10'un 2 tabanına göre logaritması eşittir. Logaritma nedir? Logaritma çözme

Toplum geliştikçe ve üretim karmaşıklaştıkça matematik de gelişti. Basitten karmaşığa doğru hareket. Geleneksel muhasebeden toplama ve çıkarma yöntemiyle, birçok kez tekrarlandı, çarpma ve bölme kavramına geldi. Tekrarlanan çarpma işleminin azaltılması, üstel alma kavramı haline geldi. Sayıların tabana bağımlılığı ve üstel sayılarla ilgili ilk tablolar 8. yüzyılda Hintli matematikçi Varasena tarafından derlendi. Onlardan logaritmanın oluşma zamanını sayabilirsiniz.

Tarihsel eskiz

16. yüzyılda Avrupa'nın yeniden canlanması mekaniğin gelişimini de teşvik etti. T büyük miktarda hesaplama gerektiriyorduçarpma ve bölme ile ilgili çok basamaklı sayılar. Antik masalar büyük hizmet veriyordu. Karmaşık işlemleri daha basit olanlarla (toplama ve çıkarma) değiştirmeyi mümkün kıldılar. Büyük adım Birçok matematikçinin fikrini hayata geçirdiği matematikçi Michael Stiefel'in 1544'te yayınlanan çalışması öncülük etti. Bu, tabloların yalnızca formdaki dereceler için kullanılmasını mümkün kılmadı asal sayılar ama aynı zamanda keyfi rasyonel olanlar için de.

1614 yılında bu fikirleri geliştiren İskoçyalı John Napier, ilk kez bu fikirleri ortaya attı. yeni dönem"bir sayının logaritması." Yeni karmaşık tablolar sinüs ve kosinüslerin logaritmasının yanı sıra teğetlerin hesaplanması için. Bu, gökbilimcilerin çalışmalarını büyük ölçüde azalttı.

Bilim adamları tarafından başarıyla kullanılan yeni tablolar ortaya çıkmaya başladı. üç yüzyıl. Cebirdeki yeni işlemin bitmiş halini alması için çok zaman geçti. Logaritmanın tanımı verilmiş ve özellikleri incelenmiştir.

Ancak 20. yüzyılda hesap makinesinin ve bilgisayarın ortaya çıkışıyla insanlık, 13. yüzyıl boyunca başarılı bir şekilde işleyen eski tabloları terk etti.

Bugün a'nın b'yi oluşturma kuvveti olan b'nin logaritmasını a sayısına x diyoruz. Bu bir formül olarak yazılır: x = log a(b).

Örneğin, log 3(9) 2'ye eşit olacaktır. Tanımı izlerseniz bu açıkça görülür. 3'ün 2'nin üssünü çıkarırsak 9 elde ederiz.

Dolayısıyla, formüle edilen tanım yalnızca bir kısıtlama getirmektedir: a ve b sayıları gerçek olmalıdır.

Logaritma türleri

Klasik tanıma gerçek logaritma denir ve aslında a x = b denkleminin çözümüdür. Seçenek a = 1 sınırdadır ve ilgi çekici değildir. Dikkat: 1'in herhangi bir kuvveti 1'e eşittir.

Logaritmanın gerçek değeri yalnızca taban ve argüman 0'dan büyük olduğunda tanımlanır ve taban 1'e eşit olmamalıdır.

Matematik alanında özel yeri tabanlarının boyutuna göre adlandırılacak olan logaritmalarla oynayın:

Kurallar ve kısıtlamalar

Logaritmanın temel özelliği kuraldır: Bir ürünün logaritması, logaritmik toplama eşittir. log abp = log a(b) + log a(p).

Bu ifadenin bir çeşidi olarak şu şekilde olacaktır: log c(b/p) = log c(b) - log c(p), bölüm fonksiyonu, fonksiyonların farkına eşittir.

Önceki iki kuraldan şunu görmek kolaydır: log a(b p) = p * log a(b).

Diğer özellikler şunları içerir:

Yorum. Yaygın bir hata yapmayın - toplamın logaritması değil toplamına eşit logaritmalar.

Yüzyıllar boyunca logaritma bulma işlemi oldukça zaman alıcı bir işti. Matematikçiler kullanıldı bilinen formül Polinom genişlemesinin logaritmik teorisi:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), burada n - doğal sayı 1'den büyük olması hesaplamanın doğruluğunu belirler.

Diğer bazlarla logaritmalar, bir tabandan diğerine geçiş teoremi ve ürünün logaritmasının özelliği kullanılarak hesaplandı.

Bu yöntem çok emek yoğun olduğundan karar verirken pratik problemler uygulanması zor olduğundan, tüm işi önemli ölçüde hızlandıran önceden derlenmiş logaritma tabloları kullandık.

