Örnekler günlüğü. Logaritmanın tanımı, temel logaritmik özdeşlik

İlkel düzey cebirin unsurlarından biri logaritmadır. İsmi Yunanca “sayı” veya “kuvvet” kelimesinden gelir ve son sayıyı bulmak için tabandaki sayının yükseltilmesi gereken kuvvet anlamına gelir.

Logaritma türleri

  • log a b – b sayısının a tabanına göre logaritması (a > 0, a ≠ 1, b > 0);
  • log b – ondalık logaritma (10 tabanına göre logaritma, a = 10);
  • ln b – doğal logaritma (e tabanına göre logaritma, a = e).

Logaritmalar nasıl çözülür?

B'nin a tabanına göre logaritması, b'nin a tabanına yükseltilmesini gerektiren bir üstür. Elde edilen sonuç şu şekilde telaffuz edilir: "b'nin a tabanına göre logaritması." Logaritmik problemlerin çözümü, sayıların verilen kuvvetini belirtilen sayılardan belirlemeniz gerektiğidir. Logaritmayı belirlemek veya çözmek ve gösterimin kendisini dönüştürmek için bazı temel kurallar vardır. Bunları kullanarak logaritmik denklemler çözülür, türevler bulunur, integraller çözülür ve diğer birçok işlem gerçekleştirilir. Temel olarak logaritmanın çözümü onun basitleştirilmiş gösterimidir. Aşağıda temel formüller ve özellikler verilmiştir:

Herhangi bir a için; a > 0; a ≠ 1 ve herhangi bir x için; y > 0.

  • a log a b = b – temel logaritmik özdeşlik
  • 1 = 0'ı günlüğe kaydet
  • log a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, k ≠ 0 için
  • log a x = log a c x c
  • log a x = log b x/ log b a – yeni bir tabana geçme formülü
  • log a x = 1/log x a


Logaritmalar nasıl çözülür - çözmek için adım adım talimatlar

  • İlk önce gerekli denklemi yazın.

Lütfen unutmayın: Taban logaritması 10 ise, giriş kısaltılır ve sonuçta ondalık logaritma elde edilir. Doğal bir e sayısı varsa, onu doğal logaritmaya indirgeyerek yazarız. Bu, tüm logaritmaların sonucunun, b sayısını elde etmek için temel sayının yükseltildiği kuvvet olduğu anlamına gelir.


Çözüm doğrudan bu derecenin hesaplanmasında yatmaktadır. Bir ifadeyi logaritmayla çözmeden önce kurala göre yani formüller kullanılarak basitleştirilmesi gerekir. Yazıda biraz geriye giderek ana kimlikleri bulabilirsiniz.

İki farklı sayıya ancak aynı tabanlara sahip logaritmalar eklenirken ve çıkarılırken, sırasıyla b ve c sayılarının çarpımı veya bölümü olan bir logaritma ile değiştirin. Bu durumda başka bir üsse geçme formülünü uygulayabilirsiniz (yukarıya bakın).

Logaritmayı basitleştirmek için ifadeler kullanırsanız dikkate alınması gereken bazı sınırlamalar vardır. Ve bu şudur: a logaritmasının tabanı yalnızca pozitif bir sayıdır, ancak bire eşit değildir. a gibi b sayısı da sıfırdan büyük olmalıdır.

Bir ifadeyi basitleştirerek logaritmayı sayısal olarak hesaplayamayacağınız durumlar vardır. Böyle bir ifadenin mantıklı olmadığı görülür çünkü kuvvetlerin çoğu irrasyonel sayılardır. Bu durumda sayının kuvvetini logaritma olarak bırakın.



b sayısının (b > 0) a tabanına (a > 0, a ≠ 1) logaritması– b'yi elde etmek için a sayısının yükseltilmesi gereken üs.

b'nin 10 tabanındaki logaritması şu şekilde yazılabilir: günlük(b) ve e tabanına göre logaritma (doğal logaritma) ln(b).

Logaritma problemlerini çözerken sıklıkla kullanılır:

Logaritmanın özellikleri

Dört ana var logaritmanın özellikleri.

a > 0, a ≠ 1, x > 0 ve y > 0 olsun.

Özellik 1. Çarpımın logaritması

Ürünün logaritması logaritmaların toplamına eşittir:

log a (x ⋅ y) = log a x + log a y

Özellik 2. Bölümün logaritması

Bölümün logaritması logaritma farkına eşittir:

log a (x / y) = log a x – log a y

Özellik 3. Gücün logaritması

Derecenin logaritması gücün ve logaritmanın çarpımına eşittir:

Logaritmanın tabanı derece ise o zaman başka bir formül uygulanır:

Özellik 4. Kökün logaritması

Bu özellik, kuvvetin n'inci kökü 1/n'nin kuvvetine eşit olduğundan, bir kuvvetin logaritması özelliğinden elde edilebilir:

Bir tabandaki logaritmayı başka bir tabandaki logaritmaya dönüştürme formülü

Bu formül aynı zamanda logaritmalarla ilgili çeşitli görevleri çözerken sıklıkla kullanılır:

Özel durum:

Logaritmaların karşılaştırılması (eşitsizlikler)

Logaritma altında aynı tabanlara sahip iki f(x) ve g(x) fonksiyonumuz olsun ve aralarında bir eşitsizlik işareti olsun:

Bunları karşılaştırmak için önce logaritmanın tabanına bakmanız gerekir:

  • a > 0 ise f(x) > g(x) > 0
  • 0 ise< a < 1, то 0 < f(x) < g(x)

Logaritmalarla ilgili problemler nasıl çözülür: örnekler

Logaritmalarla ilgili sorunlar Görev 5 ve Görev 7'de 11. sınıf için Matematikte Birleşik Devlet Sınavına dahil edilen görevleri web sitemizde uygun bölümlerde bulabilirsiniz. Ayrıca matematik görev bankasında logaritmalı görevler bulunur. Tüm örnekleri sitede arama yaparak bulabilirsiniz.

