Logaritma kuralları. Logaritmanın tanımı, temel logaritmik özdeşlik


Logaritmaları incelemeye devam ediyoruz. Bu yazıda bunun hakkında konuşacağız logaritmaların hesaplanması, bu işleme denir logaritma. Öncelikle logaritmanın hesaplanmasını tanım gereği anlayacağız. Daha sonra logaritma değerlerinin özellikleri kullanılarak nasıl bulunduğuna bakalım. Bundan sonra başlangıçta logaritmaları hesaplamaya odaklanacağız. değerleri belirle diğer logaritmalar. Son olarak logaritma tablolarının nasıl kullanılacağını öğrenelim. Teorinin tamamı ayrıntılı çözümlere sahip örneklerle sağlanmaktadır.

Sayfada gezinme.

Tanıma göre logaritmaları hesaplama

En basit durumlarda oldukça hızlı ve kolay bir şekilde gerçekleştirmek mümkündür tanım gereği logaritmayı bulma. Bu sürecin nasıl gerçekleştiğine daha yakından bakalım.

Bunun özü, b sayısını a c biçiminde temsil etmektir; buradan logaritmanın tanımına göre c sayısı logaritmanın değeridir. Yani, tanım gereği aşağıdaki eşitlik zinciri logaritmanın bulunmasına karşılık gelir: log a b=log a a c =c.

Dolayısıyla, tanım gereği bir logaritmanın hesaplanması, a c = b olacak şekilde bir c sayısının bulunmasına gelir ve c sayısının kendisi logaritmanın istenen değeridir.

Önceki paragraflardaki bilgileri dikkate alarak, logaritma işaretinin altındaki sayı, logaritma tabanının belirli bir kuvveti ile verildiğinde, logaritmanın neye eşit olduğunu hemen belirtebilirsiniz - bu göstergeye eşit derece. Çözümleri örneklerle gösterelim.

Örnek.

Log 2 2 −3'ü bulun ve e 5,3 sayısının doğal logaritmasını da hesaplayın.

Çözüm.

Logaritmanın tanımı hemen log 2 2 −3 =−3 olduğunu söylememizi sağlar. Aslında logaritma işaretinin altındaki sayı 2 tabanının -3 üssüne eşittir.

Benzer şekilde ikinci logaritmayı da buluyoruz: lne 5,3 =5,3.

Cevap:

log 2 2 −3 =−3 ve lne 5,3 =5,3.

Logaritma işaretinin altındaki b sayısı, logaritmanın tabanının kuvveti olarak belirtilmemişse, b sayısının a c biçiminde bir temsilini bulmanın mümkün olup olmadığını dikkatlice incelemeniz gerekir. Çoğu zaman bu gösterim oldukça açıktır, özellikle logaritma işaretinin altındaki sayı 1, 2 veya 3'ün üssüne eşit olduğunda...

Örnek.

Logaritma log 5 25 ve'yi hesaplayın.

Çözüm.

25=5 2 olduğunu görmek kolaydır, bu ilk logaritmayı hesaplamanıza olanak tanır: log 5 25=log 5 5 2 =2.

İkinci logaritmayı hesaplamaya geçelim. Sayı 7'nin kuvvetleri olarak temsil edilebilir: (gerekirse bakın). Buradan, .

Üçüncü logaritmayı yeniden yazalım. aşağıdaki form. Artık bunu görebilirsin bundan şu sonuca varıyoruz . Bu nedenle logaritmanın tanımı gereği .

Kısaca çözüm şu şekilde yazılabilir: .

Cevap:

günlük 5 25=2 , Ve .

Logaritma işaretinin altında yeterince büyük bir değer varken doğal sayı o zaman onu parçalara ayırmanın zararı olmaz asal faktörler. Çoğu zaman böyle bir sayıyı logaritmanın tabanının bir kuvveti olarak temsil etmeye ve dolayısıyla bu logaritmayı tanım gereği hesaplamaya yardımcı olur.

Örnek.

Logaritmanın değerini bulun.

Çözüm.