Bazı durumlarda, daha az doğruluk sağlayan ancak aramayı önemli ölçüde hızlandıran özel olarak tasarlanmış logaritma grafikleri kullanıldı. istenen değer. Y = log a(x) fonksiyonunun birkaç nokta üzerinden oluşturulan eğrisi, fonksiyonun değerini başka herhangi bir noktada bulmak için normal bir cetvel kullanmanıza olanak tanır. Mühendisler uzun zaman Bu amaçlar için grafik kağıdı adı verilen kağıt kullanıldı.

17. yüzyılda ilk yardımcı analog hesaplama koşulları ortaya çıktı. 19. yüzyıl bitmiş bir görünüm kazandı. En başarılı cihaza slayt kuralı adı verildi. Cihazın sadeliğine rağmen, görünümü tüm mühendislik hesaplamalarının sürecini önemli ölçüde hızlandırdı ve bunu abartmak zor. Şu anda çok az kişi bu cihaza aşinadır.

Hesap makinelerinin ve bilgisayarların ortaya çıkışı, diğer cihazların kullanımını anlamsız hale getirdi.

Denklemler ve eşitsizlikler

Çözmek için farklı denklemler Logaritma kullanılarak eşitsizlikler ve eşitsizlikler için aşağıdaki formüller kullanılır:

  • Bir tabandan diğerine geçiş: log a(b) = log c(b) / log c(a);
  • Önceki seçeneğin bir sonucu olarak: log a(b) = 1 / log b(a).

Eşitsizlikleri çözmek için şunları bilmek faydalıdır:

  • Logaritmanın değeri yalnızca taban ve argümanın her ikisinin de birden büyük veya küçük olması durumunda pozitif olacaktır; en az bir koşulun ihlal edilmesi durumunda logaritma değeri negatif olacaktır.
  • Bir eşitsizliğin sağ ve sol taraflarına logaritma fonksiyonu uygulanırsa ve logaritmanın tabanı birden büyükse eşitsizliğin işareti korunur; V aksi takdirde o değişiyor.

Örnek problemler

Logaritmaları ve özelliklerini kullanmak için çeşitli seçenekleri ele alalım. Denklem çözme örnekleri:

Logaritmayı bir kuvvete yerleştirme seçeneğini düşünün:

  • Problem 3. 25^log 5(3)'ü hesaplayın. Çözüm: Sorunun koşullarında, giriş aşağıdaki (5^2)^log5(3) veya 5^(2 * log 5(3))'e benzer. Farklı yazalım: 5^log 5(3*2) veya fonksiyon argümanı olarak bir sayının karesi, fonksiyonun kendisinin karesi (5^log 5(3))^2 olarak yazılabilir. Logaritmanın özelliklerini kullanarak bu ifade 3^2'ye eşittir. Cevap: Hesaplama sonucunda 9 elde ederiz.

Pratik Uygulama

Tamamen matematiksel bir araç olduğundan, gerçek hayat logaritmanın aniden elde edildiği büyük değer nesneleri tanımlamak gerçek dünya. Kullanılmayan bilim bulmak zordur. Bu tamamen yalnızca doğal değil, aynı zamanda insani bilgi alanları için de geçerlidir.

Logaritmik bağımlılıklar

Sayısal bağımlılıklara bazı örnekler:

Mekanik ve fizik

Tarihsel olarak mekanik ve fizik her zaman kullanılarak gelişmiştir. matematiksel yöntemler araştırma ve aynı zamanda logaritmalar da dahil olmak üzere matematiğin gelişimi için bir teşvik görevi gördü. Çoğu fizik kanununun teorisi matematik dilinde yazılmıştır. Açıklamalara sadece iki örnek verelim fiziksel yasalar logaritma kullanarak.

Bunun gibi bir hesaplama problemini çözün karmaşık boyut uzay araştırmaları teorisinin temelini oluşturan Tsiolkovsky formülü uygulanarak bir roketin hızının nasıl belirlenebileceği:

V = I * ln (M1/M2), burada

  • V- son hız uçak.
  • I – motorun spesifik dürtüsü.
  • M 1 – roketin başlangıç ​​kütlesi.
  • M 2 – son kütle.

Bir diğer önemli örnek - bu, termodinamikte denge durumunu değerlendirmeye yarayan başka bir büyük bilim adamı Max Planck'ın formülünde kullanılır.

S = k * ln (Ω), burada

  • S – termodinamik özellik.
  • k – Boltzmann sabiti.
  • Ω farklı durumların istatistiksel ağırlığıdır.