Logaritma nedir

Logaritmalar okul matematik derslerinde her zaman zor bir konu olarak görülmüştür. Logaritmanın birçok farklı tanımı vardır, ancak bazı nedenlerden dolayı ders kitaplarının çoğu bunlardan en karmaşık ve başarısız olanı kullanır.

Logaritmayı basit ve net bir şekilde tanımlayacağız. Bunu yapmak için bir tablo oluşturalım:

Yani ikinin kuvvetlerine sahibiz.

Logaritmalar - özellikler, formüller, nasıl çözüleceği

Alt satırdaki sayıyı alırsanız, bu sayıyı elde etmek için ikiyi yükseltmeniz gereken gücü kolayca bulabilirsiniz. Örneğin, 16 elde etmek için ikinin dördüncü kuvvetini yükseltmeniz gerekir. Ve 64'ü elde etmek için ikinin altıncı kuvvetini artırmanız gerekiyor. Bu tablodan görülebilmektedir.

Ve şimdi - aslında logaritmanın tanımı:

x argümanının a tabanı, x sayısını elde etmek için a sayısının yükseltilmesi gereken kuvvettir.

Tanım: log a x = b, burada a tabandır, x argümandır, b ise logaritmanın gerçekte eşit olduğu şeydir.

Örneğin, 2 3 = 8 ⇒ log 2 8 = 3 (2 3 = 8 olduğundan 8'in 2 tabanlı logaritması üçtür). Aynı başarı ile log 2 64 = 6, çünkü 2 6 = 64.

Bir sayının belirli bir tabana göre logaritmasını bulma işlemine denir. Şimdi tablomuza yeni bir satır ekleyelim:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
günlük 2 2 = 1 günlük 2 4 = 2 günlük 2 8 = 3 günlük 2 16 = 4 günlük 2 32 = 5 günlük 2 64 = 6

Ne yazık ki tüm logaritmalar bu kadar kolay hesaplanamıyor. Örneğin, log 2 5'i bulmaya çalışın. Tabloda 5 sayısı yok ama mantık, logaritmanın aralıkta bir yerde olacağını söylüyor. Çünkü 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Bu tür sayılara irrasyonel denir: Ondalık noktadan sonraki sayılar sonsuza kadar yazılabilir ve asla tekrarlanmaz. Logaritmanın irrasyonel olduğu ortaya çıkarsa, onu bu şekilde bırakmak daha iyidir: log 2 5, log 3 8, log 5 100.

Logaritmanın iki değişkenli (taban ve argüman) bir ifade olduğunu anlamak önemlidir. İlk başta birçok kişi temelin nerede olduğunu ve argümanın nerede olduğunu karıştırıyor. Can sıkıcı yanlış anlamaları önlemek için resme bakın:

Önümüzde bir logaritmanın tanımından başka bir şey yok. Hatırlamak: logaritma bir kuvvettir Bir argüman elde etmek için tabanın içine inşa edilmesi gerekir. Bir güce yükseltilen tabandır - resimde kırmızıyla vurgulanmıştır. Tabanın her zaman altta olduğu ortaya çıktı! Öğrencilerime bu harika kuralı daha ilk derste anlatıyorum ve hiçbir kafa karışıklığı ortaya çıkmıyor.

Logaritmalar nasıl sayılır

Tanımı çözdük; geriye kalan tek şey logaritmanın nasıl sayılacağını öğrenmek. "log" işaretinden kurtulun. Başlangıç ​​olarak, tanımdan iki önemli gerçeğin çıktığını not ediyoruz:

  1. Argüman ve taban her zaman sıfırdan büyük olmalıdır. Bu, bir derecenin rasyonel bir üsle tanımlanmasından kaynaklanır ve logaritmanın tanımı buna indirgenir.
  2. Taban birden farklı olmalıdır, çünkü bir dereceye kadar bir hala bir olarak kalır. Bu nedenle “iki elde etmek için kişinin hangi güce yükseltilmesi gerekir” sorusu anlamsızdır. Böyle bir derece yok!

Bu tür kısıtlamalara denir kabul edilebilir değerler aralığı(ODZ). Logaritmanın ODZ'sinin şu şekilde göründüğü ortaya çıktı: log a x = b ⇒x > 0, a > 0, a ≠ 1.

b sayısı (logaritmanın değeri) üzerinde herhangi bir kısıtlama olmadığını unutmayın. Örneğin logaritma negatif olabilir: log 2 0,5 = −1, çünkü 0,5 = 2−1.

Ancak şimdi yalnızca logaritmanın VA'sını bilmenin gerekli olmadığı sayısal ifadeleri ele alıyoruz. Sorunların yazarları tarafından tüm kısıtlamalar zaten dikkate alınmıştır. Ancak logaritmik denklemler ve eşitsizlikler devreye girdiğinde DL gereklilikleri zorunlu hale gelecektir. Sonuçta, temel ve argüman, yukarıdaki kısıtlamalara tam olarak uymayan çok güçlü yapılar içerebilir.

Şimdi logaritmaları hesaplamak için genel şemaya bakalım. Üç adımdan oluşur:

  1. A tabanını ve x argümanını, mümkün olan minimum tabanı birden büyük olacak şekilde bir kuvvet olarak ifade edin. Bu arada ondalık sayılardan kurtulmak daha iyidir;
  2. b değişkeninin denklemini çözün: x = a b ;
  3. Ortaya çıkan b sayısı cevap olacaktır.

