret üçe bölünebilme işaretine çok benzer: Bir sayı, rakamlarının toplamı 9'a bölünüyorsa 9'a bölünebilir.
Örnek: 34938 sayısının 9'a bölünüp bölünemeyeceğini belirleyin.
Çözüm: Sayıların toplamını sayıyoruz: 3+4+9+3+8 = 27. 27, 9'a bölünüyor, yani sayı dokuza bölünüyor.

İki sayının GCD'si ve LCM'si nasıl bulunur?

İki sayının gcd'si nasıl bulunur

En basit bir şekildeİki sayının en büyük ortak bölenini hesaplamak, bu sayıların tüm olası bölenlerini bulmak ve içlerinden en büyüğünü seçmektir.

Bu yöntemi OBEB(28, 36) bulma örneğini kullanarak ele alalım:

  1. Her iki sayıyı da çarpanlarına ayırıyoruz: 28 = 1·2·2·7, 36 = 1·2·2·3·3
  2. Bulduk Ortak etkenler yani her iki sayının da sahip olduğu sayılar: 1, 2 ve 2.
  3. Bu faktörlerin çarpımını hesaplıyoruz: 1 2 2 = 4 - bu, 28 ve 36 sayılarının en büyük ortak bölenidir.

İki sayının LCM'si nasıl bulunur?

İki sayının en küçük katını bulmanın en yaygın iki yolu vardır. İlk yöntem, iki sayının ilk katlarını yazabilmeniz ve ardından bunların arasından her iki sayı için ortak ve aynı zamanda en küçük olan sayıyı seçebilmenizdir. İkincisi ise bu sayıların gcd'sini bulmak. Sadece onu düşünelim.

LCM'yi hesaplamak için orijinal sayıların çarpımını hesaplamanız ve ardından bunu daha önce bulunan GCD'ye bölmeniz gerekir. Aynı 28 ve 36 sayıları için LCM'yi bulalım:

  1. 28 ve 36 sayılarının çarpımını bulun: 28·36 = 1008
  2. OBEB(28, 36), zaten bilindiği gibi, 4'e eşittir
  3. LCM(28, 36) = 1008/4 = 252 .

Birkaç numara için GCD ve LCM'yi bulma

En büyük ortak bölen sadece iki sayı için değil birden fazla sayı için bulunabilir. Bu amaçla en büyük ortak bölen için bulunacak sayılar asal çarpanlara ayrılarak ortak çarpanların çarpımı bulunur. asal faktörler bu sayılar. Birkaç sayının gcd'sini bulmak için aşağıdaki ilişkiyi de kullanabilirsiniz: OBEB(a, b, c) = OBEB(a, b), c).

Benzer bir ilişki en küçük ortak kat için de geçerlidir: LCM(a, b, c) = LCM(LCM(a, b), c)

Örnek: 12, 32 ve 36 sayıları için OBE ve LCM'yi bulun.

  1. Öncelikle sayıları çarpanlarına ayıralım: 12 = 1·2·2·3, 32 = 1·2·2·2·2·2, 36 = 1·2·2·3·3.
  2. Ortak çarpanları bulalım: 1, 2 ve 2.
  3. Çarpımları OBEB'yi verecektir: 1·2·2 = 4
  4. Şimdi LCM'yi bulalım: Bunu yapmak için önce LCM(12, 32)'yi bulalım: 12·32 / 4 = 96.
  5. Herkesin NOC'sini bulmak için üç sayı, GCD(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , GCD = 1·2·2·3 = bulmanız gerekir 12.
  6. LCM(12, 32, 36) = 96·36 / 12 = 288.

Matematiksel İfadeler ve görevler çok fazla ek bilgi gerektirir. NOC, özellikle lisede sıklıkla kullanılan ana konulardan biridir ve materyali anlamak özellikle zor değildir; güçleri ve çarpım tablosunu bilen bir kişi, gerekli sayıları tanımlamakta ve bulmakta zorluk çekmeyecektir. sonuç.

Tanım

Ortak kat, aynı anda iki sayıya (a ve b) tamamen bölünebilen bir sayıdır. Çoğu zaman bu sayı, orijinal a ve b sayıları çarpılarak elde edilir. Sayı aynı anda her iki sayıya da sapma olmadan bölünebilmelidir.

NOC kabul edilen tanımdır Kısa isim, ilk harflerden toplandı.

Numara almanın yolları

Sayıları çarpma yöntemi, LCM'yi bulmak için her zaman uygun değildir; basit tek basamaklı veya iki basamaklı sayılar için çok daha uygundur. Faktörlere bölmek gelenekseldir; sayı ne kadar büyük olursa, o kadar fazla faktör olacaktır.