Kimya

Kimyada logaritma oranını içeren formüllerin kullanılması daha az belirgindir. Sadece iki örnek verelim:

  • Nernst denklemi, maddelerin aktivitesine ve denge sabitine bağlı olarak ortamın redoks potansiyelinin durumu.
  • Otoliz indeksi ve çözeltinin asitliği gibi sabitlerin hesaplanması da fonksiyonumuz olmadan yapılamaz.

Psikoloji ve biyoloji

Ve psikolojinin bununla ne ilgisi olduğu hiç de açık değil. Duyusal gücün bu fonksiyonla çok iyi tanımlandığı ortaya çıktı: ters ilişki uyaran yoğunluk değerlerini daha düşük yoğunluk değerine getirir.

Yukarıdaki örneklerden sonra logaritma konusunun biyolojide yaygın olarak kullanılması artık şaşırtıcı değil. Logaritmik spirallere karşılık gelen biyolojik formlar hakkında ciltler dolusu yazı yazılabilir.

Diğer alanlar

Öyle görünüyor ki, bu fonksiyonla bağlantısı olmadan dünyanın varlığı imkânsızdır ve o, tüm kanunları yönetmektedir. Özellikle doğa kanunları ile ilgili olduğunda geometrik ilerleme. MatProfi web sitesine dönmeye değer ve aşağıdaki faaliyet alanlarında buna benzer birçok örnek var:

Liste sonsuz olabilir. Bu işlevin temel ilkelerine hakim olduktan sonra sonsuz bilgelik dünyasına dalabilirsiniz.


Logaritmaları incelemeye devam ediyoruz. Bu yazıda bunun hakkında konuşacağız logaritmaların hesaplanması, bu işleme denir logaritma. Öncelikle logaritmanın hesaplanmasını tanım gereği anlayacağız. Daha sonra logaritma değerlerinin özellikleri kullanılarak nasıl bulunduğuna bakalım. Bundan sonra başlangıçta logaritmaları hesaplamaya odaklanacağız. değerleri belirle diğer logaritmalar. Son olarak logaritma tablolarının nasıl kullanılacağını öğrenelim. Teorinin tamamı ayrıntılı çözümlere sahip örneklerle sağlanmaktadır.

Sayfada gezinme.

Tanıma göre logaritmaları hesaplama

En basit durumlarda oldukça hızlı ve kolay bir şekilde gerçekleştirmek mümkündür tanım gereği logaritmayı bulma. Bu sürecin nasıl gerçekleştiğine daha yakından bakalım.

Bunun özü, b sayısını a c biçiminde temsil etmektir; buradan logaritmanın tanımına göre c sayısı logaritmanın değeridir. Yani, tanım gereği aşağıdaki eşitlik zinciri logaritmanın bulunmasına karşılık gelir: log a b=log a a c =c.

Dolayısıyla, tanım gereği bir logaritmanın hesaplanması, a c = b olacak şekilde bir c sayısının bulunmasına gelir ve c sayısının kendisi logaritmanın istenen değeridir.

Önceki paragraflardaki bilgileri dikkate alarak, logaritma işaretinin altındaki sayı, logaritma tabanının belirli bir kuvveti ile verildiğinde, logaritmanın neye eşit olduğunu hemen belirtebilirsiniz - bu göstergeye eşit derece. Çözümleri örneklerle gösterelim.

Örnek.

Log 2 2 −3'ü bulun ve e 5,3 sayısının doğal logaritmasını da hesaplayın.

Çözüm.

Logaritmanın tanımı hemen log 2 2 −3 =−3 olduğunu söylememizi sağlar. Aslında logaritma işaretinin altındaki sayı 2 tabanının -3 üssüne eşittir.

Benzer şekilde ikinci logaritmayı da buluyoruz: lne 5,3 =5,3.

Cevap:

log 2 2 −3 =−3 ve lne 5,3 =5,3.

Logaritma işaretinin altındaki b sayısı, logaritmanın tabanının kuvveti olarak belirtilmemişse, b sayısının a c biçiminde bir temsilini bulmanın mümkün olup olmadığını dikkatlice incelemeniz gerekir. Çoğu zaman bu gösterim oldukça açıktır, özellikle logaritma işaretinin altındaki sayı 1, 2 veya 3'ün üssüne eşit olduğunda...

Örnek.

Logaritma log 5 25 ve'yi hesaplayın.

Çözüm.

25=5 2 olduğunu görmek kolaydır, bu ilk logaritmayı hesaplamanıza olanak tanır: log 5 25=log 5 5 2 =2.

İkinci logaritmayı hesaplamaya geçelim. Sayı 7'nin kuvvetleri olarak temsil edilebilir: (gerekirse bakın). Buradan, .