Logaritmanın bazı özellikleri, logaritmanın değerini hemen belirtmenize olanak tanır. Bu özellikler, bir birimin logaritmasının özelliğini ve bir sayının logaritmasının özelliğini içerir. tabana eşit: log 1 1=log a 0 =0 ve log a=log a a 1 =1 . Yani, logaritmanın işareti altında 1 sayısı veya logaritmanın tabanına eşit bir sayı olduğunda, bu durumlarda logaritmalar sırasıyla 0 ve 1'e eşittir.

Örnek.

Logaritmalar ve log10 neye eşittir?

Çözüm.

O zamandan beri logaritmanın tanımından şu çıkıyor .

İkinci örnekte logaritma işaretinin altındaki 10 sayısı tabanına denk geliyor yani ondalık logaritma on bire eşit yani log10=lg10 1 =1.

Cevap:

VE lg10=1 .

Logaritmaların tanım gereği hesaplanmasının (ki bunu daha önce tartışmıştık) unutmayın. önceki paragraf) logaritmanın özelliklerinden biri olan log a a p =p eşitliğinin kullanımını ima eder.

Pratikte logaritmanın işareti altındaki bir sayı ve logaritmanın tabanı belirli bir sayının kuvveti olarak kolayca temsil edildiğinde formülü kullanmak çok uygundur. logaritmanın özelliklerinden birine karşılık gelir. Bu formülün kullanımını gösteren logaritmayı bulma örneğini ele alalım.

Örnek.

Logaritmayı hesaplayın.

Çözüm.

Cevap:

.

Logaritmanın yukarıda belirtilmeyen özellikleri de hesaplamalarda kullanılır ancak bundan sonraki paragraflarda bahsedeceğiz.

Bilinen diğer logaritmalar aracılığıyla logaritma bulma

Bu paragraftaki bilgiler logaritmanın özelliklerinin hesaplanmasında kullanılması konusunun devamıdır. Ancak buradaki temel fark, logaritmanın özelliklerinin, orijinal logaritmayı değeri bilinen başka bir logaritmaya göre ifade etmek için kullanılmasıdır. Açıklığa kavuşturmak için bir örnek verelim. Diyelim ki log 2 3≈1,584963'ü bildiğimizi varsayalım, o zaman logaritmanın özelliklerini kullanarak küçük bir dönüşüm yaparak örneğin log 2 6'yı bulabiliriz: günlük 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Yukarıdaki örnekte bir çarpımın logaritması özelliğini kullanmamız yeterliydi. Bununla birlikte, orijinal logaritmayı verilenler aracılığıyla hesaplamak için çok daha sık olarak logaritmanın özelliklerinin daha geniş bir cephaneliğini kullanmak gerekir.

Örnek.

Log 60 2=a ve log 60 5=b olduğunu biliyorsanız, 27'nin 60 tabanına göre logaritmasını hesaplayın.

Çözüm.

Bu yüzden log 60 27'yi bulmamız gerekiyor. 27 = 3 3 olduğunu ve kuvvetin logaritmasının özelliği nedeniyle orijinal logaritmanın 3·log 60 3 olarak yeniden yazılabileceğini görmek kolaydır.

Şimdi log 60 3'ün bilinen logaritmalarla nasıl ifade edileceğini görelim. Tabana eşit bir sayının logaritması özelliği, log 60 60=1 eşitliğini yazmamızı sağlar. Öte yandan, log 60 60=log60(2 2 3 5)= günlük 60 2 2 +günlük 60 3+günlük 60 5= 2·log 60 2+log 60 3+log 60 5 . Böylece, 2 log 60 2+log 60 3+log 60 5=1. Buradan, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Son olarak orijinal logaritmayı hesaplıyoruz: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Cevap:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Ayrı olarak, formun logaritmasının yeni bir tabanına geçiş formülünün anlamından bahsetmeye değer. . Herhangi bir tabanlı logaritmalardan, değerleri bilinen veya bulunması mümkün olan belirli bir tabanlı logaritmalara geçmenizi sağlar. Genellikle, orijinal logaritmadan, geçiş formülünü kullanarak, 2, e veya 10 tabanlarından birinde logaritmalara geçerler, çünkü bu tabanlar için değerlerinin belirli bir dereceyle hesaplanmasına izin veren logaritma tabloları vardır. kesinlik. İÇİNDE sonraki nokta size bunun nasıl yapıldığını göstereceğiz.

