Çevrimiçi logaritmalarla ifadeleri basitleştirme. Problem B7 - Logaritmik ve Üstel İfadeleri Dönüştürme


Logaritmaları incelemeye devam ediyoruz. Bu yazıda bunun hakkında konuşacağız logaritmaların hesaplanması, bu işleme denir logaritma. Öncelikle logaritmanın hesaplanmasını tanım gereği anlayacağız. Daha sonra logaritma değerlerinin özellikleri kullanılarak nasıl bulunduğuna bakalım. Bundan sonra diğer logaritmaların başlangıçta belirtilen değerleri üzerinden logaritma hesaplamaya odaklanacağız. Son olarak logaritma tablolarının nasıl kullanılacağını öğrenelim. Teorinin tamamı ayrıntılı çözümlere sahip örneklerle sağlanmaktadır.

Sayfada gezinme.

Tanıma göre logaritmaları hesaplama

En basit durumlarda oldukça hızlı ve kolay bir şekilde gerçekleştirmek mümkündür tanım gereği logaritmayı bulma. Bu sürecin nasıl gerçekleştiğine daha yakından bakalım.

Bunun özü, b sayısını a c biçiminde temsil etmektir; buradan logaritmanın tanımına göre c sayısı logaritmanın değeridir. Yani, tanım gereği aşağıdaki eşitlik zinciri logaritmanın bulunmasına karşılık gelir: log a b=log a a c =c.

Dolayısıyla, tanım gereği bir logaritmanın hesaplanması, a c = b olacak şekilde bir c sayısının bulunmasına gelir ve c sayısının kendisi logaritmanın istenen değeridir.

Önceki paragraflardaki bilgileri dikkate alarak, logaritma işaretinin altındaki sayı, logaritma tabanının belirli bir kuvveti ile verildiğinde, logaritmanın neye eşit olduğunu hemen belirtebilirsiniz - üsse eşittir. Çözümleri örneklerle gösterelim.

Örnek.

Log 2 2 −3'ü bulun ve e 5,3 sayısının doğal logaritmasını da hesaplayın.

Çözüm.

Logaritmanın tanımı hemen log 2 2 −3 =−3 olduğunu söylememizi sağlar. Aslında logaritma işaretinin altındaki sayı 2 tabanının -3 üssüne eşittir.

Benzer şekilde ikinci logaritmayı da buluyoruz: lne 5,3 =5,3.

Cevap:

log 2 2 −3 =−3 ve lne 5,3 =5,3.

Logaritma işaretinin altındaki b sayısı, logaritmanın tabanının kuvveti olarak belirtilmemişse, b sayısının a c biçiminde bir temsilini bulmanın mümkün olup olmadığını dikkatlice incelemeniz gerekir. Çoğu zaman bu temsil oldukça açıktır, özellikle logaritma işaretinin altındaki sayı 1, 2 veya 3'ün üssüne eşit olduğunda...

Örnek.

Logaritma log 5 25 ve'yi hesaplayın.

Çözüm.

25=5 2 olduğunu görmek kolaydır, bu ilk logaritmayı hesaplamanıza olanak tanır: log 5 25=log 5 5 2 =2.

İkinci logaritmayı hesaplamaya geçelim. Sayı 7'nin kuvvetleri olarak temsil edilebilir: (gerekirse bakın). Buradan, .

Üçüncü logaritmayı aşağıdaki formda yeniden yazalım. Artık bunu görebilirsin bundan şu sonuca varıyoruz . Bu nedenle logaritmanın tanımı gereği .

Kısaca çözüm şu şekilde yazılabilir: .

Cevap:

günlük 5 25=2 , Ve .

Logaritma işaretinin altında yeterince büyük bir doğal sayı olduğunda, bunu asal çarpanlara ayırmanın zararı olmaz. Çoğu zaman böyle bir sayıyı logaritmanın tabanının bir kuvveti olarak temsil etmeye ve dolayısıyla bu logaritmayı tanım gereği hesaplamaya yardımcı olur.

Örnek.

Logaritmanın değerini bulun.

Çözüm.

Logaritmanın bazı özellikleri, logaritmanın değerini hemen belirtmenize olanak tanır. Bu özellikler, birin logaritması özelliğini ve tabana eşit bir sayının logaritması özelliğini içerir: log 1 1=log a a 0 =0 ve log a a=log a 1 =1. Yani, logaritmanın işareti altında 1 sayısı veya logaritmanın tabanına eşit bir sayı olduğunda, bu durumlarda logaritmalar sırasıyla 0 ve 1'e eşittir.

Örnek.

Logaritmalar ve log10 neye eşittir?

Çözüm.

O zamandan beri logaritmanın tanımından şu çıkıyor .

İkinci örnekte logaritma işaretinin altındaki 10 sayısı tabanına denk geliyor yani on'un ondalık logaritması bire eşit yani lg10=lg10 1 =1.

Cevap:

VE lg10=1 .

Tanım gereği logaritmanın hesaplanmasının (önceki paragrafta tartıştığımız), logaritmanın özelliklerinden biri olan log a a p =p eşitliğinin kullanımını ima ettiğine dikkat edin.

Pratikte logaritmanın işareti altındaki bir sayı ve logaritmanın tabanı belirli bir sayının kuvveti olarak kolaylıkla temsil edildiğinde formülü kullanmak çok uygundur. logaritmanın özelliklerinden birine karşılık gelir. Bu formülün kullanımını gösteren logaritmayı bulma örneğini ele alalım.

Örnek.

Logaritmayı hesaplayın.

Çözüm.

Cevap:

.

Logaritmanın yukarıda belirtilmeyen özellikleri de hesaplamalarda kullanılır ancak bundan sonraki paragraflarda bahsedeceğiz.

Bilinen diğer logaritmalar aracılığıyla logaritma bulma

Bu paragraftaki bilgiler logaritmanın özelliklerinin hesaplanmasında kullanılması konusunun devamıdır. Ancak buradaki temel fark, logaritmanın özelliklerinin, orijinal logaritmayı değeri bilinen başka bir logaritmaya göre ifade etmek için kullanılmasıdır. Açıklığa kavuşturmak için bir örnek verelim. Diyelim ki log 2 3≈1,584963'ü bildiğimizi varsayalım, o zaman logaritmanın özelliklerini kullanarak küçük bir dönüşüm yaparak örneğin log 2 6'yı bulabiliriz: günlük 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Yukarıdaki örnekte bir çarpımın logaritması özelliğini kullanmamız yeterliydi. Bununla birlikte, orijinal logaritmayı verilenler aracılığıyla hesaplamak için çok daha sık olarak logaritmanın özelliklerinin daha geniş bir cephaneliğini kullanmak gerekir.

Örnek.

Log 60 2=a ve log 60 5=b olduğunu biliyorsanız, 27'nin 60 tabanına göre logaritmasını hesaplayın.

Çözüm.

Bu yüzden log 60 27'yi bulmamız gerekiyor. 27 = 3 3 olduğunu ve kuvvetin logaritmasının özelliği nedeniyle orijinal logaritmanın 3·log 60 3 olarak yeniden yazılabileceğini görmek kolaydır.

Şimdi log 60 3'ün bilinen logaritmalarla nasıl ifade edileceğini görelim. Tabana eşit bir sayının logaritması özelliği, log 60 60=1 eşitliğini yazmamızı sağlar. Öte yandan, log 60 60=log60(2 2 3 5)= günlük 60 2 2 +günlük 60 3+günlük 60 5= 2·log 60 2+log 60 3+log 60 5 . Böylece, 2 log 60 2+log 60 3+log 60 5=1. Buradan, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Son olarak orijinal logaritmayı hesaplıyoruz: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Cevap:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Ayrı olarak, formun logaritmasının yeni bir tabanına geçiş formülünün anlamından bahsetmeye değer. . Herhangi bir tabanlı logaritmalardan, değerleri bilinen veya bulunması mümkün olan belirli bir tabanlı logaritmalara geçmenizi sağlar. Genellikle, orijinal logaritmadan, geçiş formülünü kullanarak, 2, e veya 10 tabanlarından birinde logaritmalara geçerler, çünkü bu tabanlar için değerlerinin belirli bir dereceyle hesaplanmasına izin veren logaritma tabloları vardır. kesinlik. Bir sonraki paragrafta bunun nasıl yapıldığını göstereceğiz.