Üçüncü logaritmayı yeniden yazalım. aşağıdaki form. Artık bunu görebilirsin bundan şu sonuca varıyoruz . Bu nedenle logaritmanın tanımı gereği .

Kısaca çözüm şu şekilde yazılabilir: .

Cevap:

günlük 5 25=2 , Ve .

Logaritma işaretinin altında yeterince büyük bir doğal sayı olduğunda, onu genişletmekten zarar gelmez. asal faktörler. Çoğu zaman böyle bir sayıyı logaritmanın tabanının bir kuvveti olarak temsil etmeye ve dolayısıyla bu logaritmayı tanım gereği hesaplamaya yardımcı olur.

Örnek.

Logaritmanın değerini bulun.

Çözüm.

Logaritmanın bazı özellikleri, logaritmanın değerini hemen belirtmenize olanak tanır. Bu özellikler, bir birimin logaritmasının özelliğini ve bir sayının logaritmasının özelliğini içerir. tabana eşit: log 1 1=log a 0 =0 ve log a=log a a 1 =1 . Yani, logaritmanın işareti altında 1 sayısı veya logaritmanın tabanına eşit bir sayı olduğunda, bu durumlarda logaritmalar sırasıyla 0 ve 1'e eşittir.

Örnek.

Logaritmalar ve log10 neye eşittir?

Çözüm.

O zamandan beri logaritmanın tanımından şu çıkıyor .

İkinci örnekte logaritma işaretinin altındaki 10 sayısı tabanına denk geldiği için onluk logaritması ondalıktır. bire eşit yani log10=lg10 1 =1.

Cevap:

VE lg10=1 .

Tanım gereği logaritmanın hesaplanmasının (ki bunu daha önce tartışmıştık) unutmayın. önceki paragraf) logaritmanın özelliklerinden biri olan log a p =p eşitliğinin kullanımını ima eder.

Pratikte logaritmanın işareti altındaki bir sayı ve logaritmanın tabanı belirli bir sayının kuvveti olarak kolaylıkla temsil edildiğinde formülü kullanmak çok uygundur. logaritmanın özelliklerinden birine karşılık gelir. Bu formülün kullanımını gösteren logaritmayı bulma örneğini ele alalım.

Örnek.

Logaritmayı hesaplayın.

Çözüm.

Cevap:

.

Logaritmanın yukarıda belirtilmeyen özellikleri de hesaplamalarda kullanılır ancak bundan sonraki paragraflarda bahsedeceğiz.

Bilinen diğer logaritmalar aracılığıyla logaritma bulma

Bu paragraftaki bilgiler logaritmanın özelliklerinin hesaplanmasında kullanılması konusunun devamıdır. Ancak buradaki temel fark, logaritmanın özelliklerinin, orijinal logaritmayı değeri bilinen başka bir logaritmaya göre ifade etmek için kullanılmasıdır. Açıklığa kavuşturmak için bir örnek verelim. Diyelim ki log 2 3≈1,584963'ü bildiğimizi varsayalım, o zaman logaritmanın özelliklerini kullanarak küçük bir dönüşüm yaparak örneğin log 2 6'yı bulabiliriz: günlük 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Yukarıdaki örnekte bir çarpımın logaritması özelliğini kullanmamız yeterliydi. Bununla birlikte, orijinal logaritmayı verilenler aracılığıyla hesaplamak için çok daha sık olarak logaritmanın özelliklerinin daha geniş bir cephaneliğini kullanmak gerekir.

Örnek.

Log 60 2=a ve log 60 5=b olduğunu biliyorsanız, 27'nin 60 tabanına göre logaritmasını hesaplayın.

Çözüm.

Bu yüzden log 60 27'yi bulmamız gerekiyor. 27 = 3 3 olduğunu ve kuvvetin logaritmasının özelliği nedeniyle orijinal logaritmanın 3·log 60 3 olarak yeniden yazılabileceğini görmek kolaydır.

Şimdi log 60 3'ün bilinen logaritmalarla nasıl ifade edileceğini görelim. Tabana eşit bir sayının logaritması özelliği, log 60 60=1 eşitliğini yazmamızı sağlar. Öte yandan, log 60 60=log60(2 2 3 5)= günlük 60 2 2 +günlük 60 3+günlük 60 5= 2·log 60 2+log 60 3+log 60 5 . Böylece, 2 log 60 2+log 60 3+log 60 5=1. Buradan, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Son olarak orijinal logaritmayı hesaplıyoruz: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Cevap:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Ayrı olarak, formun logaritmasının yeni bir tabanına geçiş formülünün anlamından bahsetmeye değer. . Herhangi bir tabanlı logaritmalardan, değerleri bilinen veya bulunması mümkün olan belirli bir tabanlı logaritmalara geçmenizi sağlar. Genellikle, orijinal logaritmadan, geçiş formülünü kullanarak, 2, e veya 10 tabanlarından birinde logaritmalara geçerler, çünkü bu tabanlar için değerlerinin belirli bir dereceyle hesaplanmasına izin veren logaritma tabloları vardır. kesinlik. İÇİNDE sonraki nokta size bunun nasıl yapıldığını göstereceğiz.

