Logaritma 0'dan taban 4'e. Logaritmik ifadeler


Logaritmaları incelemeye devam ediyoruz. Bu yazıda bunun hakkında konuşacağız logaritmaları hesaplamak, bu işleme denir logaritma. Öncelikle logaritmanın hesaplanmasını tanım gereği anlayacağız. Daha sonra, özellikleri kullanılarak logaritma değerlerinin nasıl bulunduğuna bakalım. Bundan sonra başlangıçta logaritmaları hesaplamaya odaklanacağız. değerleri belirle diğer logaritmalar. Son olarak logaritma tablolarının nasıl kullanılacağını öğrenelim. Teorinin tamamı ayrıntılı çözümlere sahip örneklerle sağlanmaktadır.

Sayfada gezinme.

Tanıma göre logaritmaları hesaplama

En basit durumlarda oldukça hızlı ve kolay bir şekilde gerçekleştirmek mümkündür tanım gereği logaritmayı bulma. Bu sürecin nasıl gerçekleştiğine daha yakından bakalım.

Bunun özü, b sayısını a c biçiminde temsil etmektir; buradan logaritmanın tanımına göre c sayısı logaritmanın değeridir. Yani, tanım gereği aşağıdaki eşitlik zinciri logaritmanın bulunmasına karşılık gelir: log a b=log a a c =c.

Dolayısıyla, tanım gereği bir logaritmanın hesaplanması, a c = b olacak şekilde bir c sayısı bulmaktan ibarettir ve c sayısının kendisi logaritmanın istenen değeridir.

Önceki paragraflardaki bilgileri dikkate alarak, logaritma işaretinin altındaki sayı, logaritma tabanının belirli bir kuvveti ile verildiğinde, logaritmanın neye eşit olduğunu hemen belirtebilirsiniz - bu göstergeye eşit derece. Çözümleri örneklerle gösterelim.

Örnek.

Log 2 2 −3'ü bulun ve e 5,3 sayısının doğal logaritmasını da hesaplayın.

Çözüm.

Logaritmanın tanımı hemen log 2 2 −3 =−3 olduğunu söylememizi sağlar. Aslında logaritma işaretinin altındaki sayı 2 tabanının -3 üssüne eşittir.

Benzer şekilde ikinci logaritmayı da buluyoruz: lne 5,3 =5,3.

Cevap:

log 2 2 −3 =−3 ve lne 5,3 =5,3.

Logaritma işaretinin altındaki b sayısı, logaritmanın tabanının kuvveti olarak belirtilmemişse, b sayısının a c biçiminde bir temsilini bulmanın mümkün olup olmadığını dikkatlice incelemeniz gerekir. Çoğu zaman bu gösterim oldukça açıktır, özellikle logaritma işaretinin altındaki sayı 1, 2 veya 3'ün üssüne eşit olduğunda...

Örnek.

Logaritma log 5 25 ve'yi hesaplayın.

Çözüm.

25=5 2 olduğunu görmek kolaydır, bu ilk logaritmayı hesaplamanıza olanak tanır: log 5 25=log 5 5 2 =2.

İkinci logaritmayı hesaplamaya geçelim. Sayı 7'nin kuvvetleri olarak temsil edilebilir: (gerekirse bakın). Buradan, .

Üçüncü logaritmayı yeniden yazalım. aşağıdaki form. Artık bunu görebilirsin bundan şu sonuca varıyoruz . Bu nedenle logaritmanın tanımı gereği .

Kısaca çözüm şu şekilde yazılabilir: .

Cevap:

günlük 5 25=2 , Ve .

Logaritmanın işareti altında yeterince büyük bir değer varken doğal sayı o zaman onu parçalara ayırmanın zararı olmaz asal faktörler. Çoğu zaman böyle bir sayıyı logaritmanın tabanının bir kuvveti olarak temsil etmeye ve dolayısıyla bu logaritmayı tanım gereği hesaplamaya yardımcı olur.

Örnek.

Logaritmanın değerini bulun.

Çözüm.

Logaritmanın bazı özellikleri, logaritmanın değerini hemen belirtmenize olanak tanır. Bu özellikler, bir birimin logaritmasının özelliğini ve bir sayının logaritmasının özelliğini içerir. tabana eşit: log 1 1=log a 0 =0 ve log a=log a 1 =1 . Yani, logaritmanın işareti altında 1 sayısı veya logaritmanın tabanına eşit bir sayı olduğunda, bu durumlarda logaritmalar sırasıyla 0 ve 1'e eşittir.

Örnek.

Logaritmalar ve log10 neye eşittir?

Çözüm.

O zamandan beri logaritmanın tanımından şu sonuç çıkıyor .