Logaritma tabloları ve kullanımları

Logaritma değerlerinin yaklaşık hesaplanması için kullanılabilir logaritma tabloları. En sık kullanılan 2 tabanlı logaritma tablosu, doğal logaritma tablosu ve ondalık logaritma tablosu. Çalışırken ondalık sistem Matematik için on tabanına dayalı bir logaritma tablosu kullanmak uygundur. Onun yardımıyla logaritmanın değerlerini bulmayı öğreneceğiz.










Sunulan tablo, 1.000'den 9.999'a kadar (üç ondalık basamakla) sayıların ondalık logaritmasının değerlerini on binde bir doğrulukla bulmanızı sağlar. Ondalık logaritma tablosu kullanarak bir logaritmanın değerini bulma ilkesini analiz edeceğiz. spesifik örnek– böyle daha açık. Log1.256'yı bulalım.

Ondalık logaritma tablosunun sol sütununda 1,256 sayısının ilk iki rakamını buluyoruz, yani 1,2'yi buluyoruz (bu sayı netlik açısından mavi daire içine alınmıştır). 1.256'nın üçüncü basamağını (5. basamak) birinci veya son satırçift ​​çizginin solunda (bu sayı kırmızı daire içine alınmıştır). Orijinal sayı olan 1.256'nın dördüncü rakamı (6 rakamı), çift satırın sağındaki ilk veya son satırda bulunur (bu sayı yeşil çizgiyle daire içine alınmıştır). Şimdi logaritma tablosunun hücrelerinde işaretli satır ve işaretli sütunların kesişimindeki sayıları buluyoruz (bu sayılar vurgulanmıştır) turuncu). İşaretlenen sayıların toplamı, dördüncü ondalık basamağa kadar doğru olan ondalık logaritmanın istenen değerini verir; log1,236≈0,0969+0,0021=0,0990.

Yukarıdaki tabloyu kullanarak, ondalık noktadan sonra üç basamaktan fazla olan sayıların yanı sıra 1 ile 9,999 aralığının ötesine geçen sayıların ondalık logaritma değerlerini bulmak mümkün müdür? Evet yapabilirsin. Bunun nasıl yapıldığını bir örnekle gösterelim.

lg102.76332'yi hesaplayalım. Öncelikle yazmanız gerekiyor sayı standart form : 102,76332=1,0276332·10 2. Bundan sonra mantis üçüncü ondalık basamağa yuvarlanmalıdır. 1,0276332 10 2 ≈1,028 10 2 orijinal ondalık logaritma yaklaşık olarak iken logaritmaya eşit ortaya çıkan sayı, yani log102.76332≈lg1.028·10 2'yi alıyoruz. Şimdi logaritmanın özelliklerini uyguluyoruz: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Son olarak, lg1.028 logaritmasının değerini ondalık logaritmalar tablosundan lg1.028≈0.0086+0.0034=0.012 buluyoruz. Sonuç olarak, logaritmayı hesaplama sürecinin tamamı şöyle görünür: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

Sonuç olarak, ondalık logaritma tablosunu kullanarak herhangi bir logaritmanın yaklaşık değerini hesaplayabileceğinizi belirtmekte fayda var. Bunu yapmak için geçiş formülünü kullanarak ondalık logaritmalara gitmeniz, değerlerini tabloda bulmanız ve kalan hesaplamaları yapmanız yeterlidir.

Örneğin log 2 3'ü hesaplayalım. Logaritmanın yeni tabanına geçiş formülüne göre elimizde . Ondalık logaritma tablosundan log3≈0,4771 ve log2≈0,3010'u buluyoruz. Böylece, .

Referanslar.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. ve diğerleri. Cebir ve analizin başlangıcı: Genel eğitim kurumlarının 10 - 11. sınıfları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).

Bugün bunun hakkında konuşacağız logaritma formülleri ve gösterge verin çözüm örnekleri.

Logaritmanın temel özelliklerine göre çözüm modellerini kendileri ima ederler. Logaritmik formülleri çözüme uygulamadan önce size tüm özellikleri hatırlatalım:

Şimdi bu formüllere (özelliklere) dayanarak şunu göstereceğiz: logaritma çözme örnekleri.