Bu kadar! Logaritmanın irrasyonel olduğu ortaya çıkarsa, bu zaten ilk adımda görülecektir. Tabanın birden büyük olması gerekliliği çok önemlidir: bu, hata olasılığını azaltır ve hesaplamaları büyük ölçüde basitleştirir. Ondalık kesirlerde de durum aynıdır: Bunları hemen sıradan kesirlere dönüştürürseniz, çok daha az hata olacaktır.

Belirli örnekleri kullanarak bu şemanın nasıl çalıştığını görelim:

Görev. Logaritmayı hesaplayın: log 5 25

  1. Tabanı ve argümanı beşin kuvveti olarak düşünelim: 5 = 5 1; 25 = 52;
  2. Denklemi oluşturup çözelim:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Cevabını aldık: 2.

Görev. Logaritmayı hesaplayın:

Görev. Logaritmayı hesaplayın: log 4 64

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 4 = 2 2; 64 = 26;
  2. Denklemi oluşturup çözelim:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Cevabını aldık: 3.

Görev. Logaritmayı hesaplayın: log 16 1

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 16 = 2 4; 1 = 2 0;
  2. Denklemi oluşturup çözelim:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Cevabını aldık: 0.

Görev. Logaritmayı hesaplayın: log 7 14

  1. Tabanı ve argümanı yedinin kuvveti olarak düşünelim: 7 = 7 1; 7 1 olduğundan 14 yedinin kuvveti olarak temsil edilemez< 14 < 7 2 ;
  2. Önceki paragraftan logaritmanın sayılmadığı anlaşılmaktadır;
  3. Cevap değişiklik yok: log 7 14.

Son örnekle ilgili küçük bir not. Bir sayının başka bir sayının tam kuvveti olmadığından nasıl emin olabilirsiniz? Çok basit; bunu asal çarpanlara ayırmanız yeterli. Genişlemenin en az iki farklı faktörü varsa, sayı tam bir kuvvet değildir.

Görev. Sayıların tam kuvvetleri olup olmadığını öğrenin: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tam derece, çünkü yalnızca bir çarpan vardır;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - tam bir kuvvet değildir, çünkü iki çarpan vardır: 3 ve 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tam derece;
35 = 7 · 5 - yine kesin bir kuvvet değil;
14 = 7 · 2 - yine kesin bir derece değil;

Ayrıca asal sayıların her zaman kendilerinin tam kuvvetleri olduğuna dikkat edin.

Ondalık logaritma

Bazı logaritmalar o kadar yaygındır ki özel bir isme ve sembole sahiptirler.

x argümanının 10 tabanına göre logaritması, yani X sayısını elde etmek için 10 sayısının yükseltilmesi gereken kuvvet. Tanım: lg x.

Örneğin log 10 = 1; log100 = 2; lg 1000 = 3 - vb.

Artık bir ders kitabında “Lg 0.01'i bul” gibi bir ifade çıktığında bunun bir yazım hatası olmadığını bilin. Bu bir ondalık logaritmadır. Ancak bu gösterime aşina değilseniz, istediğiniz zaman yeniden yazabilirsiniz:
günlük x = günlük 10 x

Sıradan logaritmalar için doğru olan her şey ondalık logaritmalar için de doğrudur.

Doğal logaritma

Kendi tanımı olan başka bir logaritma var. Bazı yönlerden ondalık sayıdan bile daha önemlidir. Doğal logaritmadan bahsediyoruz.

x argümanının e tabanına göre logaritması, yani. x sayısını elde etmek için e sayısının yükseltilmesi gereken güç. Tanım: ln x.

Birçok kişi şunu soracaktır: e sayısı nedir? Bu irrasyonel bir sayıdır; kesin değeri bulunup yazılamaz. Sadece ilk rakamları vereceğim:
e = 2,718281828459…

Bu sayının ne olduğu ve neden ihtiyaç duyulduğu konusunda detaya girmeyeceğiz. Sadece e'nin doğal logaritmanın tabanı olduğunu unutmayın:
ln x = log e x

Böylece ln e = 1; ln e 2 = 2; ln e 16 = 16 - vb. Öte yandan ln 2 irrasyonel bir sayıdır. Genel olarak herhangi bir rasyonel sayının doğal logaritması irrasyoneldir. Elbette birlik hariç: ln 1 = 0.

Doğal logaritmalar için sıradan logaritmalar için geçerli olan tüm kurallar geçerlidir.

Ayrıca bakınız:

Logaritma. Logaritmanın özellikleri (logaritmanın gücü).

Bir sayı logaritma olarak nasıl temsil edilir?

Logaritmanın tanımını kullanıyoruz.

Logaritma, logaritma işaretinin altındaki sayıyı elde etmek için tabanın yükseltilmesi gereken bir üsdür.

Bu nedenle, belirli bir c sayısını a tabanına göre logaritma olarak temsil etmek için, logaritmanın işaretinin altına logaritmanın tabanıyla aynı tabana sahip bir kuvvet koymanız ve bu c sayısını üs olarak yazmanız gerekir:

Kesinlikle herhangi bir sayı logaritma olarak temsil edilebilir - pozitif, negatif, tam sayı, kesirli, rasyonel, irrasyonel:

Bir test veya sınavın stresli koşullarında a ve c'yi karıştırmamak için aşağıdaki ezberleme kuralını kullanabilirsiniz:

aşağıda olan aşağı iner, yukarıda olan ise yukarı çıkar.

Örneğin, 2 sayısını 3 tabanına göre logaritma olarak temsil etmeniz gerekir.

Elimizde iki sayımız var - 2 ve 3. Bu sayılar logaritmanın işaretinin altına yazacağımız taban ve üslerdir. Geriye bu sayılardan hangisinin üssüne ve hangisinin üsse kadar yazılması gerektiğini belirlemek kalır.