İkinci örnekte logaritma işaretinin altındaki 10 sayısı tabanına denk geldiğinden onluk logaritması ondalıktır. bire eşit yani log10=lg10 1 =1.

Cevap:

VE lg10=1 .

Logaritmaların tanım gereği hesaplanmasının (ki bunu daha önce tartışmıştık) unutmayın. önceki paragraf) logaritmanın özelliklerinden biri olan log a p =p eşitliğinin kullanımını ima eder.

Pratikte logaritmanın işareti altındaki bir sayı ve logaritmanın tabanı belirli bir sayının kuvveti olarak kolayca temsil edildiğinde formülü kullanmak çok uygundur. logaritmanın özelliklerinden birine karşılık gelir. Bu formülün kullanımını gösteren logaritmayı bulma örneğini ele alalım.

Örnek.

Logaritmayı hesaplayın.

Çözüm.

Cevap:

.

Logaritmanın yukarıda belirtilmeyen özellikleri de hesaplamalarda kullanılır ancak bundan sonraki paragraflarda bahsedeceğiz.

Bilinen diğer logaritmalar aracılığıyla logaritma bulma

Bu paragraftaki bilgiler logaritmanın özelliklerinin hesaplanmasında kullanılması konusunun devamıdır. Ancak buradaki temel fark, logaritmanın özelliklerinin, orijinal logaritmayı değeri bilinen başka bir logaritmaya göre ifade etmek için kullanılmasıdır. Açıklığa kavuşturmak için bir örnek verelim. Diyelim ki log 2 3≈1,584963'ü bildiğimizi varsayalım, o zaman logaritmanın özelliklerini kullanarak küçük bir dönüşüm yaparak örneğin log 2 6'yı bulabiliriz: günlük 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Yukarıdaki örnekte bir çarpımın logaritması özelliğini kullanmamız yeterliydi. Bununla birlikte, orijinal logaritmayı verilenler aracılığıyla hesaplamak için çok daha sık olarak logaritmanın özelliklerinin daha geniş bir cephaneliğini kullanmak gerekir.

Örnek.

Log 60 2=a ve log 60 5=b olduğunu biliyorsanız, 27'nin 60 tabanına göre logaritmasını hesaplayın.

Çözüm.

Bu yüzden log 60 27'yi bulmamız gerekiyor. 27 = 3 3 olduğunu ve kuvvetin logaritmasının özelliği nedeniyle orijinal logaritmanın 3·log 60 3 olarak yeniden yazılabileceğini görmek kolaydır.

Şimdi log 60 3'ün bilinen logaritmalarla nasıl ifade edileceğini görelim. Tabana eşit bir sayının logaritması özelliği, log 60 60=1 eşitliğini yazmamızı sağlar. Öte yandan, log 60 60=log60(2 2 3 5)= günlük 60 2 2 +günlük 60 3+günlük 60 5= 2·log 60 2+log 60 3+log 60 5 . Böylece, 2 log 60 2+log 60 3+log 60 5=1. Buradan, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Son olarak orijinal logaritmayı hesaplıyoruz: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Cevap:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Ayrı olarak, formun logaritmasının yeni bir tabanına geçiş formülünün anlamından bahsetmeye değer. . Herhangi bir tabanlı logaritmalardan, değerleri bilinen veya bulunması mümkün olan belirli bir tabanlı logaritmalara geçmenizi sağlar. Genellikle, orijinal logaritmadan, geçiş formülünü kullanarak, 2, e veya 10 tabanlarından birinde logaritmalara geçerler, çünkü bu tabanlar için değerlerinin belirli bir dereceyle hesaplanmasına izin veren logaritma tabloları vardır. kesinlik. İÇİNDE sonraki nokta size bunun nasıl yapıldığını göstereceğiz.

Logaritma tabloları ve kullanımları

Logaritma değerlerinin yaklaşık hesaplanması için kullanılabilir logaritma tabloları. En sık kullanılan 2 tabanlı logaritma tablosu tablodur. doğal logaritmalar ve ondalık logaritma tablosu. Çalışırken ondalık sistem Matematik için on tabanına dayalı bir logaritma tablosu kullanmak uygundur. Onun yardımıyla logaritmanın değerlerini bulmayı öğreneceğiz.










Sunulan tablo, 1.000'den 9.999'a kadar (üç ondalık basamakla) sayıların ondalık logaritmasının değerlerini on binde bir doğrulukla bulmanızı sağlar. Ondalık logaritma tablosu kullanarak bir logaritmanın değerini bulma ilkesini analiz edeceğiz. spesifik örnek– böyle daha açık. Log1.256'yı bulalım.