Örnek No.1

En basit örnek olarak okullar genellikle asal, tek veya çift haneli sayıları kullanır. Örneğin, karar vermeniz gerekiyor sonraki görev 7 ve 3 sayılarının en küçük ortak katını bulun, çözüm oldukça basit, sadece bunları çarpın. Sonuç olarak elimizde 21 sayısı var. daha küçük sayı kesinlikle hayır.

Örnek No.2

Görevin ikinci versiyonu çok daha zor. 300 ve 1260 sayıları verilmiştir, LOC'yi bulmak zorunludur. Sorunu çözmek için aşağıdaki eylemlerin gerçekleştirildiği varsayılmaktadır:

Birinci ve ikinci sayıların basit faktörlere ayrıştırılması. 300 = 2 2 * 3 * 5 2; 1260 = 2 2 * 3 2 *5 *7. İlk aşama tamamlandı.

İkinci aşama, önceden elde edilmiş verilerle çalışmayı içerir. Alınan sayıların her biri nihai sonucun hesaplanmasına katılmalıdır. Her çarpan için en fazla Büyük sayı olaylar. LCM genel bir sayıdır, bu nedenle sayıların çarpanları, her birinde, hatta bir kopyada mevcut olanlar bile tekrarlanmalıdır. Her iki ilk sayı da 2, 3 ve 5 sayılarını içerir. farklı dereceler, 7 sadece bir vakada mevcuttur.

Nihai sonucu hesaplamak için, denklemde temsil edilen kuvvetlerin en büyüğündeki her sayıyı almanız gerekir. Geriye kalan tek şey çarpmak ve cevabı almak; eğer doğru bir şekilde doldurulursa, görev açıklama gerektirmeden iki adıma sığar:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) NOC = 6300.

Hesaplamaya çalışırsanız bütün sorun bu doğru numaraçarpma yoluyla 300 * 1260 = 378.000 olduğundan cevap kesinlikle doğru olmayacaktır.

Muayene:

6300/300 = 21 - doğru;

6300/1260 = 5 - doğru.

Elde edilen sonucun doğruluğu kontrol edilerek - LCM'nin her iki başlangıç ​​numarasına bölünmesiyle belirlenir; eğer sayı her iki durumda da bir tam sayı ise, o zaman cevap doğrudur.

NOC matematikte ne anlama geliyor?

Bildiğiniz gibi matematikte tek bir işe yaramaz fonksiyon yoktur, bu da bir istisna değildir. Bu sayının en yaygın amacı kesirleri azaltmaktır. ortak payda. Genellikle 5-6. Sınıflarda ne çalışılır? lise. Ayrıca ek olarak ortak bölen tüm katlar için, eğer problemde bu tür koşullar mevcutsa. Benzer ifade yalnızca iki sayının katlarını değil, çok daha fazlasının katlarını da bulabilir Daha- üç, beş vb. Nasıl daha fazla sayı- onlar daha fazla hareket ancak bu karmaşıklığı artırmaz.

Örneğin, 250, 600 ve 1500 sayıları verildiğinde bunların ortak LCM'sini bulmanız gerekir:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - bu örnek, çarpanlara ayırmayı azaltma olmadan ayrıntılı olarak açıklamaktadır.

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

Bir ifade oluşturmak için tüm faktörlerden bahsetmek gerekir, bu durumda 2, 5, 3 verilir - tüm bu sayılar için maksimum dereceyi belirlemek gerekir.

Dikkat: Tüm faktörler tamamen sadeleştirilme noktasına getirilmeli, mümkünse tek haneli seviyeye ayrıştırılmalıdır.

Muayene:

1) 3000/250 = 12 - doğru;

2) 3000/600 = 5 - doğru;

3) 3000/1500 = 2 – doğru.

Bu yöntem herhangi bir hile veya dahi düzeyinde yetenek gerektirmez, her şey basit ve açıktır.

Diğer yol

Matematikte birçok şey birbiriyle bağlantılıdır, birçok şey iki veya daha fazla yolla çözülebilir; aynı şey en küçük ortak kat olan LCM'yi bulmak için de geçerlidir. Basit iki basamaklı sayılarda aşağıdaki yöntem kullanılabilir ve tek haneli sayılar. Çarpanın dikey olarak, çarpanın yatay olarak girildiği ve çarpımın sütunun kesişen hücrelerinde belirtildiği bir tablo derlenir. Tabloyu bir çizgi kullanarak yansıtabilir, bir sayı alıp bu sayıyı 1'den sonsuza kadar tam sayılarla çarpmanın sonuçlarını yazabilirsiniz, bazen 3-5 puan yeterlidir, ikinci ve sonraki sayılar aynı hesaplama sürecinden geçer. Ortak bir kat bulunana kadar her şey olur.

