Bir logaritmanın tabanı ve sayısı nasıl değiştirilir? Logaritma

Bugün bunun hakkında konuşacağız logaritmik formüller ve gösterge niteliğinde vereceğiz çözüm örnekleri.

Logaritmanın temel özelliklerine göre çözüm modellerini kendileri ima ederler. Logaritmik formülleri çözüme uygulamadan önce size tüm özellikleri hatırlatalım:

Şimdi bu formüllere (özelliklere) dayanarak şunu göstereceğiz: logaritma çözme örnekleri.

Formüllere dayalı logaritma çözme örnekleri.

Logaritma pozitif sayı b'nin a tabanına oranı (log a b ile gösterilir), b > 0, a > 0 ve 1 olmak üzere b'yi elde etmek için a'nın yükseltilmesi gereken bir üstür.

Buna göre günlüğün tanımları a b = x, bu da a x = b'ye eşittir, dolayısıyla log a a x = x.

Logaritmalar, örnekler:

log 2 8 = 3, çünkü 2 3 = 8

log 7 49 = 2, çünkü 7 2 = 49

log 5 1/5 = -1, çünkü 5 -1 = 1/5

Ondalık logaritma- bu, tabanı 10 olan sıradan bir logaritmadır. lg olarak gösterilir.

log 10 100 = 2, çünkü 10 2 = 100

Doğal logaritma- ayrıca olağan logaritma logaritması, ancak e tabanıyla (e = 2,71828... - irrasyonel sayı). ln olarak gösterilir.

Logaritmanın formüllerini veya özelliklerini ezberlemeniz tavsiye edilir, çünkü daha sonra logaritmaları çözerken bunlara ihtiyacımız olacak, logaritmik denklemler ve eşitsizlikler. Örneklerle her formülü tekrar inceleyelim.

  • Temel bilgiler logaritmik özdeşlik
    a günlüğü a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ürünün logaritması toplamına eşit logaritmalar
    log a (bc) = log a b + log a c

    günlük 3 8,1 + günlük 3 10 = günlük 3 (8,1*10) = günlük 3 81 = 4

  • Bölümün logaritması logaritmaların farkına eşittir
    log a (b/c) = log a b - log a c

    9 günlük 5 50 /9 günlük 5 2 = 9 günlük 5 50- günlük 5 2 = 9 günlük 5 25 = 9 2 = 81

  • Logaritmik bir sayının kuvvetinin ve logaritmanın tabanının özellikleri

    Logaritmanın üssü günlük numaraları a b m = mlog a b

    Logaritmanın tabanının üssü log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    eğer m = n ise log a n b n = log a b elde ederiz

    günlük 4 9 = günlük 2 2 3 2 = günlük 2 3

  • Yeni bir temele geçiş
    log a b = log c b/log c a,

    c = b ise log b b = 1 elde ederiz

    o zaman log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Gördüğünüz gibi logaritma formülleri göründüğü kadar karmaşık değil. Artık logaritmik çözüm örneklerine baktıktan sonra logaritmik denklemlere geçebiliriz. Logaritmik denklemleri çözme örneklerine şu makalede daha ayrıntılı olarak bakacağız: "". Kaçırmayın!

Çözümle ilgili hala sorularınız varsa, bunları makalenin yorumlarına yazın.

Not: Seçenek olarak farklı bir sınıf eğitim almaya ve yurt dışında okumaya karar verdik.

Başlıca özellikler verilmiştir doğal logaritma, grafik, tanım alanı, değerler kümesi, temel formüller, türev, integral, açılım güç serisi ve ln x fonksiyonunun karmaşık sayılar kullanılarak temsili.

Tanım

Doğal logaritma fonksiyon y = x olarak, üstel sayının tersi, x = e y ve e sayısının tabanının logaritmasıdır: ln x = log e x.

Doğal logaritma matematikte yaygın olarak kullanılır çünkü türevi en basit forma sahiptir: (ln x)' = 1/ x.

dayalı tanımlar doğal logaritmanın tabanı sayıdır e:
e ≅ 2,718281828459045...;
.

y = fonksiyonunun grafiği x olarak.