Ondalık logaritma tablosunun sol sütununda 1,256 sayısının ilk iki rakamını buluyoruz, yani 1,2'yi buluyoruz (bu sayı netlik açısından mavi daire içine alınmıştır). 1.256'nın üçüncü basamağını (5. basamak) birinci veya son satırçift ​​çizginin solunda (bu sayı kırmızı daire içine alınmıştır). Orijinal sayı olan 1.256'nın dördüncü rakamı (6 rakamı), çift satırın sağındaki ilk veya son satırda bulunur (bu sayı yeşil çizgiyle daire içine alınmıştır). Şimdi logaritma tablosunun hücrelerinde işaretli satır ve işaretli sütunların kesişimindeki sayıları buluyoruz (bu sayılar vurgulanmıştır) turuncu). İşaretlenen sayıların toplamı istenen değeri verir ondalık logaritma dördüncü ondalık basamağa kadar doğru, yani log1,236≈0,0969+0,0021=0,0990.

Yukarıdaki tabloyu kullanarak, ondalık noktadan sonra üç basamaktan fazla olan sayıların yanı sıra 1 ile 9,999 aralığının ötesine geçen sayıların ondalık logaritma değerlerini bulmak mümkün müdür? Evet, yapabilirsin. Bunun nasıl yapıldığını bir örnekle gösterelim.

lg102.76332'yi hesaplayalım. İlk önce yazmanız gerekiyor sayı standart form : 102,76332=1,0276332·10 2. Bundan sonra mantis üçüncü ondalık basamağa yuvarlanmalıdır. 1,0276332 10 2 ≈1,028 10 2 orijinal ondalık logaritma yaklaşık olarak iken logaritmaya eşit ortaya çıkan sayı, yani log102.76332≈lg1.028·10 2'yi alıyoruz. Şimdi logaritmanın özelliklerini uyguluyoruz: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Son olarak, lg1.028 logaritmasının değerini ondalık logaritmalar tablosundan lg1.028≈0.0086+0.0034=0.012 buluyoruz. Sonuç olarak, logaritmayı hesaplama sürecinin tamamı şöyle görünür: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

Sonuç olarak, ondalık logaritma tablosunu kullanarak herhangi bir logaritmanın yaklaşık değerini hesaplayabileceğinizi belirtmekte fayda var. Bunu yapmak için geçiş formülünü kullanarak ondalık logaritmalara gitmeniz, değerlerini tabloda bulmanız ve kalan hesaplamaları yapmanız yeterlidir.

Örneğin log 2 3'ü hesaplayalım. Logaritmanın yeni tabanına geçiş formülüne göre elimizde . Ondalık logaritma tablosundan log3≈0,4771 ve log2≈0,3010'u buluyoruz. Böylece, .

Referanslar.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. ve diğerleri. Cebir ve analizin başlangıcı: Genel eğitim kurumlarının 10 - 11. sınıfları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Verilmesine izin ver logaritma günlüğü balta. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bilerek, bileceksiniz ve kesin değer katılımcılar ve Leo Tolstoy'un doğum tarihi.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak doğru olmadığından sıradan sayılar, burada kurallar var, bunlara ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor - onlar olmadan tek bir ciddi sorun çözülemez. logaritmik problem. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen aklınızda bulundurun: kilit nokta Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra oldukça ortaya çıkıyorlar normal sayılar. Birçoğu bu gerçek üzerine inşa edilmiştir testler. Peki ya kontroller? benzer ifadeler Birleşik Devlet Sınavında tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

sanırım son örnek açıklama gerekli. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar kullanışlı olduklarını ancak karar vererek değerlendirmek mümkündür. logaritmik denklemler ve eşitsizlikler.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir temele geçiş formülleri gibi, ana logaritmik özdeşlik bazen mümkün olan tek çözüm budur.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Güçleri çarpma kurallarını göz önünde bulundurarak aynı temel, şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa - logaritma sıfıra eşit! Çünkü a0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı bir x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

Yaygın logaritmalardan bazıları, tabanın on, üstel veya iki olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve iki tabanının bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya antiderivatif logaritma bağımlılık tarafından belirlenir

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için, sadece birkaç yaygın örnek vereceğim. okul müfredatı ve üniversiteler.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritma farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık ifade bir dizi kuralın kullanılması basitleştirilmiştir

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. Giriş seviyesi.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra bilginizi daha az olmayan bir başkası için genişleteceğiz önemli konu- logaritmik eşitsizlikler...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Logaritmik İfadeler, örnekleri çözme. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Devlet Sınavına gelince, denklemleri çözerken logaritma kullanılır. uygulamalı problemler, ayrıca fonksiyonların incelenmesiyle ilgili görevlerde.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Ürünün logaritması toplamına eşit Faktörlerin logaritmaları.