Bir logaritma gösteriminde 3 tabanı en alttadır, yani ikiyi 3 tabanına göre logaritma olarak temsil ettiğimizde tabana da 3 yazacağız.

2, üçten büyüktür. Ve ikinci derecenin gösteriminde üçün üstüne, yani üssün içine yazıyoruz:

Logaritmalar. İlk seviye.

Logaritmalar

Logaritma pozitif sayı B dayalı A, Nerede a > 0, a ≠ 1, sayının yükseltilmesi gereken üs olarak adlandırılır A, Elde etmek üzere B.

logaritmanın tanımı kısaca şu şekilde yazılabilir:

Bu eşitlik aşağıdakiler için geçerlidir: b > 0, a > 0, a ≠ 1. Genellikle denir logaritmik özdeşlik.
Bir sayının logaritmasını bulma işlemine denir logaritma ile.

Logaritmanın özellikleri:

Ürünün logaritması:

Bölümün logaritması:

Logaritma tabanını değiştirmek:

Derecenin logaritması:

Kökün logaritması:

Güç tabanlı logaritma:





Ondalık ve doğal logaritmalar.

Ondalık logaritma sayılar bu sayının logaritmasını 10 tabanına çağırır ve   lg yazar B
Doğal logaritma sayılara o sayının tabana göre logaritması denir e, Nerede e- yaklaşık olarak 2,7'ye eşit irrasyonel bir sayı. Aynı zamanda ln yazıyorlar B.

Cebir ve geometri üzerine diğer notlar

Logaritmanın temel özellikleri

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log a x ve log a y. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. , yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma log a x verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir.

Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. log a a = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. log a 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü 0 = 1, tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Toplum geliştikçe ve üretim karmaşıklaştıkça matematik de gelişti. Basitten karmaşığa doğru hareket. Toplama ve çıkarma yöntemini kullanan sıradan muhasebeden, tekrar tekrar tekrarlanarak çarpma ve bölme kavramına geldik. Tekrarlanan çarpma işleminin azaltılması, üstel alma kavramı haline geldi. Sayıların tabana bağımlılığı ve üstel sayılarla ilgili ilk tablolar 8. yüzyılda Hintli matematikçi Varasena tarafından derlendi. Onlardan logaritmanın oluşma zamanını sayabilirsiniz.

Tarihsel eskiz

16. yüzyılda Avrupa'nın yeniden canlanması mekaniğin gelişimini de teşvik etti. T büyük miktarda hesaplama gerektiriyorduÇok basamaklı sayıların çarpımı ve bölümü ile ilgili. Antik masalar büyük hizmet veriyordu. Karmaşık işlemleri daha basit olanlarla (toplama ve çıkarma) değiştirmeyi mümkün kıldılar. İleriye doğru büyük bir adım, matematikçi Michael Stiefel'in 1544'te yayınlanan ve birçok matematikçinin fikrini hayata geçirdiği çalışmasıydı. Bu, tabloların yalnızca asal sayılar biçimindeki kuvvetler için değil, aynı zamanda keyfi rasyonel olanlar için de kullanılmasını mümkün kıldı.

Bu fikirleri geliştiren İskoçyalı John Napier, 1614 yılında ilk kez yeni bir terim olan “bir sayının logaritması”nı ortaya attı. Sinüs ve kosinüslerin yanı sıra teğetlerin logaritmasını hesaplamak için yeni karmaşık tablolar derlendi. Bu, gökbilimcilerin çalışmalarını büyük ölçüde azalttı.

Bilim adamları tarafından üç yüzyıldır başarıyla kullanılan yeni tablolar ortaya çıkmaya başladı. Cebirdeki yeni işlemin bitmiş halini alması için çok zaman geçti. Logaritmanın tanımı verilmiş ve özellikleri incelenmiştir.

Ancak 20. yüzyılda hesap makinesinin ve bilgisayarın ortaya çıkışıyla insanlık, 13. yüzyıl boyunca başarılı bir şekilde işleyen eski tabloları terk etti.

Bugün a'nın b'yi oluşturma kuvveti olan b'nin logaritmasını a sayısına x diyoruz. Bu bir formül olarak yazılır: x = log a(b).

Örneğin, log 3(9) 2'ye eşit olacaktır. Tanımı izlerseniz bu açıkça görülür. 3'ün 2'nin üssünü çıkarırsak 9 elde ederiz.

Dolayısıyla, formüle edilen tanım yalnızca bir kısıtlama getirmektedir: a ve b sayıları gerçek olmalıdır.

Logaritma türleri

Klasik tanıma gerçek logaritma denir ve aslında a x = b denkleminin çözümüdür. Seçenek a = 1 sınırdadır ve ilgi çekici değildir. Dikkat: 1'in herhangi bir kuvveti 1'e eşittir.

Logaritmanın gerçek değeri yalnızca taban ve argüman 0'dan büyük olduğunda tanımlanır ve taban 1'e eşit olmamalıdır.

Matematik alanında özel yeri tabanlarının boyutuna göre adlandırılacak olan logaritmalarla oynayın:

Kurallar ve kısıtlamalar

Logaritmanın temel özelliği kuraldır: Bir ürünün logaritması, logaritmik toplama eşittir. log abp = log a(b) + log a(p).

Bu ifadenin bir çeşidi olarak şu şekilde olacaktır: log c(b/p) = log c(b) - log c(p), bölüm fonksiyonu, fonksiyonların farkına eşittir.

Önceki iki kuraldan şunu görmek kolaydır: log a(b p) = p * log a(b).