Logaritma tabloları ve kullanımları

Logaritma değerlerinin yaklaşık hesaplanması için kullanılabilir logaritma tabloları. En sık kullanılan 2 tabanlı logaritma tablosu, doğal logaritma tablosu ve ondalık logaritma tablosu. Ondalık sayı sisteminde çalışırken, on tabanına dayalı bir logaritma tablosu kullanmak uygundur. Onun yardımıyla logaritmanın değerlerini bulmayı öğreneceğiz.










Sunulan tablo, 1.000'den 9.999'a kadar (üç ondalık basamakla) sayıların ondalık logaritmasının değerlerini on binde bir doğrulukla bulmanızı sağlar. Belirli bir örnek kullanarak bir ondalık logaritma tablosu kullanarak bir logaritmanın değerini bulma ilkesini analiz edeceğiz - bu şekilde daha açıktır. Log1.256'yı bulalım.

Ondalık logaritma tablosunun sol sütununda 1,256 sayısının ilk iki rakamını buluyoruz, yani 1,2'yi buluyoruz (bu sayı netlik açısından mavi daire içine alınmıştır). 1.256 sayısının üçüncü rakamı (5 rakamı) çift satırın solundaki ilk veya son satırda bulunur (bu rakam kırmızı daire içine alınmıştır). Orijinal sayı olan 1.256'nın dördüncü rakamı (6 rakamı), çift satırın sağındaki ilk veya son satırda bulunur (bu sayı yeşil çizgiyle daire içine alınmıştır). Şimdi logaritma tablosunun hücrelerinde işaretli satır ve işaretli sütunların kesişimindeki sayıları buluyoruz (bu sayılar turuncu renkle vurgulanmıştır). İşaretlenen sayıların toplamı, dördüncü ondalık basamağa kadar doğru olan ondalık logaritmanın istenen değerini verir; log1,236≈0,0969+0,0021=0,0990.

Yukarıdaki tabloyu kullanarak, ondalık noktadan sonra üç basamaktan fazla olan sayıların yanı sıra 1 ile 9,999 aralığının ötesine geçen sayıların ondalık logaritma değerlerini bulmak mümkün müdür? Evet yapabilirsin. Bunun nasıl yapıldığını bir örnekle gösterelim.

lg102.76332'yi hesaplayalım. Öncelikle yazmanız gerekiyor standart formdaki sayı: 102,76332=1,0276332·10 2. Bundan sonra mantis üçüncü ondalık basamağa yuvarlanmalıdır. 1,0276332 10 2 ≈1,028 10 2 orijinal ondalık logaritması yaklaşık olarak ortaya çıkan sayının logaritmasına eşitken, yani log102.76332≈lg1.028·10 2 alıyoruz. Şimdi logaritmanın özelliklerini uyguluyoruz: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Son olarak, lg1.028 logaritmasının değerini ondalık logaritmalar tablosundan lg1.028≈0.0086+0.0034=0.012 buluyoruz. Sonuç olarak, logaritmayı hesaplama sürecinin tamamı şöyle görünür: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

Sonuç olarak, ondalık logaritma tablosunu kullanarak herhangi bir logaritmanın yaklaşık değerini hesaplayabileceğinizi belirtmekte fayda var. Bunu yapmak için geçiş formülünü kullanarak ondalık logaritmalara gitmeniz, değerlerini tabloda bulmanız ve kalan hesaplamaları yapmanız yeterlidir.

Örneğin log 2 3'ü hesaplayalım. Logaritmanın yeni tabanına geçiş formülüne göre elimizde . Ondalık logaritma tablosundan log3≈0,4771 ve log2≈0,3010'u buluyoruz. Böylece, .

Referanslar.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. ve diğerleri. Cebir ve analizin başlangıcı: Genel eğitim kurumlarının 10 - 11. sınıfları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).

Bugün bunun hakkında konuşacağız logaritmik formüller ve gösterge niteliğinde vereceğiz çözüm örnekleri.

Logaritmanın temel özelliklerine göre çözüm modellerini kendileri ima ederler. Logaritma formüllerini çözüme uygulamadan önce size tüm özellikleri hatırlatalım:

Şimdi bu formüllere (özelliklere) dayanarak şunu göstereceğiz: logaritma çözme örnekleri.

Formüllere dayalı logaritma çözme örnekleri.

Logaritma a tabanındaki pozitif bir b sayısı (log a b ile gösterilir), b > 0, a > 0 ve 1 olmak üzere b'yi elde etmek için a'nın yükseltilmesi gereken bir üstür.

Tanıma göre log a b = x, bu da a x = b'ye eşdeğerdir, dolayısıyla log a a x = x.

Logaritmalar, örnekler:

log 2 8 = 3, çünkü 2 3 = 8

log 7 49 = 2, çünkü 7 2 = 49

log 5 1/5 = -1, çünkü 5 -1 = 1/5

Ondalık logaritma- bu, tabanı 10 olan sıradan bir logaritmadır. lg olarak gösterilir.

log 10 100 = 2, çünkü 10 2 = 100

Doğal logaritma- aynı zamanda sıradan bir logaritma, bir logaritma, ancak e tabanıyla (e = 2,71828... - irrasyonel bir sayı). ln olarak gösterilir.

Logaritmanın formüllerini veya özelliklerini ezberlemeniz tavsiye edilir, çünkü daha sonra logaritmaları, logaritmik denklemleri ve eşitsizlikleri çözerken bunlara ihtiyacımız olacak. Örneklerle her formülü tekrar inceleyelim.

  • Temel logaritmik kimlik
    a günlüğü a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ürünün logaritması logaritmaların toplamına eşittir
    log a (bc) = log a b + log a c

    günlük 3 8,1 + günlük 3 10 = günlük 3 (8,1*10) = günlük 3 81 = 4

  • Bölümün logaritması logaritmaların farkına eşittir
    log a (b/c) = log a b - log a c

    9 günlük 5 50 /9 günlük 5 2 = 9 günlük 5 50- günlük 5 2 = 9 günlük 5 25 = 9 2 = 81

  • Logaritmik bir sayının kuvvetinin ve logaritmanın tabanının özellikleri

    Logaritmik sayının üssü log a b m = mlog a b

    Logaritmanın tabanının üssü log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    eğer m = n ise log a n b n = log a b elde ederiz

    günlük 4 9 = günlük 2 2 3 2 = günlük 2 3

  • Yeni bir temele geçiş
    log a b = log c b/log c a,

    c = b ise log b b = 1 elde ederiz

    o zaman log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Gördüğünüz gibi logaritma formülleri göründüğü kadar karmaşık değil. Artık logaritmik çözüm örneklerine baktıktan sonra logaritmik denklemlere geçebiliriz. Logaritmik denklemleri çözme örneklerine şu makalede daha ayrıntılı olarak bakacağız: "". Kaçırmayın!

Çözümle ilgili hala sorularınız varsa, bunları makalenin yorumlarına yazın.

Not: Seçenek olarak farklı bir sınıf eğitim almaya ve yurt dışında okumaya karar verdik.

İlkel düzey cebirin unsurlarından biri logaritmadır. İsmi Yunanca “sayı” veya “kuvvet” kelimesinden gelir ve son sayıyı bulmak için tabandaki sayının yükseltilmesi gereken kuvvet anlamına gelir.