Formüllere dayalı logaritma çözme örnekleri.

Logaritma a tabanındaki pozitif bir b sayısı (log a b ile gösterilir), b > 0, a > 0 ve 1 olmak üzere b'yi elde etmek için a'nın yükseltilmesi gereken bir üstür.

Buna göre günlüğün tanımları a b = x, bu da a x = b'ye eşittir, dolayısıyla log a a x = x.

Logaritmalar, örnekler:

log 2 8 = 3, çünkü 2 3 = 8

log 7 49 = 2, çünkü 7 2 = 49

log 5 1/5 = -1, çünkü 5 -1 = 1/5

Ondalık logaritma- bu, tabanı 10 olan sıradan bir logaritmadır. lg olarak gösterilir.

log 10 100 = 2, çünkü 10 2 = 100

Doğal logaritma- ayrıca olağan logaritma logaritması, ancak e tabanıyla (e = 2,71828... - irrasyonel sayı). ln olarak gösterilir.

Logaritmanın formüllerini veya özelliklerini ezberlemeniz tavsiye edilir, çünkü daha sonra logaritmaları çözerken bunlara ihtiyacımız olacak, logaritmik denklemler ve eşitsizlikler. Örneklerle her formülü tekrar inceleyelim.

  • Temel bilgiler logaritmik özdeşlik
    a günlüğü a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ürünün logaritması toplamına eşit logaritmalar
    log a (bc) = log a b + log a c

    günlük 3 8,1 + günlük 3 10 = günlük 3 (8,1*10) = günlük 3 81 = 4

  • Bölümün logaritması logaritmaların farkına eşittir
    log a (b/c) = log a b - log a c

    9 günlük 5 50 /9 günlük 5 2 = 9 günlük 5 50- günlük 5 2 = 9 günlük 5 25 = 9 2 = 81

  • Logaritmik bir sayının kuvvetinin ve logaritmanın tabanının özellikleri

    Logaritmanın üssü günlük numaraları a b m = mlog a b

    Logaritmanın tabanının üssü log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    eğer m = n ise log a n b n = log a b elde ederiz

    günlük 4 9 = günlük 2 2 3 2 = günlük 2 3

  • Yeni bir temele geçiş
    log a b = log c b/log c a,

    c = b ise log b b = 1 elde ederiz

    o zaman log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Gördüğünüz gibi logaritma formülleri göründüğü kadar karmaşık değil. Artık logaritmik çözüm örneklerine baktıktan sonra logaritmik denklemlere geçebiliriz. Logaritmik denklemleri çözme örneklerine şu makalede daha ayrıntılı olarak bakacağız: "". Kaçırmayın!

Çözümle ilgili hala sorularınız varsa, bunları makalenin yorumlarına yazın.

Not: Seçenek olarak farklı bir sınıf eğitim almaya ve yurt dışında okumaya karar verdik.

Talimatlar

Verilenleri yazın logaritmik ifade. İfade 10'un logaritmasını kullanıyorsa gösterimi kısaltılır ve şu şekilde görünür: lg b ondalık logaritmadır. Logaritmanın temelinde e sayısı varsa, şu ifadeyi yazın: ln b – doğal logaritma. Herhangi birinin sonucunun, b sayısını elde etmek için temel sayının yükseltilmesi gereken kuvvet olduğu anlaşılmaktadır.

İki fonksiyonun toplamını bulurken, tek tek türevlerini alıp sonuçları eklemeniz yeterlidir: (u+v)" = u"+v";

İki fonksiyonun çarpımının türevini bulurken, birinci fonksiyonun türevini ikinciyle çarpmak ve ikinci fonksiyonun türevinin birinci fonksiyonla çarpımını eklemek gerekir: (u*v)" = u"*v +v"*u;

İki fonksiyonun bölümünün türevini bulmak için, bölen fonksiyonu ile bölünen türevinin çarpımından bölen türevinin çarpımı ile bölünen fonksiyonun çarpımını çıkarmak ve bölmek gerekir. tüm bunlar bölen fonksiyonunun karesine göre. (u/v)" = (u"*v-v"*u)/v^2;

Eğer verilirse karmaşık fonksiyon o zaman türevini çarpmak gerekir dahili fonksiyon ve dıştakinin türevi. y=u(v(x)) olsun, sonra y"(x)=y"(u)*v"(x) olsun.