Diğer özellikler şunları içerir:

Yorum. Yaygın bir hata yapmayın; bir toplamın logaritması logaritmaların toplamına eşit değildir.

Yüzyıllar boyunca logaritma bulma işlemi oldukça zaman alıcı bir işti. Matematikçiler polinom genişlemesinin logaritmik teorisinin iyi bilinen formülünü kullandılar:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), burada n, hesaplamanın doğruluğunu belirleyen, 1'den büyük bir doğal sayıdır.

Diğer bazlarla logaritmalar, bir bazdan diğerine geçiş teoremi ve çarpımın logaritmasının özelliği kullanılarak hesaplandı.

Bu yöntem çok emek yoğun olduğundan pratik problemleri çözerken uygulanması zor olduğundan, tüm işi önemli ölçüde hızlandıran önceden derlenmiş logaritma tabloları kullandık.

Bazı durumlarda, daha az doğruluk sağlayan, ancak istenen değerin aranmasını önemli ölçüde hızlandıran özel olarak tasarlanmış logaritma grafikleri kullanıldı. Y = log a(x) fonksiyonunun birkaç nokta üzerinden oluşturulan eğrisi, fonksiyonun değerini başka herhangi bir noktada bulmak için normal bir cetvel kullanmanıza olanak tanır. Mühendisler uzun bir süre bu amaçlar için grafik kağıdı olarak adlandırılan kağıdı kullandılar.

17. yüzyılda, 19. yüzyılda tam bir form kazanan ilk yardımcı analog hesaplama koşulları ortaya çıktı. En başarılı cihaza slayt kuralı adı verildi. Cihazın sadeliğine rağmen, görünümü tüm mühendislik hesaplamalarının sürecini önemli ölçüde hızlandırdı ve bunu abartmak zor. Şu anda çok az kişi bu cihaza aşinadır.

Hesap makinelerinin ve bilgisayarların ortaya çıkışı, diğer cihazların kullanımını anlamsız hale getirdi.

Denklemler ve eşitsizlikler

Logaritma kullanarak çeşitli denklemleri ve eşitsizlikleri çözmek için aşağıdaki formüller kullanılır:

  • Bir tabandan diğerine geçiş: log a(b) = log c(b) / log c(a);
  • Önceki seçeneğin bir sonucu olarak: log a(b) = 1 / log b(a).

Eşitsizlikleri çözmek için şunları bilmek faydalıdır:

  • Logaritmanın değeri yalnızca taban ve argümanın her ikisinin de birden büyük veya küçük olması durumunda pozitif olacaktır; en az bir koşulun ihlal edilmesi durumunda logaritma değeri negatif olacaktır.
  • Bir eşitsizliğin sağ ve sol taraflarına logaritma fonksiyonu uygulanırsa ve logaritmanın tabanı birden büyükse eşitsizliğin işareti korunur; aksi takdirde değişir.

Örnek problemler

Logaritmaları ve özelliklerini kullanmak için çeşitli seçenekleri ele alalım. Denklem çözme örnekleri:

Logaritmayı bir kuvvete yerleştirme seçeneğini düşünün:

  • Problem 3. 25^log 5(3)'ü hesaplayın. Çözüm: Sorunun koşullarında, giriş aşağıdaki (5^2)^log5(3) veya 5^(2 * log 5(3))'e benzer. Farklı yazalım: 5^log 5(3*2) veya fonksiyon argümanı olarak bir sayının karesi, fonksiyonun kendisinin karesi (5^log 5(3))^2 olarak yazılabilir. Logaritmanın özelliklerini kullanarak bu ifade 3^2'ye eşittir. Cevap: Hesaplama sonucunda 9 elde ederiz.

Pratik kullanım

Tamamen matematiksel bir araç olan logaritmanın, gerçek dünyadaki nesneleri tanımlamak için birdenbire büyük önem kazanması, gerçek hayattan çok uzak görünüyor. Kullanılmayan bilim bulmak zordur. Bu tamamen yalnızca doğal değil, aynı zamanda insani bilgi alanları için de geçerlidir.

Logaritmik bağımlılıklar

Sayısal bağımlılıklara bazı örnekler:

Mekanik ve fizik

Tarihsel olarak, mekanik ve fizik her zaman matematiksel araştırma yöntemleri kullanılarak gelişmiş ve aynı zamanda logaritmalar da dahil olmak üzere matematiğin gelişimi için bir teşvik görevi görmüştür. Çoğu fizik kanununun teorisi matematik dilinde yazılmıştır. Logaritmayı kullanarak fizik yasalarını açıklamaya yalnızca iki örnek verelim.

Bir roketin hızı gibi karmaşık bir miktarın hesaplanması sorunu, uzay araştırmaları teorisinin temelini oluşturan Tsiolkovsky formülü kullanılarak çözülebilir:

V = I * ln (M1/M2), burada

  • V uçağın son hızıdır.
  • I – motorun spesifik dürtüsü.
  • M 1 – roketin başlangıç ​​kütlesi.
  • M 2 – son kütle.

Bir diğer önemli örnek- bu, termodinamikte denge durumunu değerlendirmeye yarayan başka bir büyük bilim adamı Max Planck'ın formülünde kullanılır.

S = k * ln (Ω), burada

  • S – termodinamik özellik.
  • k – Boltzmann sabiti.
  • Ω farklı durumların istatistiksel ağırlığıdır.

Kimya

Kimyada logaritma oranını içeren formüllerin kullanılması daha az belirgindir. Sadece iki örnek verelim:

  • Nernst denklemi, maddelerin aktivitesine ve denge sabitine bağlı olarak ortamın redoks potansiyelinin durumu.
  • Otoliz indeksi ve çözeltinin asitliği gibi sabitlerin hesaplanması da fonksiyonumuz olmadan yapılamaz.