30, 35, 42 sayıları göz önüne alındığında, tüm sayıları birbirine bağlayan LCM'yi bulmanız gerekir:

1) 30'un katları: 60, 90, 120, 150, 180, 210, 250, vb.

2) 35'in katları: 70, 105, 140, 175, 210, 245, vb.

3) 42'nin katları: 84, 126, 168, 210, 252, vb.

Tüm sayıların oldukça farklı olduğu dikkat çekiyor, aralarındaki tek ortak sayı 210, yani NOC olacak. Bu hesaplamada yer alan işlemler arasında, benzer prensiplere göre hesaplanan ve komşu problemlerde sıklıkla karşılaşılan en büyük ortak bölen de bulunmaktadır. Fark küçük ama oldukça anlamlıdır; LCM, verilen tüm başlangıç ​​değerlerine bölünen bir sayının hesaplanmasını içerir ve GCD, hesaplamayı içerir. en yüksek değer orijinal sayıların bölündüğü yer.

En büyük ortak böleni

Tanım 2

Eğer bir a doğal sayısı bir $b$ doğal sayısı ile bölünebiliyorsa, o zaman $b$'ye $a$'ın böleni denir ve $a$'a $b$'ın katı denir.

$a$ ve $b$ doğal sayılar olsun. $c$ sayısına hem $a$ hem de $b$ sayısının ortak böleni denir.

$a$ ve $b$ sayılarının ortak bölenleri kümesi sonludur çünkü bu bölenlerin hiçbiri $a$'dan büyük olamaz. Bu, bu bölenler arasında, $a$ ve $b$ sayılarının en büyük ortak böleni olarak adlandırılan ve aşağıdaki gösterimle gösterilen en büyük bölenin olduğu anlamına gelir:

$GCD\(a;b)\ veya \D\(a;b)$

İki sayının en büyük ortak bölenini bulmak için ihtiyacınız olan:

  1. 2. adımda bulunan sayıların çarpımını bulun. Ortaya çıkan sayı, istenen en büyük ortak bölen olacaktır.

örnek 1

$121$ ve $132.$ sayılarının gcd'sini bulun

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Bu sayıların genişletilmesine dahil olan sayıları seçin

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    2. adımda bulunan sayıların çarpımını bulun. Ortaya çıkan sayı, istenen en büyük ortak bölen olacaktır.

    $GCD=2\cdot 11=22$

Örnek 2

$63$ ve $81$ tek terimlilerinin gcd'sini bulun.

Sunulan algoritmaya göre bulacağız. Bunun için:

    Sayıları asal çarpanlarına ayıralım

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Bu sayıların açılımına dahil olan sayıları seçiyoruz

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    2. adımda bulduğumuz sayıların çarpımını bulalım. Ortaya çıkan sayı istenilen en büyük ortak bölen olacaktır.

    $GCD=3\cdot 3=9$

İki sayının gcd'sini, bir dizi sayı bölen kullanarak başka bir şekilde bulabilirsiniz.

Örnek 3

$48$ ve $60$ sayılarının gcd'sini bulun.

Çözüm:

$48$ sayısının bölenleri kümesini bulalım: $\left\((\rm 1,2,3.4.6,8,12,16,24,48)\right\)$

Şimdi $60$:$\ \left\((\rm 1,2,3,4,5,6,10,12,15,20,30,60)\right\) sayısının bölenleri kümesini bulalım $

Bu kümelerin kesişimini bulalım: $\left\((\rm 1,2,3,4,6,12)\right\)$ - bu küme $48$ ve $60 sayılarının ortak bölenleri kümesini belirleyecektir. $. Bu kümedeki en büyük öğe $12$ sayısı olacaktır. Bu, $48$ ve $60$ sayılarının en büyük ortak böleninin $12$ olduğu anlamına gelir.

Takipteki kredilerin tanımı

Tanım 3

Ortak katlar doğal sayılar $a$ ve $b$, hem $a$ hem de $b$'ın katı olan bir doğal sayıdır.

Sayıların ortak katları, orijinal sayılara kalansız bölünebilen sayılardır. Örneğin, $25$ ve $50$ sayıları için ortak katlar, $50,100,150,200$ vb. sayılar olacaktır.