Yukarıda elde edilen sonuçları kullanarak hemen hemen her işlevi ayırt edebilirsiniz. O halde birkaç örneğe bakalım:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *X));
Bir noktadaki türevin hesaplanmasıyla ilgili problemler de vardır. y=e^(x^2+6x+5) fonksiyonu verilsin, x=1 noktasında fonksiyonun değerini bulmanız gerekiyor.
1) Fonksiyonun türevini bulun: y"=e^(x^2-6x+5)*(2*x +6).

2) Fonksiyonun değerini hesaplayın verilen nokta y"(1)=8*e^0=8

Konuyla ilgili video

Yararlı tavsiye

Temel türevler tablosunu öğrenin. Bu önemli ölçüde zaman kazandıracaktır.

Kaynaklar:

  • bir sabitin türevi

Peki fark nedir? IR rasyonel denklem rasyonelden mi? Bilinmeyen değişken işaretin altındaysa karekök ise denklemin irrasyonel olduğu kabul edilir.

Talimatlar

Bu tür denklemleri çözmenin ana yöntemi her iki tarafı da oluşturma yöntemidir. denklemler bir kareye. Fakat. bu doğaldır, yapmanız gereken ilk şey tabeladan kurtulmaktır. Bu yöntem teknik olarak zor değildir ancak bazen sıkıntılara yol açabilmektedir. Örneğin denklem v(2x-5)=v(4x-7) şeklindedir. Her iki tarafın karesini alırsak 2x-5=4x-7 elde ederiz. Böyle bir denklemi çözmek zor değil; x=1. Ama 1 rakamı verilmeyecek denklemler. Neden? Denklemde x'in değeri yerine bir koyarsak sağ ve sol taraflarda anlamsız ifadeler yer alır. Bu değer karekök için geçerli değildir. Bu nedenle 1 yabancı bir köktür ve bu nedenle verilen denklem kökleri yoktur.

Yani irrasyonel bir denklem her iki tarafının karesi alma yöntemi kullanılarak çözülür. Denklemi çözdükten sonra yabancı kökleri kesmek gerekir. Bunu yapmak için bulunan kökleri orijinal denklemde değiştirin.

Başka bir tane düşünün.
2х+vх-3=0
Elbette bu denklem bir önceki denklemin aynısı kullanılarak çözülebilir. Bileşikleri Taşı denklemler Karekökü olmayan , sağ tarafa ve ardından kare alma yöntemini kullanın. Ortaya çıkan rasyonel denklemi ve köklerini çözer. Ama aynı zamanda daha zarif bir tane daha. Yeni bir değişken girin; vх=y. Buna göre 2y2+y-3=0 formunda bir denklem elde edeceksiniz. Yani olağan ikinci dereceden denklem. Köklerini bulun; y1=1 ve y2=-3/2. Sonra iki tanesini çöz denklemler vх=1; vх=-3/2. İkinci denklemin kökleri yoktur; birinciden x=1 olduğunu buluruz. Kökleri kontrol etmeyi unutmayın.

Kimlikleri çözmek oldukça basittir. Bunu yapmak için yapmanız gerekenler kimlik dönüşümleri hedefe ulaşılıncaya kadar. Böylece, en basitinin yardımıyla aritmetik işlemler eldeki görev çözülecektir.

İhtiyacın olacak

  • - kağıt;
  • - dolma kalem.

Talimatlar

Bu tür dönüşümlerin en basiti cebirsel kısaltılmış çarpmalardır (toplamın karesi (fark), kareler farkı, toplam (fark), toplamın küpü (fark) gibi). Ayrıca çok sayıda var ve trigonometrik formüller Bunlar aslında aynı kimliklerdir.

Aslında iki terimin toplamının karesi kareye eşit birinci artı birincinin ikinciyle çarpımının iki katı ve artı ikincinin karesi, yani (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab +b^2.