Logaritma tabloları ve kullanımları

Logaritma değerlerinin yaklaşık hesaplanması için kullanılabilir logaritma tabloları. En sık kullanılan 2 tabanlı logaritma tablosu tablodur. doğal logaritmalar ve ondalık logaritma tablosu. Çalışırken ondalık sistem Matematik için on tabanına dayalı bir logaritma tablosu kullanmak uygundur. Onun yardımıyla logaritmanın değerlerini bulmayı öğreneceğiz.










Sunulan tablo, 1.000'den 9.999'a kadar (üç ondalık basamakla) sayıların ondalık logaritmasının değerlerini on binde bir doğrulukla bulmanızı sağlar. Ondalık logaritma tablosu kullanarak bir logaritmanın değerini bulma ilkesini analiz edeceğiz. spesifik örnek– böyle daha açık. Log1.256'yı bulalım.

Ondalık logaritma tablosunun sol sütununda 1,256 sayısının ilk iki rakamını buluyoruz, yani 1,2'yi buluyoruz (bu sayı netlik açısından mavi daire içine alınmıştır). 1.256'nın üçüncü basamağını (5. basamak) birinci veya son satırçift ​​çizginin solunda (bu sayı kırmızı daire içine alınmıştır). Orijinal sayı olan 1.256'nın dördüncü rakamı (6 rakamı), çift satırın sağındaki ilk veya son satırda bulunur (bu sayı yeşil çizgiyle daire içine alınmıştır). Şimdi logaritma tablosunun hücrelerinde işaretli satır ve işaretli sütunların kesişimindeki sayıları buluyoruz (bu sayılar vurgulanmıştır) turuncu). İşaretlenen sayıların toplamı istenen değeri verir ondalık logaritma dördüncü ondalık basamağa kadar doğru, yani log1,236≈0,0969+0,0021=0,0990.

Yukarıdaki tabloyu kullanarak, ondalık noktadan sonra üç basamaktan fazla olan sayıların yanı sıra 1 ile 9,999 aralığının ötesine geçen sayıların ondalık logaritma değerlerini bulmak mümkün müdür? Evet yapabilirsin. Bunun nasıl yapıldığını bir örnekle gösterelim.

lg102.76332'yi hesaplayalım. İlk önce yazmanız gerekiyor sayı standart form : 102,76332=1,0276332·10 2. Bundan sonra mantis üçüncü ondalık basamağa yuvarlanmalıdır. 1,0276332 10 2 ≈1,028 10 2 orijinal ondalık logaritma yaklaşık olarak iken logaritmaya eşit ortaya çıkan sayı, yani log102.76332≈lg1.028·10 2'yi alıyoruz. Şimdi logaritmanın özelliklerini uyguluyoruz: lg1,028 10 2 =lg1,028+lg10 2 =lg1,028+2. Son olarak, lg1.028 logaritmasının değerini ondalık logaritmalar tablosundan lg1.028≈0.0086+0.0034=0.012 buluyoruz. Sonuç olarak, logaritmayı hesaplama sürecinin tamamı şöyle görünür: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

Sonuç olarak, ondalık logaritma tablosunu kullanarak herhangi bir logaritmanın yaklaşık değerini hesaplayabileceğinizi belirtmekte fayda var. Bunu yapmak için geçiş formülünü kullanarak ondalık logaritmalara gitmeniz, değerlerini tabloda bulmanız ve kalan hesaplamaları yapmanız yeterlidir.

Örneğin log 2 3'ü hesaplayalım. Logaritmanın yeni tabanına geçiş formülüne göre elimizde . Ondalık logaritma tablosundan log3≈0,4771 ve log2≈0,3010'u buluyoruz. Böylece, .

Referanslar.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. ve diğerleri. Cebir ve analizin başlangıcı: Genel eğitim kurumlarının 10 - 11. sınıfları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).

Oran olarak

Verilen diğer iki sayıdan üç sayıdan herhangi birini bulma görevi ayarlanabilir. Eğer a ve ardından N verilirse, üstel alma yoluyla bulunurlar. Eğer N ve sonra a, x derecesinin kökü alınarak (veya üssüne yükseltilerek) verilir. Şimdi a ve N verildiğinde x'i bulmamız gereken durumu düşünün.