Doğal logaritmanın grafiği (fonksiyonlar y = x olarak) üstel grafikten elde edilir ayna görüntüsü y = x düz çizgisine göre.

Doğal logaritma şu şekilde tanımlanır: pozitif değerler değişken x.

Tanım alanında monoton bir şekilde artar. 0 x'te →

doğal logaritmanın sınırı eksi sonsuzdur (-∞). X → + ∞ olduğundan doğal logaritmanın sınırı artı sonsuzdur (+ ∞). Büyük x için logaritma oldukça yavaş artar. Herhangi güç fonksiyonu x a s olumlu gösterge

a derecesi logaritmadan daha hızlı büyür.

Doğal logaritmanın özellikleri

Tanım alanı, değerler kümesi, ekstremum, artış, azalma

Doğal logaritma monotonik olarak artan bir fonksiyon olduğundan ekstremum değeri yoktur. Doğal logaritmanın temel özellikleri tabloda sunulmaktadır.

lnx değerleri

1 = 0

Doğal logaritmalar için temel formüller

Ters fonksiyonun tanımından aşağıdaki formüller:

Logaritmanın temel özelliği ve sonuçları

Baz değiştirme formülü

Herhangi bir logaritma, baz ikame formülü kullanılarak doğal logaritma cinsinden ifade edilebilir:

Bu formüllerin ispatları Logaritma bölümünde sunulmuştur.

Ters fonksiyon

Doğal logaritmanın tersi üstür.

Eğer öyleyse

Eğer öyleyse.

Türev lnx
.
Doğal logaritmanın türevi:
.
Modül x'in doğal logaritmasının türevi:
.
N'inci dereceden türev:

Formüllerin türetilmesi > > >

İntegral, parçalara göre entegrasyonla hesaplanır:
.
Bu yüzden,

Karmaşık sayılar kullanan ifadeler

Karmaşık z değişkeninin fonksiyonunu düşünün:
.
Karmaşık değişkeni ifade edelim z modül aracılığıyla R ve tartışma φ :
.
Logaritmanın özelliklerini kullanarak şunu elde ederiz:
.
Veya
.
φ argümanı benzersiz bir şekilde tanımlanmamıştır. Eğer koyarsan
n bir tamsayı olmak üzere,
farklı n'ler için aynı sayı olacaktır.

Bu nedenle, karmaşık bir değişkenin fonksiyonu olarak doğal logaritma, tek değerli bir fonksiyon değildir.

Kuvvet serisi genişletmesi

Genişleme gerçekleştiğinde:

Kullanılan literatür:
İÇİNDE. Bronstein, K.A. Semendyaev, Mühendisler ve üniversite öğrencileri için matematik el kitabı, “Lan”, 2009.

Logaritmik ifadeler, çözüm örnekleri. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Devlet Sınavına gelince, denklemleri çözerken logaritma kullanılır. uygulamalı problemler, ayrıca fonksiyonların incelenmesiyle ilgili görevlerde.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Çarpımın logaritması, faktörlerin logaritmasının toplamına eşittir.

* * *

*Bir bölümün (kesir) logaritması, faktörlerin logaritmaları arasındaki farka eşittir.

* * *

* Derecenin logaritması ürüne eşitüssünün logaritmasına göre üs.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Öz bu mülkün payı paydaya ve tersini aktarırken üssün işaretinin tersine değişmesi gerçeğinde yatmaktadır. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan ihtiyaç duyulan şey iyi uygulama, bu da belli bir beceri kazandırır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmediyse, basit görevleri çözerken kolayca hata yapabilirsiniz.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların nasıl çözüldüğünü kesinlikle göstereceğim; Birleşik Devlet Sınavında görünmeyecekler ama ilgi çekiciler, kaçırmayın!