Logaritma türleri

  • log a b – b sayısının a tabanına göre logaritması (a > 0, a ≠ 1, b > 0);
  • log b – ondalık logaritma (10 tabanına göre logaritma, a = 10);
  • ln b – doğal logaritma (e tabanına göre logaritma, a = e).

Logaritmalar nasıl çözülür?

B'nin a tabanına göre logaritması, b'nin a tabanına yükseltilmesini gerektiren bir üstür. Elde edilen sonuç şu şekilde telaffuz edilir: "b'nin a tabanına göre logaritması." Logaritmik problemlerin çözümü, sayıların verilen kuvvetini belirtilen sayılardan belirlemeniz gerektiğidir. Logaritmayı belirlemek veya çözmek ve gösterimin kendisini dönüştürmek için bazı temel kurallar vardır. Bunları kullanarak logaritmik denklemler çözülür, türevler bulunur, integraller çözülür ve diğer birçok işlem gerçekleştirilir. Temel olarak logaritmanın çözümü onun basitleştirilmiş gösterimidir. Aşağıda temel formüller ve özellikler verilmiştir:

Herhangi bir a için; a > 0; a ≠ 1 ve herhangi bir x için; y > 0.

  • a log a b = b – temel logaritmik özdeşlik
  • 1 = 0'ı günlüğe kaydet
  • log a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x , k ≠ 0 için
  • log a x = log a c x c
  • log a x = log b x/ log b a – yeni bir tabana geçme formülü
  • log a x = 1/log x a


Logaritmalar nasıl çözülür - çözmek için adım adım talimatlar

  • İlk önce gerekli denklemi yazın.

Lütfen unutmayın: Taban logaritması 10 ise, giriş kısaltılır ve ondalık logaritma elde edilir. Doğal bir e sayısı varsa, onu doğal logaritmaya indirgeyerek yazarız. Bu, tüm logaritmaların sonucunun, b sayısını elde etmek için temel sayının yükseltildiği kuvvet olduğu anlamına gelir.


Çözüm doğrudan bu derecenin hesaplanmasında yatmaktadır. Bir ifadeyi logaritmayla çözmeden önce kurala göre yani formüller kullanılarak sadeleştirilmesi gerekir. Yazıda biraz geriye giderek ana kimlikleri bulabilirsiniz.

İki farklı sayıya ancak aynı tabanlara sahip logaritmalar eklenirken ve çıkarılırken, sırasıyla b ve c sayılarının çarpımı veya bölümü olan bir logaritma ile değiştirin. Bu durumda başka bir üsse geçme formülünü uygulayabilirsiniz (yukarıya bakın).

Logaritmayı basitleştirmek için ifadeler kullanırsanız dikkate alınması gereken bazı sınırlamalar vardır. Ve bu da şudur: a logaritmasının tabanı yalnızca pozitif bir sayıdır, ancak bire eşit değildir. a gibi b sayısı da sıfırdan büyük olmalıdır.

Bir ifadeyi basitleştirerek logaritmayı sayısal olarak hesaplayamayacağınız durumlar vardır. Böyle bir ifadenin mantıklı olmadığı görülür çünkü kuvvetlerin çoğu irrasyonel sayılardır. Bu durumda sayının kuvvetini logaritma olarak bırakın.



Talimatlar

Verilen logaritmik ifadeyi yazınız. İfade 10'un logaritmasını kullanıyorsa gösterimi kısaltılır ve şu şekilde görünür: lg b ondalık logaritmadır. Logaritmanın temelinde e sayısı varsa, şu ifadeyi yazın: ln b – doğal logaritma. Herhangi birinin sonucunun, b sayısını elde etmek için temel sayının yükseltilmesi gereken kuvvet olduğu anlaşılmaktadır.

İki fonksiyonun toplamını bulurken, tek tek türevlerini alıp sonuçları eklemeniz yeterlidir: (u+v)" = u"+v";

İki fonksiyonun çarpımının türevini bulurken, birinci fonksiyonun türevini ikinciyle çarpmak ve ikinci fonksiyonun türevinin birinci fonksiyonla çarpımını eklemek gerekir: (u*v)" = u"*v +v"*u;

İki fonksiyonun bölümünün türevini bulmak için, bölen fonksiyonu ile bölünen türevinin çarpımından bölen türevinin çarpımı ile bölünen fonksiyonun çarpımını çıkarmak ve bölmek gerekir. tüm bunlar bölen fonksiyonunun karesine göre. (u/v)" = (u"*v-v"*u)/v^2;

Karmaşık bir fonksiyon verilirse, iç fonksiyonun türevi ile dış fonksiyonun türevinin çarpılması gerekir. y=u(v(x)) olsun, sonra y"(x)=y"(u)*v"(x) olsun.

Yukarıda elde edilen sonuçları kullanarak hemen hemen her işlevi ayırt edebilirsiniz. O halde birkaç örneğe bakalım:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *X));
Bir noktadaki türevin hesaplanmasıyla ilgili problemler de vardır. y=e^(x^2+6x+5) fonksiyonu verilsin, x=1 noktasında fonksiyonun değerini bulmanız gerekiyor.
1) Fonksiyonun türevini bulun: y"=e^(x^2-6x+5)*(2*x +6).

2) Belirli bir y"(1)=8*e^0=8 noktasında fonksiyonun değerini hesaplayın

Konuyla ilgili video

Faydalı tavsiyeler

Temel türevler tablosunu öğrenin. Bu önemli ölçüde zaman kazandıracaktır.

Kaynaklar:

  • bir sabitin türevi

Peki irrasyonel bir denklem ile rasyonel bir denklem arasındaki fark nedir? Bilinmeyen değişken karekök işaretinin altındaysa denklemin irrasyonel olduğu kabul edilir.

Talimatlar

Bu tür denklemleri çözmenin ana yöntemi her iki tarafı da oluşturma yöntemidir. denklemler bir kareye. Fakat. bu doğaldır, yapmanız gereken ilk şey tabeladan kurtulmaktır. Bu yöntem teknik olarak zor değildir ancak bazen sıkıntılara yol açabilmektedir. Örneğin denklem v(2x-5)=v(4x-7) şeklindedir. Her iki tarafın karesini alarak 2x-5=4x-7 elde edersiniz. Böyle bir denklemi çözmek zor değil; x=1. Ama 1 rakamı verilmeyecek denklemler. Neden? Denklemde x'in değeri yerine bir koyarsak sağ ve sol taraflarda anlamsız ifadeler yer alır. Bu değer karekök için geçerli değildir. Bu nedenle 1 yabancı bir köktür ve bu nedenle bu denklemin kökleri yoktur.

Yani irrasyonel bir denklem her iki tarafının karesi alma yöntemi kullanılarak çözülür. Denklemi çözdükten sonra yabancı kökleri kesmek gerekir. Bunu yapmak için bulunan kökleri orijinal denklemde değiştirin.

Başka bir tane düşünün.
2х+vх-3=0
Elbette bu denklem bir önceki denklemin aynısı kullanılarak çözülebilir. Bileşikleri Taşı denklemler Karekökü olmayan , sağ tarafa ve ardından kare alma yöntemini kullanın. Ortaya çıkan rasyonel denklemi ve köklerini çözer. Ama aynı zamanda daha zarif bir tane daha. Yeni bir değişken girin; vх=y. Buna göre 2y2+y-3=0 formunda bir denklem elde edeceksiniz. Yani sıradan bir ikinci dereceden denklem. Köklerini bulun; y1=1 ve y2=-3/2. Sonra iki tanesini çöz denklemler vх=1; vх=-3/2. İkinci denklemin kökleri yoktur; birinciden x=1 olduğunu buluruz. Kökleri kontrol etmeyi unutmayın.