Her ikisini de basitleştirin

Çözümün genel ilkeleri

Ders kitabına göre tekrarlayın matematiksel analiz veya yüksek matematik belirli bir integraldir. Bilindiği üzere çözüm belirli integral türevi bir integral veren bir fonksiyon var. Bu işlev antiderivatif denir. İle bu prensip ve ana integralleri oluşturur.
İntegral formuna göre tablo integrallerinden hangisinin uyduğunu belirleyin bu durumda. Bunu hemen belirlemek her zaman mümkün olmuyor. Çoğu zaman tablo biçimi ancak integrandın basitleştirilmesi için yapılan birkaç dönüşümden sonra fark edilebilir hale gelir.

Değişken Değiştirme Yöntemi

İntegral fonksiyonu ise trigonometrik fonksiyon Argümanı bazı polinomlar içeren değişkeni değiştirme yöntemini kullanmayı deneyin. Bunu yapmak için integralin argümanındaki polinomu yeni bir değişkenle değiştirin. Yeni ve eski değişkenler arasındaki ilişkiye dayanarak entegrasyonun yeni sınırlarını belirleyin. Farklılaşma verilen ifade içinde yeni bir fark bulun. Yani alacaksın yeni görünümönceki integralin herhangi bir tablodaki integrale yakın veya hatta karşılık gelen.

İkinci Tür İntegrallerin Çözülmesi

İntegral ikinci türden bir integral ise, integralin vektör biçimi ise, o zaman bu integrallerden skaler olanlara geçiş için kuralları kullanmanız gerekecektir. Böyle bir kural Ostrogradsky-Gauss ilişkisidir. Bu yasa bir vektör fonksiyonunun rotor akısından, belirli bir vektör alanının diverjansı üzerinden üçlü integrale gitmenizi sağlar.

Entegrasyon sınırlarının değiştirilmesi

Antiderivatifi bulduktan sonra integralin limitlerini yerine koymak gerekir. İlk önce değeri değiştirin üst sınır terstürev için bir ifadeye dönüştürün. Bir numara alacaksınız. Daha sonra, elde edilen sayıdan alt limitten elde edilen başka bir sayıyı antiderivatife çıkarın. İntegral limitlerinden biri sonsuzluk ise, o zaman onu yerine koyarken antiderivatif fonksiyon sınıra gitmek ve ifadenin neyi hedeflediğini bulmak gerekiyor.
İntegral iki boyutlu veya üç boyutlu ise, integralin nasıl değerlendirileceğini anlamak için integralin sınırlarını geometrik olarak temsil etmeniz gerekecektir. Aslında, örneğin üç boyutlu bir integral durumunda, integralin sınırları, entegre edilen hacmi sınırlayan tüm düzlemler olabilir.

Tanımından çıkar. Ve böylece sayının logaritması B dayalı A bir sayının yükseltilmesi gereken üs olarak tanımlanır A numarayı almak için B(logaritma yalnızca pozitif sayılar için mevcuttur).

Bu formülasyondan, hesaplama şu şekildedir: x=log a b, denklemi çözmeye eşdeğerdir ax =b.Örneğin, günlük 2 8 = 3Çünkü 8 = 2 3 . Logaritmanın formülasyonu şunu doğrulamayı mümkün kılar: b=a c, sonra sayının logaritması B dayalı A eşittir İle. Logaritma konusunun bir sayının kuvvetleri konusuyla yakından ilgili olduğu da açıktır.

Herhangi bir sayıda olduğu gibi logaritmalarla da şunları yapabilirsiniz: toplama, çıkarma işlemleri ve mümkün olan her şekilde dönüştürün. Ancak logaritmalar tamamen sıradan sayılar olmadığı için burada kendi özel kuralları geçerlidir. ana özellikler.

Logaritmaların toplanması ve çıkarılması.

İki logaritmayı alalım aynı gerekçelerle: x'i günlüğe kaydet Ve bir y'yi günlüğe kaydet. Daha sonra toplama ve çıkarma işlemlerini gerçekleştirmek mümkündür:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

bir günlüğe kaydet(X 1 . X 2 . X 3 ... xk) = x'i günlüğe kaydet 1 + x'i günlüğe kaydet 2 + x'i günlüğe kaydet 3 + ... + a x k'yi günlüğe kaydet.