Psikoloji ve biyoloji

Ve psikolojinin bununla ne ilgisi olduğu hiç de açık değil. Duyusal gücün, uyaran yoğunluk değerinin düşük yoğunluk değerine ters oranı olarak bu fonksiyon tarafından iyi tanımlandığı ortaya çıktı.

Yukarıdaki örneklerden sonra logaritma konusunun biyolojide yaygın olarak kullanılması artık şaşırtıcı değil. Logaritmik spirallere karşılık gelen biyolojik formlar hakkında ciltler dolusu yazı yazılabilir.

Diğer alanlar

Öyle görünüyor ki, bu fonksiyonla bağlantısı olmadan dünyanın varlığı imkânsızdır ve o, tüm kanunları yönetmektedir. Özellikle doğa kanunları geometrik ilerlemeyle ilişkilendirildiğinde. MatProfi web sitesine dönmeye değer ve aşağıdaki faaliyet alanlarında buna benzer birçok örnek var:

Liste sonsuz olabilir. Bu işlevin temel ilkelerine hakim olduktan sonra sonsuz bilgelik dünyasına dalabilirsiniz.

Talimatlar

Verilen logaritmik ifadeyi yazınız. İfade 10'un logaritmasını kullanıyorsa gösterimi kısaltılır ve şu şekilde görünür: lg b ondalık logaritmadır. Logaritmanın temelinde e sayısı varsa, şu ifadeyi yazın: ln b – doğal logaritma. Herhangi birinin sonucunun, b sayısını elde etmek için temel sayının yükseltilmesi gereken kuvvet olduğu anlaşılmaktadır.

İki fonksiyonun toplamını bulurken, tek tek türevlerini alıp sonuçları eklemeniz yeterlidir: (u+v)" = u"+v";

İki fonksiyonun çarpımının türevini bulurken, birinci fonksiyonun türevini ikinciyle çarpmak ve ikinci fonksiyonun türevinin birinci fonksiyonla çarpımını eklemek gerekir: (u*v)" = u"*v +v"*u;

İki fonksiyonun bölümünün türevini bulmak için, bölen fonksiyonu ile bölünen türevinin çarpımından bölen türevinin çarpımı ile bölünen fonksiyonun çarpımını çıkarmak ve bölmek gerekir. tüm bunlar bölen fonksiyonunun karesine göre. (u/v)" = (u"*v-v"*u)/v^2;

Karmaşık bir fonksiyon verilirse, iç fonksiyonun türevi ile dış fonksiyonun türevinin çarpılması gerekir. y=u(v(x)) olsun, sonra y"(x)=y"(u)*v"(x) olsun.

Yukarıda elde edilen sonuçları kullanarak hemen hemen her işlevi ayırt edebilirsiniz. O halde birkaç örneğe bakalım:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *X));
Bir noktadaki türevin hesaplanmasıyla ilgili problemler de vardır. y=e^(x^2+6x+5) fonksiyonu verilsin, x=1 noktasında fonksiyonun değerini bulmanız gerekiyor.
1) Fonksiyonun türevini bulun: y"=e^(x^2-6x+5)*(2*x +6).

2) Belirli bir y"(1)=8*e^0=8 noktasında fonksiyonun değerini hesaplayın

Konuyla ilgili video

Yararlı tavsiye

Temel türevler tablosunu öğrenin. Bu önemli ölçüde zaman kazandıracaktır.

Kaynaklar:

  • bir sabitin türevi

Peki irrasyonel bir denklem ile rasyonel bir denklem arasındaki fark nedir? Bilinmeyen değişken karekök işaretinin altındaysa denklemin irrasyonel olduğu kabul edilir.

Talimatlar

Bu tür denklemleri çözmenin ana yöntemi her iki tarafı da oluşturma yöntemidir. denklemler bir kareye. Fakat. bu doğaldır, yapmanız gereken ilk şey tabeladan kurtulmaktır. Bu yöntem teknik olarak zor değildir ancak bazen sıkıntılara yol açabilmektedir. Örneğin denklem v(2x-5)=v(4x-7) şeklindedir. Her iki tarafın karesini alarak 2x-5=4x-7 elde edersiniz. Böyle bir denklemi çözmek zor değil; x=1. Ama 1 rakamı verilmeyecek denklemler. Neden? Denklemde x'in değeri yerine bir koyarsak sağ ve sol taraflarda anlamsız ifadeler yer alır. Bu değer karekök için geçerli değildir. Bu nedenle 1 yabancı bir köktür ve bu nedenle bu denklemin kökleri yoktur.

Yani irrasyonel bir denklem her iki tarafının karesi alma yöntemi kullanılarak çözülür. Denklemi çözdükten sonra yabancı kökleri kesmek gerekir. Bunu yapmak için bulunan kökleri orijinal denklemde değiştirin.

Başka bir tane düşünün.
2х+vх-3=0
Elbette bu denklem bir önceki denklemin aynısı kullanılarak çözülebilir. Bileşikleri Taşı denklemler Karekökü olmayan , sağ tarafa ve ardından kare alma yöntemini kullanın. Ortaya çıkan rasyonel denklemi ve köklerini çözer. Ama aynı zamanda daha zarif bir tane daha. Yeni bir değişken girin; vх=y. Buna göre 2y2+y-3=0 formunda bir denklem elde edeceksiniz. Yani sıradan bir ikinci dereceden denklem. Köklerini bulun; y1=1 ve y2=-3/2. Sonra iki tanesini çöz denklemler vх=1; vх=-3/2. İkinci denklemin kökleri yoktur; birinciden x=1 olduğunu buluruz. Kökleri kontrol etmeyi unutmayın.