Kimlikleri çözmek oldukça basittir. Bunu yapmak için, belirlenen hedefe ulaşılıncaya kadar aynı dönüşümlerin gerçekleştirilmesi gerekir. Böylece basit aritmetik işlemler yardımıyla ortaya çıkan problem çözülecektir.

İhtiyacın olacak

  • - kağıt;
  • - dolma kalem.

Talimatlar

Bu tür dönüşümlerin en basiti cebirsel kısaltılmış çarpmalardır (toplamın karesi (fark), kareler farkı, toplam (fark), toplamın küpü (fark) gibi). Ayrıca aslında aynı özdeşliğe sahip birçok trigonometrik formül vardır.

Nitekim iki terimin toplamının karesi, birincinin karesi artı birincinin ikinciyle çarpımının iki katı ve artı ikincinin karesine eşittir, yani (a+b)^2= (a+) b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Her ikisini de basitleştirin

Çözümün genel ilkeleri

Belirli bir integralin ne olduğunu matematiksel analiz veya yüksek matematikle ilgili bir ders kitabından tekrarlayın. Bilindiği gibi belirli bir integralin çözümü, türevi bir integral verecek olan bir fonksiyondur. Bu fonksiyona antiderivatif denir. Bu prensibe dayanarak ana integraller inşa edilir.
Bu durumda tablo integrallerinden hangisinin uygun olduğunu integralin türüne göre belirleyin. Bunu hemen belirlemek her zaman mümkün olmuyor. Çoğu zaman tablo biçimi ancak integrandın basitleştirilmesi için yapılan birkaç dönüşümden sonra fark edilebilir hale gelir.

Değişken Değiştirme Yöntemi

İntegral, argümanı bir polinom olan trigonometrik bir fonksiyonsa, değişkenlerin değişimi yöntemini kullanmayı deneyin. Bunu yapmak için integralin argümanındaki polinomu yeni bir değişkenle değiştirin. Yeni ve eski değişkenler arasındaki ilişkiye dayanarak entegrasyonun yeni sınırlarını belirleyin. Bu ifadenin türevini alarak yeni diferansiyeli bulun. Böylece, önceki integralin yeni bir formunu elde edeceksiniz, tablo halindeki bir integrale yakın veya hatta ona karşılık gelecek.

İkinci Tür İntegrallerin Çözülmesi

İntegral ikinci türden bir integral ise, integralin vektör biçimi ise, o zaman bu integrallerden skaler olanlara geçiş için kuralları kullanmanız gerekecektir. Böyle bir kural Ostrogradsky-Gauss ilişkisidir. Bu yasa, belirli bir vektör fonksiyonunun rotor akısından, belirli bir vektör alanının diverjansı üzerinden üçlü integrale geçmemize izin verir.

Entegrasyon sınırlarının değiştirilmesi

Antiderivatifi bulduktan sonra integralin limitlerini yerine koymak gerekir. İlk olarak, üst limitin değerini ters türev ifadesinde değiştirin. Bir numara alacaksınız. Daha sonra, elde edilen sayıdan alt limitten elde edilen başka bir sayıyı antiderivatife çıkarın. İntegralin limitlerinden biri sonsuzluk ise, bunu antiderivatif fonksiyona yerleştirirken limite gitmek ve ifadenin neye yöneldiğini bulmak gerekir.
İntegral iki boyutlu veya üç boyutlu ise, integralin nasıl değerlendirileceğini anlamak için integralin sınırlarını geometrik olarak temsil etmeniz gerekecektir. Aslında, örneğin üç boyutlu bir integral durumunda, integralin sınırları, entegre edilen hacmi sınırlayan tüm düzlemler olabilir.

Bu videoyla logaritmik denklemlerle ilgili uzun bir ders serisine başlıyorum. Artık en basit problemleri çözmeyi öğreneceğimiz üç örneğiniz var; bunlara - tek hücreli hayvan.

log 0,5 (3x − 1) = −3

günlük (x + 3) = 3 + 2 günlük 5

En basit logaritmik denklemin şu olduğunu hatırlatayım:

log a f(x) = b

Bu durumda x değişkeninin yalnızca argümanın içinde, yani yalnızca f(x) fonksiyonunda mevcut olması önemlidir. Ve a ve b sayıları yalnızca sayılardır ve hiçbir durumda x değişkenini içeren işlevler değildir.

Temel çözüm yöntemleri

Bu tür yapıları çözmenin birçok yolu vardır. Örneğin, okuldaki çoğu öğretmen şu yöntemi sunmaktadır: Aşağıdaki formülü kullanarak f(x) fonksiyonunu hemen ifade edin. F ( x) = bir b. Yani en basit yapıyla karşılaştığınızda ek işlemlere ve yapılara gerek kalmadan hemen çözüme geçebilirsiniz.

Evet elbette karar doğru olacaktır. Ancak bu formülle ilgili sorun çoğu öğrencinin anlamıyorum, nereden geliyor ve neden a harfini b harfine yükseltiyoruz?

Sonuç olarak, örneğin bu harflerin yerini değiştirirken sıklıkla çok can sıkıcı hatalar görüyorum. Bu formül ya anlaşılmalı ya da sıkıştırılmalıdır ve ikinci yöntem en uygunsuz ve en önemli anlarda hatalara yol açar: sınavlar, testler vb.

Bu nedenle tüm öğrencilerime standart okul formülünden vazgeçmelerini ve logaritmik denklemleri çözmek için muhtemelen isminden de tahmin edebileceğiniz gibi ikinci yaklaşımı kullanmalarını öneriyorum. kanonik form.

Kanonik formun fikri basittir. Sorunumuza tekrar bakalım: solda log a var ve a harfiyle bir sayıyı kastediyoruz ve hiçbir durumda x değişkenini içeren bir fonksiyon değil. Sonuç olarak, bu harf logaritmanın tabanına uygulanan tüm kısıtlamalara tabidir. yani:

1 ≠ a > 0

Öte yandan, aynı denklemden logaritmanın b sayısına eşit olması gerektiğini ve bu harfe herhangi bir kısıtlama getirilmediğini görüyoruz çünkü hem pozitif hem de negatif herhangi bir değeri alabilir. Her şey f(x) fonksiyonunun hangi değerleri aldığına bağlıdır.

Ve burada, herhangi bir b sayısının a tabanının a üssü b'nin logaritması olarak temsil edilebileceğine dair harika kuralımızı hatırlıyoruz:

b = log a a b

Bu formülü nasıl hatırlayacağız? Evet, çok basit. Aşağıdaki yapıyı yazalım:

b = b 1 = b log a a

Elbette bu durumda başlangıçta yazdığımız tüm kısıtlamalar ortaya çıkıyor. Şimdi logaritmanın temel özelliğini kullanalım ve b çarpanını a'nın kuvveti olarak tanıtalım. Şunu elde ederiz:

b = b 1 = b log a a = log a a b

Sonuç olarak orijinal denklem şu şekilde yeniden yazılacaktır:

log a f (x) = log a a b → f (x) = a b

İşte bu. Yeni fonksiyon artık logaritma içermiyor ve standart cebirsel teknikler kullanılarak çözülebiliyor.

Elbette birileri şimdi itiraz edecek: Neden bir tür kanonik formül bulmak gerekliydi, orijinal tasarımdan son formüle hemen geçmek mümkünse neden iki gereksiz adım daha uygulayalım? Evet, çoğu öğrencinin bu formülün nereden geldiğini anlamaması ve sonuç olarak onu uygularken düzenli olarak hata yapması nedeniyle.