Hepsi bu! Size iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Toplum geliştikçe ve üretim karmaşıklaştıkça matematik de gelişti. Basitten karmaşığa doğru hareket. Geleneksel muhasebeden toplama ve çıkarma yöntemiyle, birçok kez tekrarlandı, çarpma ve bölme kavramına geldi. Tekrarlanan çarpma işleminin azaltılması, üstel alma kavramı haline geldi. Sayıların tabana bağımlılığı ve üstel sayılarla ilgili ilk tablolar 8. yüzyılda Hintli matematikçi Varasena tarafından derlendi. Onlardan logaritmanın oluşma zamanını sayabilirsiniz.

Tarihsel eskiz

16. yüzyılda Avrupa'nın yeniden canlanması mekaniğin gelişimini de teşvik etti. T büyük miktarda hesaplama gerektiriyorduçarpma ve bölme ile ilgili çok basamaklı sayılar. Antik masalar büyük hizmet veriyordu. Karmaşık işlemleri daha basit olanlarla (toplama ve çıkarma) değiştirmeyi mümkün kıldılar. Büyük adım Birçok matematikçinin fikrini hayata geçirdiği matematikçi Michael Stiefel'in 1544'te yayınlanan çalışması öncülük etti. Bu, tabloların yalnızca formdaki dereceler için kullanılmasını mümkün kılmadı asal sayılar ama aynı zamanda keyfi rasyonel olanlar için de.

1614 yılında bu fikirleri geliştiren İskoçyalı John Napier, ilk kez bu fikirleri ortaya attı. yeni dönem"bir sayının logaritması." Yeni karmaşık tablolar sinüs ve kosinüslerin logaritmasının yanı sıra teğetlerin hesaplanması için. Bu, gökbilimcilerin çalışmalarını büyük ölçüde azalttı.

Bilim adamları tarafından başarıyla kullanılan yeni tablolar ortaya çıkmaya başladı. üç yüzyıl. Cebirdeki yeni işlemin bitmiş halini alması için çok zaman geçti. Logaritmanın tanımı verilmiş ve özellikleri incelenmiştir.

Ancak 20. yüzyılda hesap makinesinin ve bilgisayarın ortaya çıkışıyla insanlık, 13. yüzyıl boyunca başarılı bir şekilde işleyen eski tabloları terk etti.

Bugün a'nın b'yi oluşturma kuvveti olan b'nin logaritmasını a sayısına x diyoruz. Bu bir formül olarak yazılır: x = log a(b).

Örneğin log 3(9) 2'ye eşit olacaktır. Tanımı takip ederseniz bu açıkça görülür. 3'ün 2'inci üssünü çıkarırsak 9 elde ederiz.

Dolayısıyla, formüle edilen tanım yalnızca bir kısıtlama getirmektedir: a ve b sayıları gerçek olmalıdır.

Logaritma türleri

Klasik tanıma gerçek logaritma denir ve aslında a x = b denkleminin çözümüdür. Seçenek a = 1 sınırdadır ve ilgi çekici değildir. Dikkat: 1'in herhangi bir kuvveti 1'e eşittir.

Logaritmanın gerçek değeri yalnızca taban ve argüman 0'dan büyük olduğunda tanımlanır ve taban 1'e eşit olmamalıdır.

Matematik alanında özel yeri tabanlarının boyutuna göre adlandırılacak olan logaritmalarla oynayın:

Kurallar ve kısıtlamalar

Logaritmanın temel özelliği kuraldır: Bir ürünün logaritması, logaritmik toplama eşittir. log abp = log a(b) + log a(p).

Bu ifadenin bir çeşidi olarak şu şekilde olacaktır: log c(b/p) = log c(b) - log c(p), bölüm fonksiyonu, fonksiyonların farkına eşittir.

Önceki iki kuraldan şunu görmek kolaydır: log a(b p) = p * log a(b).

Diğer özellikler şunları içerir:

Yorum. Yaygın bir hataya düşmeye gerek yok; bir toplamın logaritması, logaritmaların toplamına eşit değildir.

Yüzyıllar boyunca logaritma bulma işlemi oldukça zaman alıcı bir işti. Matematikçiler kullanıldı bilinen formül Polinom genişlemesinin logaritmik teorisi:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), burada n - doğal sayı 1'den büyük olması hesaplamanın doğruluğunu belirler.