N sayısı pozitif olsun: a sayısı pozitif olsun ve bire eşit olmasın: .

Tanım. N sayısının a tabanına göre logaritması, N sayısını elde etmek için a'nın yükseltilmesi gereken üssüdür; logaritma şu şekilde gösterilir:

Böylece (26.1) eşitliğinde üs, N'nin a tabanına göre logaritması olarak bulunur. Gönderiler

sahip olmak aynı anlam. Eşitlik (26.1) bazen logaritma teorisinin ana özdeşliği olarak adlandırılır; gerçekte logaritma kavramının tanımını ifade eder. İle bu tanım Logaritmanın tabanı a her zaman pozitiftir ve birlikten farklıdır; logaritmik sayı N pozitiftir. Negatif sayıların ve sıfırın logaritması yoktur. Belirli bir tabana sahip herhangi bir sayının iyi tanımlanmış bir logaritmaya sahip olduğu kanıtlanabilir. Bu nedenle eşitlik gerektirir. Burada koşulun esas olduğuna dikkat edin; aksi takdirde eşitlik x ve y'nin herhangi bir değeri için geçerli olduğundan sonuç doğrulanmaz.

Örnek 1. Bul

Çözüm. Bir sayı elde etmek için 2 tabanının üssünü yükseltmeniz gerekir.

Aşağıdaki formda bu tür örnekleri çözerken notlar alabilirsiniz:

Örnek 2. Bulun.

Çözüm. Sahibiz

Örnek 1 ve 2'de logaritma sayısını tabanın kuvveti olarak temsil ederek istenilen logaritmayı kolayca bulduk. rasyonel gösterge. İÇİNDE genel durumörneğin, vb. için logaritma olduğundan bu yapılamaz. mantıksız anlam. Bu açıklamayla ilgili bir konuya dikkat çekelim. Paragraf 12'de herhangi bir belirleme olasılığı kavramını verdik. gerçek derece verildi pozitif sayı. Bu, genel anlamda irrasyonel sayılar olabilen logaritmanın tanıtılması için gerekliydi.

Logaritmanın bazı özelliklerine bakalım.

Özellik 1. Sayı ve taban eşitse, logaritma bire eşittir ve tam tersi, logaritma bire eşitse sayı ve taban eşittir.

Kanıt. Logaritmanın tanımına göre elimizde ve nereden

Tersine, tanım gereği Then'e izin verin

Özellik 2. Birin herhangi bir tabana logaritması sıfıra eşit.

Kanıt. Logaritmanın tanımı gereği ( sıfır derece herhangi bir pozitif taban bire eşittir, bkz. (10.1)). Buradan

Q.E.D.

Tersi ifade de doğrudur: eğer ise N = 1'dir. Aslında elimizde .

Logaritmanın bir sonraki özelliğini formüle etmeden önce, a ve b sayılarının her ikisi de c'den büyük veya c'den küçükse, üçüncü c sayısının aynı tarafında yer aldığını kabul edelim. Bu sayılardan biri c'den büyük, diğeri c'den küçükse bu sayıların birlikte uzandığını söyleyeceğiz. farklı taraflar köyden

Özellik 3. Eğer sayı ve taban birin aynı tarafında yer alıyorsa logaritma pozitiftir; Sayı ve taban birin zıt taraflarında yer alıyorsa logaritma negatiftir.

Özellik 3'ün kanıtı, taban birden büyükse ve üs pozitifse veya taban birden küçükse ve üssün negatif olması durumunda a'nın kuvvetinin birden büyük olması gerçeğine dayanmaktadır. Taban birden büyükse ve üs negatifse veya taban birden küçükse ve üs pozitifse kuvvet birden küçüktür.

Göz önünde bulundurulması gereken dört durum vardır:

Biz kendimizi bunlardan ilkini analiz etmekle sınırlayacağız; gerisini okuyucu kendisi değerlendirecektir.

O halde eşitlikte üs ne negatif ne de olabilir sıfıra eşit dolayısıyla pozitiftir, yani kanıtlanması gerektiği gibidir.

Örnek 3. Aşağıdaki logaritmalardan hangilerinin pozitif, hangilerinin negatif olduğunu bulun:

Çözüm: a) 15 sayısı ve 12 tabanı birin aynı tarafında bulunduğuna göre;

b) 1000 ve 2 ünitenin bir tarafında bulunduğundan; bu durumda tabanın logaritmik sayıdan büyük olması önemli değildir;

c) 3.1 ve 0.8 birliğin zıt taraflarında yer aldığından;

G) ; Neden?