Ancak üç adımdan oluşan bu eylem dizisi, son formülün nereden geldiğini anlamasanız bile orijinal logaritmik denklemi çözmenize olanak tanır. Bu arada, bu girdiye kanonik formül denir:

log a f (x) = log a a b

Kanonik formun rahatlığı aynı zamanda sadece bugün düşündüğümüz en basit olanları değil, çok geniş bir logaritmik denklem sınıfını çözmek için kullanılabilmesi gerçeğinde de yatmaktadır.

Çözüm örnekleri

Şimdi gerçek örneklere bakalım. Öyleyse karar verelim:

log 0,5 (3x − 1) = −3

Bunu şu şekilde yeniden yazalım:

log 0,5 (3x − 1) = log 0,5 0,5 −3

Pek çok öğrencinin acelesi var ve hemen 0,5 sayısını asıl problemden bize gelen kuvvete yükseltmeye çalışıyor. Aslında, bu tür sorunları çözme konusunda zaten iyi eğitimli olduğunuzda, bu adımı hemen gerçekleştirebilirsiniz.

Ancak şimdi bu konuyu incelemeye yeni başlıyorsanız, saldırgan hatalar yapmaktan kaçınmak için hiçbir yere acele etmemek daha iyidir. Yani kanonik formumuz var. Sahibiz:

3x − 1 = 0,5 −3

Bu artık logaritmik bir denklem değil, x değişkenine göre doğrusaldır. Bunu çözmek için önce 0,5 üssü −3 sayısına bakalım. 0,5'in 1/2 olduğunu unutmayın.

(1/2) −3 = (2/1) 3 = 8

Logaritmik bir denklemi çözerken tüm ondalık kesirleri ortak kesirlere dönüştürün.

Yeniden yazıyoruz ve şunu elde ediyoruz:

3x - 1 = 8
3x = 9
x = 3

İşte bu, cevabı aldık. İlk sorun çözüldü.

İkinci görev

Gelelim ikinci göreve:

Gördüğümüz gibi, bu denklem artık en basiti değil. Sırf solda bir fark olduğu ve bir tabana göre tek bir logaritma olmadığı için.

Dolayısıyla bir şekilde bu farktan kurtulmamız gerekiyor. Bu durumda her şey çok basittir. Tabanlara daha yakından bakalım: solda kökün altındaki sayı var:

Genel öneri: tüm logaritmik denklemlerde radikallerden kurtulmaya çalışın, yani kökleri olan girişlerden ve kuvvet fonksiyonlarına geçin, çünkü bu kuvvetlerin üsleri kolayca logaritmanın işaretinden çıkarılır ve sonuçta böyle olur. bir giriş, hesaplamaları önemli ölçüde basitleştirir ve hızlandırır. Bunu şu şekilde yazalım:

Şimdi logaritmanın dikkate değer özelliğini hatırlayalım: kuvvetler tabandan olduğu gibi argümandan da elde edilebilir. Gerekçe durumunda aşağıdakiler gerçekleşir:

log a k b = 1/k loga b

Yani temel kuvvette olan sayı öne çıkarılır ve aynı zamanda tersine çevrilir, yani karşılıklı sayı haline gelir. Bizim olgumuzda taban derecesi 1/2 idi. Bu nedenle 2/1 olarak çıkarabiliriz. Şunu elde ederiz:

5 2 log 5 x − log 5 x = 18
10 günlük 5 x − günlük 5 x = 18

Lütfen dikkat: Bu adımda hiçbir durumda logaritmalardan kurtulmamalısınız. 4.-5. sınıf matematiğini ve işlem sırasını hatırlayın: önce çarpma yapılır, ancak daha sonra toplama ve çıkarma yapılır. Bu durumda 10 elementten aynı elementlerden birini çıkarıyoruz:

9 log 5 x = 18
günlük 5 x = 2

Artık denklemimiz olması gerektiği gibi görünüyor. Bu en basit yapıdır ve bunu kanonik formu kullanarak çözüyoruz:

günlük 5 x = günlük 5 5 2
x = 5 2
x = 25

İşte bu. İkinci sorun çözüldü.

Üçüncü örnek

Gelelim üçüncü göreve:

günlük (x + 3) = 3 + 2 günlük 5

Size şu formülü hatırlatayım:

günlük b = günlük 10 b

Herhangi bir nedenle log b notasyonuyla kafanız karıştıysa, tüm hesaplamaları yaparken log 10 b yazabilirsiniz. Ondalık logaritmalarla diğerleriyle aynı şekilde çalışabilirsiniz: kuvvetleri alın, herhangi bir sayıyı ekleyin ve lg 10 biçiminde temsil edin.

Dersimizin en başında yazdığımız en basit özellik olmadığından, şimdi sorunu çözmek için kullanacağımız bu özelliklerdir.

İlk olarak, lg 5'in önündeki faktör 2'nin tanıtılabileceğine ve 5 tabanındaki bir kuvvet haline gelebileceğine dikkat edin. Ek olarak, serbest terim 3 de logaritma olarak temsil edilebilir - bunu notasyonumuzdan gözlemlemek çok kolaydır.

Kendiniz karar verin: herhangi bir sayı, 10 tabanına göre log olarak temsil edilebilir:

3 = günlük 10 10 3 = günlük 10 3

Elde edilen değişiklikleri dikkate alarak orijinal problemi yeniden yazalım:

log (x − 3) = log 1000 + log 25
log (x − 3) = log 1000 25
günlük (x - 3) = günlük 25.000

Önümüzde yine kanonik form var ve bunu dönüşüm aşamasından geçmeden elde ettik, yani. en basit logaritmik denklem hiçbir yerde görünmedi.

Dersin başında bahsettiğim şey tam olarak buydu. Kanonik form, çoğu okul öğretmeninin verdiği standart okul formülünden daha geniş bir problem sınıfını çözmenize olanak tanır.

İşte bu kadar, ondalık logaritmanın işaretinden kurtuluyoruz ve basit bir doğrusal yapı elde ediyoruz:

x + 3 = 25.000
x = 24,997

Tüm! Sorun çözüldü.

Kapsamla ilgili bir not

Burada tanımın kapsamına ilişkin önemli bir açıklama yapmak istiyorum. Artık mutlaka şöyle diyecek öğrenci ve öğretmenler olacaktır: “Logaritmalı ifadeleri çözerken f(x) argümanının sıfırdan büyük olması gerektiğini unutmamalıyız!” Bu bağlamda mantıksal bir soru ortaya çıkıyor: Ele alınan sorunların hiçbirinde neden bu eşitsizliğin giderilmesini talep etmedik?

Merak etme. Bu durumlarda fazladan kök görünmeyecektir. Bu da çözümü hızlandırmanıza olanak tanıyan bir başka harika numaradır. Sadece şunu bilin ki, problemde x değişkeni yalnızca tek bir yerde (veya daha doğrusu, tek bir logaritmanın tek bir argümanında) ortaya çıkıyorsa ve bizim durumumuzda x değişkeni başka hiçbir yerde görünmüyorsa, o zaman tanımın tanım kümesini yazın. gerek yokçünkü otomatik olarak yürütülecektir.

Kendiniz karar verin: ilk denklemde 3x − 1 elde ettik, yani argüman 8'e eşit olmalıdır. Bu otomatik olarak 3x − 1'in sıfırdan büyük olacağı anlamına gelir.

Aynı başarıyla, ikinci durumda x'in 5 2'ye eşit olması gerektiğini, yani kesinlikle sıfırdan büyük olduğunu yazabiliriz. Ve üçüncü durumda, x + 3 = 25.000, yani yine açıkça sıfırdan büyüktür. Başka bir deyişle, kapsam otomatik olarak karşılanır, ancak yalnızca x yalnızca bir logaritmanın argümanında yer alırsa.

En basit sorunları çözmek için bilmeniz gereken tek şey bu. Tek başına bu kural, dönüşüm kurallarıyla birlikte çok geniş bir problem sınıfını çözmenize olanak sağlayacaktır.