Diğer bazlarla logaritmalar, bir tabandan diğerine geçiş teoremi ve bir çarpımın logaritmasının özelliği kullanılarak hesaplandı.

Bu yöntem çok emek yoğun olduğundan karar verirken pratik problemler uygulanması zor olduğundan, tüm işi önemli ölçüde hızlandıran önceden derlenmiş logaritma tabloları kullandık.

Bazı durumlarda, daha az doğruluk sağlayan ancak aramayı önemli ölçüde hızlandıran özel olarak tasarlanmış logaritma grafikleri kullanıldı. istenilen değer. Y = log a(x) fonksiyonunun birkaç nokta üzerinden oluşturulan eğrisi, fonksiyonun değerini başka herhangi bir noktada bulmak için normal bir cetvel kullanmanıza olanak tanır. Mühendisler uzun zaman Bu amaçlar için grafik kağıdı adı verilen kağıt kullanıldı.

17. yüzyılda ilk yardımcı analog hesaplama koşulları ortaya çıktı. 19. yüzyıl bitmiş bir görünüm kazandı. En başarılı cihaza slayt kuralı adı verildi. Cihazın sadeliğine rağmen, görünümü tüm mühendislik hesaplamalarının sürecini önemli ölçüde hızlandırdı ve bunu abartmak zor. Şu anda çok az kişi bu cihaza aşinadır.

Hesap makinelerinin ve bilgisayarların ortaya çıkışı, diğer cihazların kullanımını anlamsız hale getirdi.

Denklemler ve eşitsizlikler

Çözmek için farklı denklemler Logaritma kullanılarak eşitsizlikler ve eşitsizlikler için aşağıdaki formüller kullanılır:

  • Bir tabandan diğerine geçiş: log a(b) = log c(b) / log c(a);
  • Önceki seçeneğin bir sonucu olarak: log a(b) = 1 / log b(a).

Eşitsizlikleri çözmek için şunları bilmek faydalıdır:

  • Logaritmanın değeri yalnızca taban ve argümanın her ikisinin de birden büyük veya küçük olması durumunda pozitif olacaktır; en az bir koşulun ihlal edilmesi durumunda logaritma değeri negatif olacaktır.
  • Logaritma fonksiyonu bir eşitsizliğin sağ ve sol taraflarına uygulanırsa ve logaritmanın tabanı birden fazla, bu durumda eşitsizlik işareti korunur; V aksi takdirde o değişiyor.

Örnek problemler

Logaritmaları ve özelliklerini kullanmak için çeşitli seçenekleri ele alalım. Denklem çözme örnekleri:

Logaritmayı bir kuvvete yerleştirme seçeneğini düşünün:

  • Problem 3. 25^log 5(3)'ü hesaplayın. Çözüm: Sorunun koşullarında, giriş aşağıdaki (5^2)^log5(3) veya 5^(2 * log 5(3))'e benzer. Farklı yazalım: 5^log 5(3*2) veya fonksiyon argümanı olarak bir sayının karesi, fonksiyonun kendisinin karesi (5^log 5(3))^2 olarak yazılabilir. Logaritmanın özelliklerini kullanarak bu ifade 3^2'ye eşittir. Cevap: Hesaplama sonucunda 9 elde ederiz.

Pratik Uygulama

Tamamen matematiksel bir araç olduğundan, gerçek hayat logaritmanın aniden elde edildiği büyük değer nesneleri tanımlamak gerçek dünya. Kullanılmayan bilim bulmak zordur. Bu tamamen yalnızca doğal değil, aynı zamanda insani bilgi alanları için de geçerlidir.

Logaritmik bağımlılıklar

Sayısal bağımlılıklara bazı örnekler:

Mekanik ve fizik

Tarihsel olarak mekanik ve fizik her zaman kullanılarak gelişmiştir. matematiksel yöntemler araştırma ve aynı zamanda logaritmalar da dahil olmak üzere matematiğin gelişimi için bir teşvik görevi gördü. Çoğu fizik kanununun teorisi matematik dilinde yazılmıştır. Açıklamalara sadece iki örnek verelim fiziksel yasalar logaritma kullanarak.