Kimlikleri çözmek oldukça basittir. Bunu yapmak için hedefe ulaşılıncaya kadar aynı dönüşümlerin yapılması gerekir. Böylece basit aritmetik işlemlerin yardımıyla eldeki görev çözülecektir.

İhtiyacın olacak

  • - kağıt;
  • - dolma kalem.

Talimatlar

Bu tür dönüşümlerin en basiti cebirsel kısaltılmış çarpmalardır (toplamın karesi (fark), kareler farkı, toplam (fark), toplamın küpü (fark) gibi). Ayrıca aslında aynı özdeşliğe sahip birçok trigonometrik formül vardır.

Nitekim iki terimin toplamının karesi, birincinin karesi artı birincinin ikinciyle çarpımının iki katı ve artı ikincinin karesine eşittir, yani (a+b)^2= (a+) b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Her ikisini de basitleştirin

Çözümün genel ilkeleri

Belirli bir integralin ne olduğunu matematiksel analiz veya yüksek matematikle ilgili bir ders kitabından tekrarlayın. Bilindiği gibi belirli bir integralin çözümü, türevi bir integral verecek olan bir fonksiyondur. Bu fonksiyona antiderivatif denir. Bu prensibe dayanarak ana integraller inşa edilir.
Bu durumda tablo integrallerinden hangisinin uygun olduğunu integralin türüne göre belirleyin. Bunu hemen belirlemek her zaman mümkün olmuyor. Çoğu zaman, tablo biçimi ancak integrali basitleştirmek için yapılan birkaç dönüşümden sonra fark edilebilir hale gelir.

Değişken Değiştirme Yöntemi

İntegral, argümanı bir polinom olan trigonometrik bir fonksiyonsa, değişkenlerin değişimi yöntemini kullanmayı deneyin. Bunu yapmak için integralin argümanındaki polinomu yeni bir değişkenle değiştirin. Yeni ve eski değişkenler arasındaki ilişkiye dayanarak entegrasyonun yeni sınırlarını belirleyin. Bu ifadenin türevini alarak yeni diferansiyeli bulun. Böylece, önceki integralin yeni bir formunu elde edeceksiniz, tablo halindeki bir integrale yakın veya hatta ona karşılık gelecek.

İkinci Tür İntegrallerin Çözülmesi

İntegral ikinci türden bir integral ise, integralin vektör biçimi ise, o zaman bu integrallerden skaler olanlara geçiş için kuralları kullanmanız gerekecektir. Böyle bir kural Ostrogradsky-Gauss ilişkisidir. Bu yasa, belirli bir vektör fonksiyonunun rotor akısından, belirli bir vektör alanının diverjansı üzerinden üçlü integrale geçmemize izin verir.

Entegrasyon sınırlarının değiştirilmesi

Antiderivatifi bulduktan sonra integralin limitlerini yerine koymak gerekir. İlk olarak, üst limitin değerini ters türev ifadesinde değiştirin. Bir numara alacaksınız. Daha sonra, elde edilen sayıdan alt limitten elde edilen başka bir sayıyı antiderivatife çıkarın. İntegralin limitlerinden biri sonsuzluk ise, bunu antiderivatif fonksiyona yerleştirirken limite gitmek ve ifadenin neye yöneldiğini bulmak gerekir.
İntegral iki boyutlu veya üç boyutlu ise, integralin nasıl değerlendirileceğini anlamak için integralin sınırlarını geometrik olarak temsil etmeniz gerekecektir. Aslında, örneğin üç boyutlu bir integral durumunda, integralin sınırları, entegre edilen hacmi sınırlayan tüm düzlemler olabilir.

Bir sayının logaritması N dayalı A üs denir X oluşturmanız gereken A numarayı almak için N

Şartıyla
,
,

Logaritmanın tanımından şu sonuç çıkıyor
, yani
- bu eşitlik temel logaritmik özdeşliktir.

10 tabanına dayalı logaritmalara ondalık logaritma denir. Yerine
yazmak
.

Tabana göre logaritmalar e doğal olarak adlandırılır ve belirlenir
.

Logaritmanın temel özellikleri.

    Herhangi bir taban için birliğin logaritması sıfıra eşittir.

    Ürünün logaritması, faktörlerin logaritmasının toplamına eşittir.

3) Bölümün logaritması logaritmaların farkına eşittir


Faktör
logaritmalardan tabana geçiş modülü denir A tabandaki logaritmalara B .

2-5 arasındaki özellikleri kullanarak, karmaşık bir ifadenin logaritmasını logaritmalar üzerinde yapılan basit aritmetik işlemlerin sonucuna indirgemek genellikle mümkündür.

Örneğin,

Bir logaritmanın bu tür dönüşümlerine logaritma denir. Logaritmanın tersi olan dönüşümlere potansiyasyon denir.

Bölüm 2. Yüksek matematiğin unsurları.

1. Sınırlar

Fonksiyonun sınırı
sonlu bir sayıdır A eğer xx 0 önceden belirlenmiş her biri için
öyle bir sayı var ki
en kısa zamanda
, O
.

Limiti olan bir fonksiyon ondan sonsuz küçük bir miktarda farklılık gösterir:
, nerede- b.m.v., yani.
.

Örnek. İşlevi düşünün
.

Çabalarken
, işlev sen sıfıra doğru eğilim gösterir:

1.1. Limitlerle ilgili temel teoremler.

    Sabit bir değerin limiti bu sabit değere eşittir

.

    Sonlu sayıda fonksiyonun toplamının (farkının) limiti, bu fonksiyonların limitlerinin toplamına (farkına) eşittir.

    Sonlu sayıda fonksiyonun çarpımının limiti, bu fonksiyonların limitlerinin çarpımına eşittir.