Ancak dürüst olalım: Bu tekniği nihayet anlamak için, logaritmik denklemin kanonik formunun nasıl uygulanacağını öğrenmek için sadece bir video dersi izlemek yeterli değildir. Bu nedenle hemen şimdi bu video dersinde yer alan bağımsız çözüm seçeneklerini indirin ve bu iki bağımsız çalışmadan en az birini çözmeye başlayın.

Kelimenin tam anlamıyla birkaç dakikanızı alacak. Ancak böyle bir eğitimin etkisi, bu video dersini izlemiş olmanızdan çok daha yüksek olacaktır.

Umarım bu ders logaritmik denklemleri anlamanıza yardımcı olur. Kanonik formu kullanın, logaritmalarla çalışma kurallarını kullanarak ifadeleri basitleştirin; herhangi bir sorundan korkmayacaksınız. Bugünlük elimde olan tek şey bu.

Tanım alanı dikkate alınarak

Şimdi logaritmik fonksiyonun tanım alanından ve bunun logaritmik denklemlerin çözümünü nasıl etkilediğinden bahsedelim. Formun bir yapısını düşünün

log a f(x) = b

Böyle bir ifadeye en basit denir - yalnızca bir işlev içerir ve a ve b sayıları yalnızca sayılardır ve hiçbir durumda x değişkenine bağlı bir işlev değildir. Çok basit bir şekilde çözülebilir. Sadece formülü kullanmanız gerekir:

b = log a a b

Bu formül logaritmanın temel özelliklerinden biridir ve orijinal ifademizi yerine koyduğumuzda aşağıdakileri elde ederiz:

log a f (x) = log a a b

f(x) = a b

Bu okul ders kitaplarından tanıdık bir formüldür. Pek çok öğrencinin muhtemelen bir sorusu olacaktır: Orijinal ifadede f(x) fonksiyonu log işaretinin altında olduğundan, ona aşağıdaki kısıtlamalar getirilmiştir:

f(x) > 0

Negatif sayıların logaritması mevcut olmadığı için bu sınırlama geçerlidir. Peki belki de bu sınırlamanın bir sonucu olarak cevaplara yönelik bir kontrol getirilmeli? Belki de kaynağa eklenmeleri gerekiyor?

Hayır, en basit logaritmik denklemlerde ek kontrole gerek yoktur. İşte nedeni. Son formülümüze bir göz atın:

f(x) = a b

Gerçek şu ki, a sayısı her durumda 0'dan büyüktür - bu gereklilik aynı zamanda logaritma tarafından da dayatılmaktadır. A sayısı tabandır. Bu durumda b sayısına herhangi bir kısıtlama getirilmemektedir. Ancak bu önemli değil, çünkü pozitif bir sayıyı hangi kuvvete yükseltirsek yükseltelim, çıktıda yine de pozitif bir sayı elde edeceğiz. Böylece f(x) > 0 şartı otomatik olarak karşılanır.

Gerçekten kontrol etmeye değer olan şey, log işaretinin altındaki fonksiyonun etki alanıdır. Oldukça karmaşık yapılar olabilir ve çözüm sürecinde mutlaka bunlara dikkat etmeniz gerekir. Görelim.

İlk görev:

İlk adım: Sağdaki kesri dönüştürün. Şunu elde ederiz:

Logaritma işaretinden kurtuluruz ve olağan irrasyonel denklemi elde ederiz:

Elde edilen köklerden sadece birincisi bize uygundur çünkü ikinci kök sıfırdan küçüktür. Tek cevap 9 rakamı olacaktır. İşte bu, sorun çözüldü. Logaritma işaretinin altındaki ifadenin 0'dan büyük olduğundan emin olmak için ek bir kontrole gerek yoktur çünkü sadece 0'dan büyük değil, denklemin koşuluna göre 2'ye eşittir. Dolayısıyla “sıfırdan büyük” şartı ” otomatik olarak karşılanır.

Gelelim ikinci göreve:

Burada her şey aynı. Üçlüyü değiştirerek yapıyı yeniden yazıyoruz:

Logaritma işaretlerinden kurtuluruz ve irrasyonel bir denklem elde ederiz:

Kısıtlamaları dikkate alarak her iki tarafın karesini alırız ve şunu elde ederiz:

4 − 6x − x 2 = (x − 4) 2

4 − 6x − x 2 = x 2 + 8x + 16

x 2 + 8x + 16 −4 + ​​6x + x 2 = 0

2x2 + 14x + 12 = 0 |:2

x 2 + 7x + 6 = 0

Ortaya çıkan denklemi diskriminant aracılığıyla çözüyoruz:

D = 49 - 24 = 25

x 1 = −1

x 2 = −6

Ancak x = −6 bize uymuyor çünkü bu sayıyı eşitsizliğimizde yerine koyarsak şunu elde ederiz:

−6 + 4 = −2 < 0

Bizim durumumuzda 0'dan büyük veya aşırı durumlarda eşit olması gerekiyor. Fakat x = −1 bize uyar:

−1 + 4 = 3 > 0

Bizim durumumuzda tek cevap x = −1 olacaktır. Çözüm bu. Hesaplamalarımızın en başına dönelim.

Bu dersten çıkan ana sonuç, basit logaritmik denklemlerde bir fonksiyon üzerindeki kısıtlamaları kontrol etmenize gerek olmadığıdır. Çünkü çözüm sürecinde tüm kısıtlar otomatik olarak karşılanır.

Ancak bu hiçbir şekilde kontrol etmeyi tamamen unutabileceğiniz anlamına gelmez. Logaritmik bir denklem üzerinde çalışma sürecinde, bugün iki farklı örnekte gördüğümüz, sağ taraf için kendi kısıtlamaları ve gereksinimleri olan irrasyonel bir denklem haline gelebilir.

Bu tür sorunları çözmekten çekinmeyin ve tartışmanın bir kökü varsa özellikle dikkatli olun.

Farklı tabanlara sahip logaritmik denklemler

Logaritmik denklemleri incelemeye devam ediyoruz ve daha karmaşık yapıları çözmenin moda olduğu iki ilginç tekniğe daha bakıyoruz. Ama önce en basit sorunların nasıl çözüldüğünü hatırlayalım:

log a f(x) = b

Bu girdide a ve b sayılardır ve f(x) fonksiyonunda x değişkeni mevcut olmalıdır ve yalnızca orada, yani x yalnızca argümanda bulunmalıdır. Bu tür logaritmik denklemleri kanonik formu kullanarak dönüştüreceğiz. Bunu yapmak için şunu unutmayın

b = log a a b

Üstelik a b tam olarak bir argümandır. Bu ifadeyi şu şekilde yeniden yazalım:

log a f (x) = log a a b

Bizim de ulaşmaya çalıştığımız şey tam olarak budur, yani a'yı hem sol hem de sağ temel alan bir logaritma vardır. Bu durumda mecazi anlamda log işaretlerinin üzerini çizebiliriz ve matematiksel açıdan argümanları basitçe eşitlediğimizi söyleyebiliriz:

f(x) = a b

Sonuç olarak çözülmesi çok daha kolay olacak yeni bir ifade elde edeceğiz. Bu kuralı bugünkü sorunlarımıza uygulayalım.

Yani ilk tasarım:

Öncelikle sağda paydası log olan bir kesir olduğunu belirteyim. Bunun gibi bir ifade gördüğünüzde logaritmanın harika bir özelliğini hatırlamak iyi bir fikirdir:

Rusçaya çevrildiğinde bu, herhangi bir logaritmanın herhangi bir c tabanına sahip iki logaritmanın bölümü olarak temsil edilebileceği anlamına gelir. tabii ki 0< с ≠ 1.