Bunun gibi bir hesaplama problemini çözün karmaşık boyut Uzay araştırmaları teorisinin temelini oluşturan Tsiolkovsky formülü uygulanarak bir roketin hızı nasıl belirlenebilir:

V = I * ln (M1/M2), burada

  • V – son hız uçak.
  • I – motorun spesifik dürtüsü.
  • M 1 – roketin başlangıç ​​kütlesi.
  • M 2 – son kütle.

Bir diğer önemli örnek - bu, termodinamikte denge durumunu değerlendirmeye yarayan başka bir büyük bilim adamı Max Planck'ın formülünde kullanılır.

S = k * ln (Ω), burada

  • S – termodinamik özellik.
  • k – Boltzmann sabiti.
  • Ω farklı durumların istatistiksel ağırlığıdır.

Kimya

Kimyada logaritma oranını içeren formüllerin kullanılması daha az belirgindir. Sadece iki örnek verelim:

  • Nernst denklemi, maddelerin aktivitesine ve denge sabitine bağlı olarak ortamın redoks potansiyelinin durumu.
  • Otoliz indeksi ve çözeltinin asitliği gibi sabitlerin hesaplanması da fonksiyonumuz olmadan yapılamaz.

Psikoloji ve biyoloji

Ve psikolojinin bununla ne ilgisi olduğu hiç de açık değil. Duyusal gücün bu fonksiyonla çok iyi tanımlandığı ortaya çıktı: ters ilişki uyaran yoğunluk değerlerini daha düşük yoğunluk değerine getirir.

Yukarıdaki örneklerden sonra logaritma konusunun biyolojide yaygın olarak kullanılması artık şaşırtıcı değil. Logaritmik spirallere karşılık gelen biyolojik formlar hakkında ciltler dolusu yazı yazılabilir.

Diğer alanlar

Öyle görünüyor ki, bu fonksiyonla bağlantısı olmadan dünyanın varlığı imkânsızdır ve o, tüm kanunları yönetmektedir. Özellikle doğa kanunları ile ilgili olduğunda geometrik ilerleme. MatProfi web sitesine dönmeye değer ve aşağıdaki faaliyet alanlarında buna benzer birçok örnek var:

Liste sonsuz olabilir. Bu işlevin temel ilkelerine hakim olduktan sonra sonsuz bilgelik dünyasına dalabilirsiniz.

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bilerek, bileceksiniz ve kesin değer katılımcılar ve Leo Tolstoy'un doğum tarihi.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak doğru olmadığından normal sayılar, burada kurallar var, bunlara ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor - onlar olmadan tek bir ciddi sorun çözülemez. logaritmik problem. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen aklınızda bulundurun: kilit nokta Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller hesaplamanıza yardımcı olacaktır logaritmik ifade tek tek parçaları sayılmasa bile (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra oldukça ortaya çıkıyorlar normal sayılar. Birçoğu bu gerçek üzerine inşa edilmiştir testler. Peki ya kontroller? benzer ifadeler Birleşik Devlet Sınavında tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

sanırım son örnek açıklama gerekli. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller geleneksel olarak nadiren bulunur. sayısal ifadeler. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Artık kurtulalım ondalık logaritma, yeni bir üsse taşınıyor:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Güçleri çarpma kurallarını göz önünde bulundurarak aynı temel, şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa - logaritma sıfıra eşit! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

En yaygın logaritmalardan bazıları, tabanın on, üstel veya ikiye eşit olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve iki tabanının bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya antiderivatif logaritma bağımlılık tarafından belirlenir

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için, sadece birkaç yaygın örnek vereceğim. okul müfredatı ve üniversiteler.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritmanın farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık ifade bir dizi kuralın kullanılması basitleştirilmiştir

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. Giriş seviyesi.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra bilginizi daha az olmayan bir başkası için genişleteceğiz önemli konu- logaritmik eşitsizlikler...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.