* * *

*Bir bölümün (kesir) logaritması, faktörlerin logaritmaları arasındaki farka eşittir.

* * *

* Derecenin logaritması ürüne eşitüssünün logaritmasına göre üs.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Öz bu mülkün payı paydaya ve tersini aktarırken üssün işaretinin tersine değişmesi gerçeğinde yatmaktadır. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan ihtiyaç duyulan şey iyi uygulama, bu da belli bir beceri kazandırır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmediyse, basit görevleri çözerken kolayca hata yapabilirsiniz.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların ne kadar “çirkin” çözüldüğünü mutlaka göstereceğim; bunlar Birleşik Devlet Sınavında görünmeyecek ama ilgi çekici, kaçırmayın!

Hepsi bu! Size iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Bugün bunun hakkında konuşacağız logaritmik formüller ve gösterge niteliğinde vereceğiz çözüm örnekleri.

Logaritmanın temel özelliklerine göre çözüm modellerini kendileri ima ederler. Logaritmik formülleri çözüme uygulamadan önce size tüm özellikleri hatırlatalım:

Şimdi bu formüllere (özelliklere) dayanarak şunu göstereceğiz: logaritma çözme örnekleri.

Formüllere dayalı logaritma çözme örnekleri.

Logaritma pozitif sayı b'nin a tabanına oranı (log a b ile gösterilir), b > 0, a > 0 ve 1 olmak üzere b'yi elde etmek için a'nın yükseltilmesi gereken bir üstür.

Tanıma göre log a b = x, bu da a x = b'ye eşdeğerdir, dolayısıyla log a a x = x.

Logaritmalar, örnekler:

log 2 8 = 3, çünkü 2 3 = 8

log 7 49 = 2, çünkü 7 2 = 49

log 5 1/5 = -1, çünkü 5 -1 = 1/5

Ondalık logaritma- bu, tabanı 10 olan sıradan bir logaritmadır. lg olarak gösterilir.

log 10 100 = 2, çünkü 10 2 = 100

Doğal logaritma- aynı zamanda olağan logaritma logaritması, ancak e tabanıyla (e = 2,71828... - irrasyonel sayı). ln olarak gösterilir.

Logaritmanın formüllerini veya özelliklerini ezberlemeniz tavsiye edilir, çünkü daha sonra logaritmaları, logaritmik denklemleri ve eşitsizlikleri çözerken bunlara ihtiyacımız olacak. Örneklerle her formülü tekrar inceleyelim.

  • Temel logaritmik kimlik
    a günlüğü a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ürünün logaritması logaritmaların toplamına eşittir
    log a (bc) = log a b + log a c

    günlük 3 8,1 + günlük 3 10 = günlük 3 (8,1*10) = günlük 3 81 = 4

  • Bölümün logaritması logaritmaların farkına eşittir
    log a (b/c) = log a b - log a c

    9 günlük 5 50 /9 günlük 5 2 = 9 günlük 5 50- günlük 5 2 = 9 günlük 5 25 = 9 2 = 81

  • Logaritmik bir sayının kuvvetinin ve logaritmanın tabanının özellikleri

    Logaritmik sayının üssü log a b m = mlog a b

    Logaritmanın tabanının üssü log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    eğer m = n ise log a n b n = log a b elde ederiz

    günlük 4 9 = günlük 2 2 3 2 = günlük 2 3

  • Yeni bir temele geçiş
    log a b = log c b/log c a,

    c = b ise log b b = 1 elde ederiz

    o zaman log a b = 1/log b a

    günlük 0,8 3*günlük 3 1,25 = günlük 0,8 3*günlük 0,8 1,25/günlük 0,8 3 = günlük 0,8 1,25 = günlük 4/5 5/4 = -1

Gördüğünüz gibi logaritma formülleri göründüğü kadar karmaşık değil. Artık logaritmik çözüm örneklerine baktıktan sonra logaritmik denklemlere geçebiliriz. Logaritmik denklemleri çözme örneklerine şu makalede daha ayrıntılı olarak bakacağız: "". Kaçırmayın!

Çözümle ilgili hala sorularınız varsa, bunları makalenin yorumlarına yazın.

Not: Seçenek olarak farklı bir sınıf eğitim almaya ve yurt dışında okumaya karar verdik.

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+ günlük A sen=günlük A (X · sen);
  2. kayıt A X- günlük A sen=günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır ("Logaritma nedir" dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için CÖyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı artsa ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. kayıt A A= 1 logaritmik bir birimdir. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfır. Temel A Herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa logaritma sıfıra eşittir! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.