Yani: bu formülde c değişkeninin değişkene eşit olduğu harika bir özel durum vardır. B. Bu durumda şöyle bir yapı elde ederiz:

Bu tam olarak denklemimizin sağındaki işarette gördüğümüz yapıdır. Bu yapıyı log a b ile değiştirelim, şunu elde ederiz:

Başka bir deyişle, orijinal göreve kıyasla argümanı ve logaritmanın tabanını değiştirdik. Bunun yerine kesri tersine çevirmek zorunda kaldık.

Aşağıdaki kurala göre herhangi bir derecenin tabandan türetilebileceğini hatırlayalım:

Başka bir deyişle bazın kuvveti olan k katsayısı ters kesir olarak ifade edilir. Bunu ters kesir olarak gösterelim:

Kesirli faktör önde bırakılamaz çünkü bu durumda bu gösterimi kanonik formda gösteremeyeceğiz (sonuçta kanonik formda ikinci logaritmadan önce ek bir faktör yoktur). Bu nedenle argümana 1/4 kesirini kuvvet olarak ekleyelim:

Şimdi tabanları aynı olan (ve tabanlarımız gerçekten aynı olan) argümanları eşitliyoruz ve şunu yazıyoruz:

x + 5 = 1

x = −4

İşte bu. İlk logaritmik denklemin cevabını bulduk. Lütfen unutmayın: orijinal problemde, x değişkeni yalnızca bir günlükte görünür ve argümanında görünür. Bu nedenle tanım kümesini kontrol etmeye gerek yoktur ve x = −4 sayımız aslında cevaptır.

Şimdi ikinci ifadeye geçelim:

log 56 = log 2 log 2 7 − 3log (x + 4)

Burada olağan logaritmalara ek olarak log f(x) ile çalışmamız gerekecek. Böyle bir denklem nasıl çözülür? Hazırlıksız bir öğrenciye bu zor bir görev gibi görünebilir, ancak aslında her şey basit bir şekilde çözülebilir.

lg 2 log 2 7 terimine yakından bakın. Bu konuda ne söyleyebiliriz? Log ve lg'nin temelleri ve argümanları aynıdır ve bu bazı fikirler vermelidir. Logaritmanın işaretinin altındaki kuvvetlerin nasıl çıkarıldığını bir kez daha hatırlayalım:

log a b n = nlog a b

Başka bir deyişle, argümanda b'nin kuvveti olan şey log'un önünde bir faktör haline gelir. Bu formülü lg 2 log 2 7 ifadesine uygulayalım. lg 2'den korkmayın - bu en yaygın ifadedir. Aşağıdaki şekilde yeniden yazabilirsiniz:

Herhangi bir logaritmaya uygulanan kuralların tümü onun için de geçerlidir. Özellikle öndeki faktör argümanın derecesine eklenebilir. Bunu yazalım:

Çoğu zaman öğrenciler bu eylemi doğrudan görmezler çünkü bir günlüğe diğerinin işareti altında girmek iyi değildir. Aslında bunda suç teşkil edecek bir durum yok. Üstelik önemli bir kuralı hatırlarsanız hesaplaması kolay bir formül elde ederiz:

Bu formül hem tanım olarak hem de onun özelliklerinden biri olarak düşünülebilir. Her durumda, eğer logaritmik bir denklemi dönüştürüyorsanız, herhangi bir sayının log gösterimini bildiğiniz gibi bu formülü de bilmelisiniz.

Görevimize dönelim. Eşittir işaretinin sağındaki ilk terimin lg 7'ye eşit olacağı gerçeğini dikkate alarak yeniden yazıyoruz. Elimizde:

lg 56 = lg 7 − 3lg (x + 4)

LG 7'yi sola hareket ettirelim, şunu elde ederiz:

lg 56 − lg 7 = −3lg (x + 4)

Tabanları aynı olduğundan soldaki ifadeleri çıkarıyoruz:

lg (56/7) = −3lg (x + 4)

Şimdi elde ettiğimiz denkleme daha yakından bakalım. Pratik olarak kanonik formdur, ancak sağda −3 çarpanı vardır. Bunu sağ lg argümanına ekleyelim:

log 8 = log (x + 4) −3

Önümüzde logaritmik denklemin kanonik formu var, bu yüzden lg işaretlerinin üstünü çiziyoruz ve argümanları eşitliyoruz:

(x + 4) −3 = 8

x + 4 = 0,5

İşte bu! İkinci logaritmik denklemi çözdük. Bu durumda hiçbir ek kontrole gerek yoktur çünkü orijinal problemde x yalnızca bir bağımsız değişkende mevcuttu.

Bu dersin önemli noktalarını tekrar sıralayayım.

Bu sayfadaki logaritmik denklemlerin çözümüne ayrılmış tüm derslerde öğretilen ana formül kanonik formdur. Ve çoğu okul ders kitabının size bu tür sorunları farklı şekilde çözmeyi öğrettiği gerçeğinden korkmayın. Bu araç çok etkili bir şekilde çalışır ve dersimizin başında incelediğimiz en basit sorunlardan çok daha geniş bir sorun sınıfını çözmenize olanak tanır.

Ayrıca logaritmik denklemlerin çözümünde temel özelliklerin bilinmesi yararlı olacaktır. Yani:

  1. Tek tabana geçme formülü ve logu ters çevirdiğimizdeki özel durum (bu ilk problemde bizim için çok yararlıydı);
  2. Logaritma işaretine kuvvet ekleme ve çıkarma formülü. Burada birçok öğrenci takılıp kalıyor ve alınan ve tanıtılan derecenin kendisinin log f (x) içerebileceğini göremiyor. Bunda yanlış bir şey yok. Bir kütüğü diğerinin işaretine göre tanıtabiliriz ve aynı zamanda ikinci durumda gözlemlediğimiz gibi sorunun çözümünü önemli ölçüde basitleştirebiliriz.

Sonuç olarak, bu durumların her birinde tanım alanını kontrol etmenin gerekli olmadığını eklemek isterim, çünkü x değişkeni her yerde log'un yalnızca bir işaretinde mevcuttur ve aynı zamanda onun argümanındadır. Sonuç olarak kapsamın tüm gereklilikleri otomatik olarak yerine getirilir.

Değişken tabanla ilgili sorunlar

Bugün birçok öğrenci için tamamen çözülemez olmasa da standart dışı görünen logaritmik denklemlere bakacağız. Sayılara değil, değişkenlere, hatta fonksiyonlara dayalı ifadelerden bahsediyoruz. Bu tür yapıları standart tekniğimizi, yani kanonik formu kullanarak çözeceğiz.

Öncelikle sıradan sayılara dayanarak en basit problemlerin nasıl çözüldüğünü hatırlayalım. Yani en basit yapıya denir

log a f(x) = b

Bu tür problemleri çözmek için aşağıdaki formülü kullanabiliriz:

b = log a a b

Orijinal ifademizi yeniden yazarsak şunu elde ederiz:

log a f (x) = log a a b

Sonra argümanları eşitliyoruz, yani şunu yazıyoruz:

f(x) = a b

Böylece log işaretinden kurtulup alışılagelmiş sorunu çözmüş oluyoruz. Bu durumda çözümden elde edilen kökler orijinal logaritmik denklemin kökleri olacaktır. Ayrıca hem sol hem de sağın aynı logaritmada ve aynı tabanda olduğu kayıtlara kanonik form adı verilir. Öyle bir rekora varıyoruz ki, bugünün tasarımlarını azaltmaya çalışacağız. Öyleyse gidelim.