En küçük ortak kat, en küçük ortak kat olarak adlandırılacak ve LCM$(a;b)$ veya K$(a;b).$ ile gösterilecektir.

İki sayının LCM'sini bulmak için yapmanız gerekenler:

  1. Sayıları asal çarpanlara ayırma
  2. Birinci sayının parçası olan çarpanları yazın ve onlara ikincinin parçası olan ve birincinin parçası olmayan çarpanları ekleyin.

Örnek 4

$99$ ve $77$ sayılarının LCM'sini bulun.

Sunulan algoritmaya göre bulacağız. Bunun için

    Sayıları asal çarpanlara ayırma

    $99=3\cdot 3\cdot 11$

    İlkinde yer alan faktörleri yazınız.

    bunlara birincinin parçası olmayan, ikincinin parçası olan çarpanları ekleyin

    2. adımda bulunan sayıların çarpımını bulun. Ortaya çıkan sayı, istenen en küçük ortak kat olacaktır.

    $NOK=3\cdot 3\cdot 11\cdot 7=693$

    Sayıların bölenlerinin listesini derlemek genellikle çok emek yoğun bir iştir. Öklid algoritması adı verilen GCD'yi bulmanın bir yolu var.

    Öklid algoritmasının dayandığı ifadeler:

    $a$ ve $b$ doğal sayılarsa ve $a\vdots b$ ise, o zaman $D(a;b)=b$

    $a$ ve $b$, $b olacak şekilde doğal sayılar ise

$D(a;b)= D(a-b;b)$ kullanarak, biri diğerine bölünebilecek bir sayı çiftine ulaşana kadar söz konusu sayıları art arda azaltabiliriz. O zaman bu sayılardan küçük olanı, $a$ ve $b$ sayıları için istenen en büyük ortak bölen olacaktır.

GCD ve LCM'nin Özellikleri

  1. $a$ ve $b$'ın herhangi bir ortak katı K$(a;b)$ ile bölünebilir
  2. Eğer $a\vdots b$ ise К$(a;b)=a$
  3. Eğer K$(a;b)=k$ ve $m$ bir doğal sayı ise, o zaman K$(am;bm)=km$

    Eğer $d$, $a$ ve $b$ için ortak bir bölen ise, o zaman K($\frac(a)(d);\frac(b)(d)$)=$\ \frac(k)(d ) $

    Eğer $a\vdots c$ ve $b\vdots c$ ise, o zaman $\frac(ab)(c)$ $a$ ve $b$'ın ortak katıdır

    Herhangi bir $a$ ve $b$ doğal sayısı için eşitlik geçerlidir

    $D(a;b)\cdot К(a;b)=ab$

    $a$ ve $b$ sayılarının herhangi bir ortak böleni, $D(a;b)$ sayısının bölenidir

Tanım. a ve b sayılarına kalansız bölünebilen en büyük doğal sayıya ne denir en büyük ortak bölen (GCD) bu sayılar.

24 ve 35 sayılarının en büyük ortak bölenini bulalım.
24'ün bölenleri 1, 2, 3, 4, 6, 8, 12, 24 sayılarıdır; 35'in bölenleri ise 1, 5, 7, 35 sayılarıdır.
24 ve 35 sayılarının yalnızca bir ortak böleni olduğunu görüyoruz - 1 sayısı. Bu tür sayılara denir karşılıklı olarak asal.

Tanım. Doğal sayılara denir karşılıklı olarak asal, eğer en büyük ortak bölenleri (GCD) 1 ise.

En Büyük Ortak Bölen (GCD) verilen sayıların tüm bölenleri yazılmadan bulunabilir.

48 ve 36 sayılarını çarpanlarına ayıralım ve şunu elde edelim:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Bu sayılardan ilkinin açılımında yer alan faktörlerden, ikinci sayının açılımında yer almayanları (yani iki ikiyi) çıkarıyoruz.
Geriye kalan çarpanlar 2*2*3'tür. Çarpımları 12'ye eşittir. Bu sayı 48 ve 36 sayılarının en büyük ortak böleni olur. Üç veya daha fazla sayının da en büyük ortak böleni bulunur.

Bulmak en büyük ortak böleni

2) bu sayılardan birinin genişletilmesine dahil edilen faktörlerden, diğer sayıların genişletilmesine dahil olmayanların üzerini çizin;
3) Kalan faktörlerin çarpımını bulun.