    Paydanın limiti sıfır değilse, iki fonksiyonun bölümünün limiti, bu fonksiyonların limitlerinin bölümüne eşittir.

Harika Sınırlar

,
, Nerede

1.2. Limit Hesaplama Örnekleri

Ancak tüm limitler bu kadar kolay hesaplanmıyor. Çoğu zaman, limitin hesaplanması şu türden bir belirsizliğin ortaya çıkarılmasına indirgenir: veya .

.

2. Bir fonksiyonun türevi

Bir fonksiyonumuz olsun
, segmentte sürekli
.

Argüman biraz artış var
. Daha sonra fonksiyon bir artış alacaktır
.

Bağımsız değişken değeri fonksiyon değerine karşılık gelir
.

Bağımsız değişken değeri
fonksiyon değerine karşılık gelir.

Buradan, .

Bu oranın limitini bulalım.
. Eğer bu limit mevcutsa buna verilen fonksiyonun türevi denir.

Tanım 3 Verilen bir fonksiyonun türevi
argümanla argümanın artışı keyfi olarak sıfıra yaklaştığında, bir fonksiyonun artışının argümanın artışına oranının limiti denir.

Bir fonksiyonun türevi
aşağıdaki gibi belirlenebilir:

; ; ; .

Tanım 4Bir fonksiyonun türevini bulma işlemine denir farklılaşma.

2.1. Türevin mekanik anlamı.

Katı bir cismin ya da maddesel bir noktanın doğrusal hareketini ele alalım.

Zamanın bir noktasında izin ver hareket noktası
uzaktaydı başlangıç ​​pozisyonundan
.

Bir süre sonra
mesafe kat etti
. Davranış =- maddi bir noktanın ortalama hızı
. Bunu dikkate alarak bu oranın limitini bulalım.
.

Sonuç olarak, maddi bir noktanın anlık hareket hızının belirlenmesi, yolun zamana göre türevinin bulunmasına indirgenir.

2.2. Türevin geometrik değeri

Grafiksel olarak tanımlanmış bir fonksiyonumuz olsun
.

Pirinç. 1. Türevin geometrik anlamı

Eğer
, sonra işaret et
, noktaya yaklaşarak eğri boyunca hareket edecek
.

Buradan
, yani argümanın belirli bir değeri için türevin değeri Belirli bir noktada tanjantın eksenin pozitif yönü ile oluşturduğu açının tanjantına sayısal olarak eşittir
.

2.3. Temel farklılaşma formülleri tablosu.

Güç fonksiyonu

Üstel fonksiyon

Logaritmik fonksiyon

Trigonometrik fonksiyon

Ters trigonometrik fonksiyon

2.4. Farklılaşma kuralları.

Türevi

Fonksiyonların toplamının (farkının) türevi


İki fonksiyonun çarpımının türevi


İki fonksiyonun bölümünün türevi


2.5. Karmaşık bir fonksiyonun türevi.

Fonksiyon verilsin
şeklinde temsil edilebilecek şekilde

Ve
değişken burada o zaman bir ara argümandır

Karmaşık bir fonksiyonun türevi, verilen fonksiyonun ara argümana göre türevi ile ara argümanın x'e göre türevinin çarpımına eşittir.

Örnek 1.

Örnek 2.

3. Diferansiyel fonksiyon.

Olsun
, belirli bir aralıkta türevlenebilir
bırak gitsin en bu fonksiyonun bir türevi var

,

o zaman yazabiliriz

(1),

Nerede - sonsuz küçük bir miktar,

ne zamandan beri

Tüm eşitlik koşullarını (1) ile çarpmak
sahibiz:

Nerede
- b.m.v. yüksek mertebeden.

Büyüklük
fonksiyonun diferansiyeli denir
ve belirlenmiş

.

3.1. Diferansiyelin geometrik değeri.

Fonksiyon verilsin
.

İncir. 2. Diferansiyelin geometrik anlamı.

.

Açıkçası, fonksiyonun diferansiyeli
belirli bir noktadaki teğetin koordinatındaki artışa eşittir.

3.2. Çeşitli mertebelerden türevler ve diferansiyeller.

eğer oradaysa
, Daha sonra
birinci türev denir.

Birinci türevin türevine ikinci dereceden türev denir ve şöyle yazılır:
.

Fonksiyonun n'inci dereceden türevi
(n-1)'inci dereceden türev olarak adlandırılır ve şöyle yazılır:

.

Bir fonksiyonun diferansiyelinin diferansiyeline ikinci diferansiyel veya ikinci derece diferansiyel denir.

.

.

3.3 Biyolojik problemlerin farklılaşmayı kullanarak çözülmesi.

Görev 1. Çalışmalar, bir mikroorganizma kolonisinin büyümesinin yasalara uygun olduğunu göstermiştir.
, Nerede N – mikroorganizmaların sayısı (bin olarak), T – zaman (günler).

b) Bu dönemde koloninin nüfusu artacak mı yoksa azalacak mı?

Cevap. Koloninin boyutu artacaktır.

Görev 2. Göldeki su, patojen bakterilerin içeriğini izlemek için periyodik olarak test edilir. Başından sonuna kadar T testten sonraki günler, bakteri konsantrasyonu orana göre belirlenir

.

Gölde ne zaman minimum bakteri konsantrasyonu olacak ve içinde yüzmek mümkün olacak mı?

Çözüm: Bir fonksiyon, türevi sıfır olduğunda maksimum veya minimuma ulaşır.

,

Maksimum veya minimumun 6 gün sonra olacağını belirleyelim. Bunu yapmak için ikinci türevi alalım.


Cevap: 6 gün sonra minimum bakteri konsantrasyonu olacaktır.