İlk görev:

log x - 2 (2x 2 - 13x + 18) = 1

1'i log x − 2 (x − 2) 1 ile değiştirin. Argümanda gözlemlediğimiz derece aslında eşittir işaretinin sağında bulunan b sayısıdır. Böylece ifademizi yeniden yazalım. Şunu elde ederiz:

log x − 2 (2x 2 − 13x + 18) = log x − 2 (x − 2)

Ne görüyoruz? Önümüzde logaritmik denklemin kanonik formu var, bu yüzden argümanları güvenli bir şekilde eşitleyebiliriz. Şunu elde ederiz:

2x 2 − 13x + 18 = x − 2

Ancak çözüm burada bitmiyor çünkü bu denklem orijinaline eşdeğer değil. Sonuçta ortaya çıkan yapı, sayı doğrusunda tanımlanan fonksiyonlardan oluşur ve orijinal logaritmalarımız her zaman ve her yerde tanımlanmaz.

Bu nedenle tanım alanını ayrıca yazmamız gerekir. Saçmalamayalım ve önce tüm gereksinimleri yazalım:

İlk olarak, logaritmaların her birinin argümanı 0'dan büyük olmalıdır:

2x 2 − 13x + 18 > 0

x - 2 > 0

İkincisi, tabanın yalnızca 0'dan büyük olması değil aynı zamanda 1'den farklı olması gerekir:

x - 2 ≠ 1

Sonuç olarak, sistemi elde ediyoruz:

Ancak paniğe kapılmayın: logaritmik denklemleri işlerken böyle bir sistem önemli ölçüde basitleştirilebilir.

Kendiniz karar verin: Bir yandan ikinci dereceden fonksiyonun sıfırdan büyük olması gerekiyor, diğer yandan bu ikinci dereceden fonksiyon belirli bir doğrusal ifadeye eşitleniyor ve bunun da sıfırdan büyük olması gerekiyor.

Bu durumda, x − 2 > 0 olmasını istersek, 2x 2 − 13x + 18 > 0 gereksinimi otomatik olarak karşılanacaktır. Dolayısıyla ikinci dereceden fonksiyonu içeren eşitsizliğin üzerini güvenle çizebiliriz. Böylece sistemimizde yer alan ifade sayısı üçe düşecektir.

Elbette, aynı başarı ile doğrusal eşitsizliğin üzerini çizebiliriz, yani x − 2 > 0'ın üzerini çizebilir ve 2x 2 − 13x + 18 > 0 olmasını isteyebiliriz. Ancak en basit doğrusal eşitsizliği çözmenin çok daha hızlı olduğunu kabul edeceksiniz. ve ikinci dereceden daha basit, hatta tüm bu sistemi çözmenin bir sonucu olarak aynı kökleri elde etmemiz koşuluyla bile.

Genel olarak mümkün olduğunca hesaplamaları optimize etmeye çalışın. Logaritmik denklemler söz konusu olduğunda en zor eşitsizliklerin üzerini çizin.

Sistemimizi yeniden yazalım:

Burada üç ifadeden oluşan bir sistem var, bunlardan ikisini daha önce ele almıştık. İkinci dereceden denklemi ayrı ayrı yazıp çözelim:

2x 2 − 14x + 20 = 0

x 2 − 7x + 10 = 0

Önümüzde indirgenmiş ikinci dereceden bir üç terimli var ve bu nedenle Vieta formüllerini kullanabiliriz. Şunu elde ederiz:

(x − 5)(x − 2) = 0

x 1 = 5

x 2 = 2

Şimdi sistemimize dönüyoruz ve x = 2'nin bize uymadığını görüyoruz çünkü x'in kesinlikle 2'den büyük olması gerekiyor.

Ancak x = 5 bize çok yakışıyor: 5 sayısı 2'den büyüktür ve aynı zamanda 5, 3'e eşit değildir. Dolayısıyla bu sistemin tek çözümü x = 5 olacaktır.

İşte bu, ODZ dikkate alınarak sorun çözüldü. İkinci denkleme geçelim. Burada bizi daha ilginç ve bilgilendirici hesaplamalar bekliyor:

İlk adım: Geçen seferki gibi, tüm bu konuyu kanonik forma getiriyoruz. Bunun için 9 sayısını şu şekilde yazabiliriz:

Kök temele dokunulmadan bırakılabilir, ancak argümanı dönüştürmek daha iyidir. Rasyonel bir üsle kökten kuvvete doğru ilerleyelim. Hadi yazalım:

Büyük logaritmik denklemimizin tamamını yeniden yazmama izin verin, ancak hemen argümanları eşitleyelim:

x 3 + 10x 2 + 31x + 30 = x 3 + 9x 2 + 27x + 27

x 2 + 4x + 3 = 0

Önümüzde yeni indirgenmiş ikinci dereceden bir trinomial var, Vieta formüllerini kullanıp yazalım:

(x + 3)(x + 1) = 0

x 1 = −3

x 2 = −1

Yani kökleri bulduk ama kimse bize bunların orijinal logaritmik denkleme uyacağını garanti etmedi. Sonuçta, log işaretleri ek kısıtlamalar getirmektedir (burada sistemi yazmamız gerekirdi, ancak tüm yapının hantal doğası nedeniyle tanım alanını ayrı olarak hesaplamaya karar verdim).

Her şeyden önce, argümanların 0'dan büyük olması gerektiğini unutmayın; yani:

Bunlar tanımın kapsamının gerektirdiği gerekliliklerdir.

Hemen belirtelim ki sistemin ilk iki ifadesini birbirine eşitlediğimiz için herhangi birinin üzerini çizebiliriz. İlkinin üzerini çizelim çünkü ikincisinden daha tehditkar görünüyor.

Ek olarak, ikinci ve üçüncü eşitsizliklerin çözümünün aynı kümeler olacağını unutmayın (eğer bu sayının kendisi sıfırdan büyükse, bir sayının küpü sıfırdan büyüktür; benzer şekilde, üçüncü derecenin kökü ile - bu eşitsizlikler) tamamen benzer olduğundan üstünü çizebiliriz).

Ancak üçüncü eşitsizlikte bu işe yaramayacaktır. Her iki parçayı da küp haline getirerek soldaki kök işaretinden kurtulalım. Şunu elde ederiz:

Böylece aşağıdaki gereksinimleri alıyoruz:

− 2 ≠ x > −3

Köklerimizden hangisi: x 1 = −3 veya x 2 = −1 bu gereksinimleri karşılıyor? Açıkçası, yalnızca x = −1, çünkü x = −3 ilk eşitsizliği karşılamaz (eşitsizliğimiz katı olduğundan). Yani problemimize dönersek bir kök elde ederiz: x = −1. İşte bu, sorun çözüldü.

Bir kez daha, bu görevin kilit noktaları:

  1. Kanonik formu kullanarak logaritmik denklemleri uygulamaktan ve çözmekten çekinmeyin. Böyle bir gösterim yapan öğrenciler, doğrudan orijinal problemden log a f(x) = b gibi bir yapıya geçmek yerine, hesaplamaların ara adımlarını atlayarak bir yere acele eden öğrencilere göre çok daha az hata yaparlar;
  2. Logaritmada değişken bir taban ortaya çıktığı anda problem en basit olmaktan çıkar. Bu nedenle, çözerken tanım alanını hesaba katmak gerekir: argümanlar sıfırdan büyük olmalı ve tabanlar yalnızca 0'dan büyük olmamalı, aynı zamanda 1'e eşit olmamalıdır.

Nihai gereksinimler, nihai cevaplara farklı şekillerde uygulanabilir. Örneğin tanım alanına ait tüm gereksinimleri içeren bir sistemin tamamını çözebilirsiniz. Öte yandan, önce problemin kendisini çözebilir, sonra tanım alanını hatırlayabilir, bunu bir sistem şeklinde ayrı ayrı çözebilir ve elde edilen köklere uygulayabilirsiniz.

Belirli bir logaritmik denklemi çözerken hangi yöntemi seçeceğinize karar vermek size kalmıştır. Her durumda cevap aynı olacaktır.