Verilen sayıların tümü bunlardan birine bölünüyorsa bu sayı en büyük ortak böleni verilen rakamlar.
Örneğin, 15, 45, 75 ve 180 sayılarının en büyük ortak böleni 15 sayısıdır, çünkü diğer tüm sayılar ona bölünebilir: 45, 75 ve 180.

En küçük ortak kat (LCM)

Tanım. En küçük ortak kat (LCM) a ve b doğal sayıları hem a hem de b'nin katı olan en küçük doğal sayıdır. 75 ve 60 sayılarının en küçük ortak katı (LCM), bu sayıların katları art arda yazılmadan bulunabilir. Bunu yapmak için 75 ve 60'ı asal çarpanlarına ayıralım: 75 = 3 * 5 * 5 ve 60 = 2 * 2 * 3 * 5.
Bu sayılardan birincisinin açılımında yer alan çarpanları yazalım ve bunlara ikinci sayının açılımında eksik olan 2 ve 2 çarpanlarını ekleyelim (yani çarpanları birleştirelim).
Çarpımı 300 olan 2 * 2 * 3 * 5 * 5 şeklinde beş çarpan elde ederiz. Bu sayı, 75 ve 60 sayılarının en küçük ortak katıdır.

Ayrıca üç veya daha fazla sayının en küçük ortak katını da bulurlar.

İle en küçük ortak katları bul birkaç doğal sayıya ihtiyacınız var:
1) bunları asal faktörlere ayırın;
2) sayılardan birinin açılımına dahil olan faktörleri yazın;
3) kalan sayıların açılımlarından eksik faktörleri bunlara ekleyin;
4) Ortaya çıkan faktörlerin çarpımını bulun.

Bu sayılardan biri diğer tüm sayılara bölünebiliyorsa, bu sayının bu sayıların en küçük ortak katı olduğunu unutmayın.
Örneğin 12, 15, 20 ve 60 sayılarının en küçük ortak katı 60'tır çünkü bu sayıların tümüne bölünebilir.

Pisagor (M.Ö. VI. yüzyıl) ve öğrencileri sayıların bölünebilirliği konusunu incelediler. Sayı, toplamına eşit Tüm bölenlerine (sayı hariç) mükemmel sayı adını verdiler. Örneğin 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) sayıları mükemmeldir. Sonraki mükemmel sayılar 496, 8128, 33,550,336'dır. Pisagorcular yalnızca ilk üç mükemmel sayıyı biliyorlardı. Dördüncü - 8128 - 1. yüzyılda tanındı. N. e. Beşincisi (33.550.336) 15. yüzyılda bulundu. 1983 yılına gelindiğinde 27 mükemmel sayı zaten biliniyordu. Ancak bilim insanları hala tuhaflıkların olup olmadığını bilmiyorlar mükemmel sayılar, en büyük mükemmel sayı var mıdır?
Antik matematikçilerin asal sayılara olan ilgisi, herhangi bir sayının asal olması veya çarpım olarak gösterilebilmesinden kaynaklanmaktadır. asal sayılar yani asal sayılar diğer doğal sayıların inşa edildiği tuğlalar gibidir.
Muhtemelen doğal sayılar dizisindeki asal sayıların eşit olmayan bir şekilde oluştuğunu fark etmişsinizdir - serinin bazı kısımlarında daha fazla, bazılarında ise daha az vardır. Ama ne kadar ileri gidersek sayı serisi asal sayılar daha az yaygındır. Şu soru ortaya çıkıyor: Son (en büyük) bir asal sayı var mı? Antik Yunan matematikçi Öklid (MÖ 3. yüzyıl), iki bin yıl boyunca matematiğin ana ders kitabı olan “Elementler” adlı kitabında sonsuz sayıda asal sayının bulunduğunu, yani her asal sayının arkasında daha büyük bir asal sayının bulunduğunu kanıtladı. sayı.
Asal sayıları bulmak için aynı dönemdeki bir başka Yunan matematikçi Eratosthenes bu yöntemi ortaya attı. 1'den bir sayıya kadar tüm sayıları yazdı ve sonra ne asal ne de asal olan bir sayının üzerini çizdi. bileşik sayı, ardından 2'den sonra gelen tüm sayıların (2'nin katı olan sayılar, yani 4, 6, 8 vb.) üzerini çizin. 2'den sonra kalan ilk sayı 3'tü. Daha sonra ikiden sonra 3'ten sonra gelen tüm sayıların (3'ün katı olan sayılar yani 6, 9, 12 vb.) üzeri çizildi. sonunda yalnızca asal sayılar çaprazlanmadan kaldı.