D) ; Neden?

Aşağıdaki 4-6 özelliklerine genellikle logaritma kuralları denir: bazı sayıların logaritmasını bilerek, çarpımlarının logaritmasını, bölümünü ve her birinin derecesini bulmayı sağlarlar.

Özellik 4 (çarpım logaritması kuralı). Birkaç pozitif sayının çarpımının logaritması bu temel bu sayıların aynı tabana göre logaritmasının toplamına eşittir.

Kanıt. Verilen sayılar pozitif olsun.

Çarpımlarının logaritması için logaritmayı tanımlayan eşitliği (26.1) yazıyoruz:

Buradan bulacağız

Birinci ve üslü sayıların karşılaştırılması son ifadeler gerekli eşitliği elde ederiz:

Durumun gerekli olduğunu unutmayın; iki çarpımının logaritması negatif sayılar mantıklı ama bu durumda

Genel olarak, birkaç faktörün çarpımı pozitifse, logaritması bu faktörlerin mutlak değerlerinin logaritmasının toplamına eşittir.

Özellik 5 (bölümlerin logaritmasını alma kuralı). Pozitif sayıların bir bölümünün logaritması, aynı tabana göre bölünen ile bölenin logaritmaları arasındaki farka eşittir. Kanıt. Sürekli olarak buluyoruz

Q.E.D.

Özellik 6 (kuvvet logaritması kuralı). Herhangi bir pozitif sayının kuvvetinin logaritması, o sayının logaritmasının üssüyle çarpımına eşittir.

Kanıt. Sayının asıl kimliğini (26.1) tekrar yazalım:

Q.E.D.

Sonuçlar. Pozitif bir sayının kökünün logaritması, radikalin logaritmasının kökün üssüne bölünmesine eşittir:

Bu sonucun geçerliliği, özellik 6'nın nasıl ve kullanıldığı hayal edilerek kanıtlanabilir.

Örnek 4. a tabanına göre logaritmayı alın:

a) (tüm b, c, d, e değerlerinin pozitif olduğu varsayılır);

b) (öyle olduğu varsayılır).

Çözüm, a) Gitmek uygundur bu ifade kesirli kuvvetlere:

(26.5)-(26.7) eşitliklerine dayanarak artık şunu yazabiliriz:

Sayıların logaritmaları üzerinde sayıların kendilerinden daha basit işlemlerin gerçekleştirildiğini fark ettik: sayıları çarparken logaritmalar toplanır, bölünürken çıkarılır vb.

Logaritmaların hesaplama uygulamalarında kullanılmasının nedeni budur (bkz. paragraf 29).

Logaritmanın ters işlemine potansiyelleştirme denir, yani: potansiyelleştirme, bir sayının belirli bir logaritmasından sayının kendisinin bulunması işlemidir. Esasen, potansiyelleştirme herhangi bir özel eylem değildir: bir tabanın bir güce (bir sayının logaritmasına eşit) yükseltilmesiyle ilgilidir. "Güçlendirme" terimi, "üstelleştirme" terimiyle eşanlamlı olarak kabul edilebilir.

Potansiyelleştirme sırasında, logaritma kurallarının tersi olan kurallar kullanılmalıdır: logaritmaların toplamını çarpımın logaritmasıyla değiştirin, logaritma farkını bölümün logaritmasıyla değiştirin, vb. Özellikle, önde bir faktör varsa Logaritmanın işareti, potansiyasyon sırasında logaritmanın işareti altındaki üs derecelerine aktarılmalıdır.

Örnek 5. Eğer biliniyorsa N'yi bulun

Çözüm. Az önce belirttiğimiz potansiyel alma kuralına bağlı olarak, bu eşitliğin sağ tarafındaki logaritma işaretlerinin önünde duran 2/3 ve 1/3 çarpanlarını bu logaritmaların işaretleri altındaki üslere aktaracağız; aldık

Şimdi logaritma farkını bölümün logaritmasıyla değiştiriyoruz:

Bu eşitlik zincirindeki son kesri elde etmek için önceki kesri paydadaki irrasyonellikten kurtardık (madde 25).

Özellik 7. Taban birden büyükse, o zaman daha büyük sayı daha büyük bir logaritmaya sahiptir (ve daha küçük bir sayı daha küçüktür), eğer taban birden küçükse, daha büyük olanın logaritması daha küçüktür (ve daha küçük olanın daha büyük bir logaritması vardır).

Bu özellik aynı zamanda her iki tarafı da pozitif olan eşitsizliklerin logaritmasını almak için bir kural olarak formüle edilmiştir:

Eşitsizliklerin logaritması tabana alınırken, birden büyük eşitsizliğin işareti korunur ve logaritma birden küçük bir tabana alındığında eşitsizliğin işareti ters yönde değişir (ayrıca bkz. paragraf 80).