İtibaren logaritma bölüm teoremi Logaritmanın bir özelliği daha elde edilebilir. Günlüğe kaydetmenin yaygın bir bilgi olduğu A 1= 0, dolayısıyla

kayıt A 1 /B=günlük A 1 - günlük bir b= -günlük bir b.

Bu, bir eşitliğin olduğu anlamına gelir:

log a 1 / b = - log a b.

Karşılıklı iki sayının logaritması aynı nedenden ötürü birbirinden yalnızca işaret açısından farklılık gösterecektir. Bu yüzden:

Günlük 3 9= - günlük 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

İlkel düzey cebirin unsurlarından biri logaritmadır. İsim nereden geliyor Yunan dili“sayı” veya “kuvvet” kelimesinden gelir ve son sayıyı bulmak için tabandaki sayının yükseltilmesi gereken kuvvet anlamına gelir.

Logaritma türleri

  • log a b – b sayısının a tabanına göre logaritması (a > 0, a ≠ 1, b > 0);
  • log b – ondalık logaritma (10 tabanına göre logaritma, a = 10);
  • ln b – doğal logaritma (e tabanına göre logaritma, a = e).

Logaritmalar nasıl çözülür?

B'nin a tabanına göre logaritması, b'nin a tabanına yükseltilmesini gerektiren bir üstür. Elde edilen sonuç şu şekilde telaffuz edilir: "b'nin a tabanına göre logaritması." Çözüm logaritmik problemler bunu belirlemen gerekiyor bu derece sayılara göre belirtilen sayılar. Logaritmayı belirlemek veya çözmek ve gösterimin kendisini dönüştürmek için bazı temel kurallar vardır. Bunları kullanarak logaritmik denklemler çözülür, türevler bulunur, integraller çözülür ve diğer birçok işlem gerçekleştirilir. Temel olarak logaritmanın çözümü onun basitleştirilmiş gösterimidir. Aşağıda temel formüller ve özellikler verilmiştir:

Herhangi bir a için; a > 0; a ≠ 1 ve herhangi bir x için; y > 0.

  • a log a b = b – temel logaritmik özdeşlik
  • 1 = 0'ı günlüğe kaydet
  • log a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x , k ≠ 0 için
  • log a x = log a c x c
  • log a x = log b x/ log b a – yeni bir tabana geçme formülü
  • log a x = 1/log x a


Logaritmalar nasıl çözülür - çözmek için adım adım talimatlar

  • İlk önce gerekli denklemi yazın.

Lütfen unutmayın: Taban logaritması 10 ise, giriş kısaltılır ve sonuçta ondalık logaritma elde edilir. Eğer bir e doğal sayısı varsa, onu yazıp indirgeriz. doğal logaritma. Bu, tüm logaritmaların sonucunun, b sayısını elde etmek için temel sayının yükseltildiği kuvvet olduğu anlamına gelir.


Çözüm doğrudan bu derecenin hesaplanmasında yatmaktadır. Bir ifadeyi logaritmayla çözmeden önce kurala göre yani formüller kullanılarak sadeleştirilmesi gerekir. Yazıda biraz geriye giderek ana kimlikleri bulabilirsiniz.

İki ile logaritma toplama ve çıkarma farklı sayılar ancak aynı tabanlarla, sırasıyla b ve c sayılarının çarpımı veya bölümü olan bir logaritmayla değiştirin. Bu durumda başka bir üsse geçme formülünü uygulayabilirsiniz (yukarıya bakın).

Logaritmayı basitleştirmek için ifadeler kullanırsanız dikkate alınması gereken bazı sınırlamalar vardır. Ve bu: logaritmanın tabanı a sadece pozitif sayı, ama değil bire eşit. a gibi b sayısı da sıfırdan büyük olmalıdır.

Bir ifadeyi basitleştirerek logaritmayı hesaplayamayacağınız durumlar vardır. sayısal form. Böyle bir ifadenin mantıklı olmadığı görülür çünkü kuvvetlerin çoğu irrasyonel sayılardır. Bu durumda sayının kuvvetini logaritma olarak bırakın.