İspat, 5 ve 3 numaralı özelliklere dayanmaktadır. If'in logaritmasını alarak elde ettiğimiz durumu düşünün.

(a ve N/M birliğin aynı tarafındadır). Buradan

Aşağıdaki durumda okuyucu bunu kendi başına çözecektir.

Bugün bunun hakkında konuşacağız logaritmik formüller ve gösterge niteliğinde vereceğiz çözüm örnekleri.

Logaritmanın temel özelliklerine göre çözüm modellerini kendileri ima ederler. Logaritmik formülleri çözüme uygulamadan önce size tüm özellikleri hatırlatalım:

Şimdi bu formüllere (özelliklere) dayanarak şunu göstereceğiz: logaritma çözme örnekleri.

Formüllere dayalı logaritma çözme örnekleri.

Logaritma a tabanındaki pozitif bir b sayısı (log a b ile gösterilir), b > 0, a > 0 ve 1 olmak üzere b'yi elde etmek için a'nın yükseltilmesi gereken bir üstür.

Buna göre günlüğün tanımları a b = x, bu da a x = b'ye eşittir, dolayısıyla log a a x = x.

Logaritmalar, örnekler:

log 2 8 = 3, çünkü 2 3 = 8

log 7 49 = 2, çünkü 7 2 = 49

log 5 1/5 = -1, çünkü 5 -1 = 1/5

Ondalık logaritma- bu, tabanı 10 olan sıradan bir logaritmadır. lg olarak gösterilir.

log 10 100 = 2, çünkü 10 2 = 100

Doğal logaritma- aynı zamanda olağan logaritma logaritması, ancak e tabanıyla (e = 2,71828... - irrasyonel sayı). ln olarak gösterilir.

Logaritmanın formüllerini veya özelliklerini ezberlemeniz tavsiye edilir, çünkü daha sonra logaritmaları çözerken bunlara ihtiyacımız olacak, logaritmik denklemler ve eşitsizlikler. Örneklerle her formülü tekrar inceleyelim.

  • Temel bilgiler logaritmik özdeşlik
    a günlüğü a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ürünün logaritması logaritmaların toplamına eşittir
    log a (bc) = log a b + log a c

    günlük 3 8,1 + günlük 3 10 = günlük 3 (8,1*10) = günlük 3 81 = 4

  • Bölümün logaritması logaritmaların farkına eşittir
    log a (b/c) = log a b - log a c

    9 günlük 5 50 /9 günlük 5 2 = 9 günlük 5 50- günlük 5 2 = 9 günlük 5 25 = 9 2 = 81

  • Logaritmik bir sayının kuvvetinin ve logaritmanın tabanının özellikleri

    Logaritmik sayının üssü log a b m = mlog a b

    Logaritmanın tabanının üssü log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    eğer m = n ise log a n b n = log a b elde ederiz

    günlük 4 9 = günlük 2 2 3 2 = günlük 2 3

  • Yeni bir temele geçiş
    log a b = log c b/log c a,

    c = b ise log b b = 1 elde ederiz

    o zaman log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Gördüğünüz gibi logaritma formülleri göründüğü kadar karmaşık değil. Artık logaritmik çözüm örneklerine baktıktan sonra logaritmik denklemlere geçebiliriz. Logaritmik denklemleri çözme örneklerine şu makalede daha ayrıntılı olarak bakacağız: "". Kaçırmayın!

Çözümle ilgili hala sorularınız varsa, bunları makalenin yorumlarına yazın.

Not: Seçenek olarak farklı bir sınıf eğitim almaya ve yurt dışında okumaya karar verdik.

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak doğru olmadığından normal sayılar, burada kurallar var, bunlara ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor - onlar olmadan tek bir ciddi sorun çözülemez. logaritmik problem. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+günlük A sen=günlük A (X · sen);
  2. kayıt A X- günlük A sen=günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen aklınızda bulundurun: kilit nokta Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller hesaplamanıza yardımcı olacaktır logaritmik ifade tek tek parçaları sayılmasa bile (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra oldukça ortaya çıkıyorlar normal sayılar. Birçoğu bu gerçek üzerine inşa edilmiştir testler. Peki ya kontroller? benzer ifadeler Birleşik Devlet Sınavında tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

sanırım son örnek açıklama gerekli. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için CÖyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı gelse ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Güçleri çarpma kurallarını göz önünde bulundurarak aynı temel, şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. kayıt A A= 1 logaritmik birim. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfır. Temel A Herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa logaritma sıfıra eşittir! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.