Karmaşık bir argümana sahip türetilmiş işlevler tablosu. Karmaşık bir fonksiyonun türevini alma kuralı

Buraya geldiğinizden beri muhtemelen bu formülü ders kitabında zaten görmüşsünüzdür.

ve şöyle bir yüz yapın:

Dostum, endişelenme! Aslında her şey çok çirkin. Kesinlikle her şeyi anlayacaksınız. Sadece bir istek - makaleyi okuyun zamanını ayır, her adımı anlamaya çalışın. Olabildiğince basit ve net yazdım ama yine de fikri anlamanız gerekiyor. Ve makaledeki görevleri çözdüğünüzden emin olun.

Karmaşık fonksiyon nedir?

Başka bir daireye taşındığınızı ve bu nedenle eşyaları büyük kutulara paketlediğinizi hayal edin. Okul yazı malzemeleri gibi bazı küçük eşyaları toplamanız gerektiğini varsayalım. Onları büyük bir kutuya atarsanız, diğer şeylerin arasında kaybolurlar. Bunu önlemek için, önce bunları örneğin bir torbaya koyarsınız, sonra onu büyük bir kutuya koyarsınız ve ardından mühürlersiniz. Bu “karmaşık” süreç aşağıdaki şemada gösterilmektedir:

Görünüşe göre matematiğin bununla ne ilgisi var? Evet, karmaşık bir fonksiyonun TAMAMEN AYNI şekilde oluşmasına rağmen! Sadece defterleri ve kalemleri değil, \(x\) “paketliyoruz”, ancak “paketler” ve “kutular” farklı.

Örneğin, x'i alıp onu bir fonksiyona "paketleyelim":


Sonuç olarak elbette \(\cos⁡x\) elde ederiz. Bu bizim “şey çantamız”. Şimdi onu bir "kutuya" koyalım - örneğin kübik bir fonksiyona paketleyelim.


Sonunda ne olacak? Evet, doğru, "bir kutuda bir torba eşya" olacak, yani "kosinüs X küp".

Ortaya çıkan tasarım karmaşık bir fonksiyondur. Basit olandan şu bakımdan farklıdır: BİR X'e arka arkaya BİRÇOK "etki" (paket) uygulanır ve "işlevden işleve" - ​​"ambalaj içinde ambalaj" ortaya çıkıyor.

İÇİNDE okul kursu Bu “paketlerin” çok az türü vardır, yalnızca dört tanesi:

Şimdi X'i önce 7 tabanına sahip bir üstel fonksiyona, sonra da bir trigonometrik fonksiyona "paketleyelim". Şunu elde ederiz:

\(x → 7^x → tg⁡(7^x)\)

Şimdi X'i iki kez "paketleyelim" trigonometrik fonksiyonlar, önce içinde , sonra da içinde:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Basit, değil mi?

Şimdi fonksiyonları kendiniz yazın; burada x:
- önce bir kosinüse, ardından \(3\) tabanıyla üstel bir fonksiyona "paketlenir";
- önce beşinci kuvvete, sonra da teğete;
- ilk olarak \(4\) tabanının logaritmasına göre , sonra kuvvet \(-2\).

Makalenin sonunda bu görevin cevaplarını bulun.

X'i iki değil üç kez “paketleyebilir miyiz”? Evet, sorun değil! Ve dört, beş ve yirmi beş kere. Örneğin burada x'in \(4\) kez "paketlendiği" bir fonksiyon var:

\(y=5^(\log_2⁡(\sin⁡(x^4))))\)

Ancak bu tür formüller okul uygulamalarında bulunamayacaktır (öğrenciler daha şanslıdır, onlarınki ise daha karmaşık olabilir☺).

Karmaşık bir işlevi "paketten çıkarmak"

Önceki fonksiyona tekrar bakın. “Paketleme” sırasını çözebilir misiniz? X'in ilk önce neye doldurulduğu, sonra ne olduğu vb. sonuna kadar devam eder. Yani hangi fonksiyon hangisinin içinde yuvalanmıştır? Bir parça kağıt alın ve ne düşündüğünüzü yazın. Bunu yukarıda yazdığımız gibi oklu bir zincirle veya başka bir şekilde yapabilirsiniz.

Şimdi doğru cevap şu: önce x, \(4\)'üncü kuvvete "paketlendi", sonra sonuç sinüse paketlendi, o da \(2\) tabanına göre logaritmaya yerleştirildi. ve sonunda tüm bu yapı beşli güçlere itildi.

Yani diziyi TERS SİPARİŞTE geri sarmanız gerekir. Ve işte bunu nasıl daha kolay yapabileceğinize dair bir ipucu: hemen X'e bakın - ondan dans etmelisiniz. Birkaç örneğe bakalım.

Örneğin, şu fonksiyon şöyledir: \(y=tg⁡(\log_2⁡x)\). X'e bakıyoruz - önce ona ne olacak? Ondan alınmıştır. Ve daha sonra? Sonucun tanjantı alınır. Sıra aynı olacaktır:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Başka bir örnek: \(y=\cos⁡((x^3))\). Hadi analiz edelim; önce X'in küpünü aldık, sonra sonucun kosinüsünü aldık. Bu, dizinin şöyle olacağı anlamına gelir: \(x → x^3 → \cos⁡((x^3))\). Dikkat edin, işlev ilkine (resimlerin olduğu yer) benziyor. Ancak bu tamamen farklı bir fonksiyondur: burada küpün içinde x var (yani, \(\cos⁡((x·x·x))))\) ve küpün içinde kosinüs \(x\) ( yani, \(\cos⁡ x·\cos⁡x·\cos⁡x\)). Bu fark farklı "paketleme" dizilerinden kaynaklanmaktadır.

Son örnek (ile önemli bilgi içinde): \(y=\sin⁡((2x+5))\). Burada ilk ne yaptıkları belli aritmetik işlemler x ile sonucun sinüsünü aldım: \(x → 2x+5 → \sin⁡((2x+5))\). Ve bu önemli nokta: Aritmetik işlemler kendi başlarına fonksiyon olmamasına rağmen burada aynı zamanda bir “paketleme” yöntemi olarak da hareket ederler. Gelin bu inceliği biraz daha derinlemesine inceleyelim.

Yukarıda söylediğim gibi, basit işlevlerde x bir kez, karmaşık işlevlerde ise iki veya daha fazla "paketlenir". Ayrıca, basit fonksiyonların herhangi bir kombinasyonu (toplamları, farkları, çarpmaları veya bölmeleri) de basit fonksiyon. Örneğin, \(x^7\) basit bir fonksiyondur ve \(ctg x\) de öyle. Bu, tüm kombinasyonlarının basit işlevler olduğu anlamına gelir:

\(x^7+ ctg x\) - basit,
\(x^7· cot x\) – basit,
\(\frac(x^7)(ctg x)\) – basit, vb.

Ancak böyle bir kombinasyona bir fonksiyon daha uygulanırsa iki “paket” olacağından karmaşık bir fonksiyon haline gelecektir. Diyagrama bakınız:



Tamam, şimdi devam et. “Sarma” fonksiyonlarının sırasını yazın:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Cevaplar yine yazının sonunda.

İç ve dış işlevler

Neden işlev yerleştirmeyi anlamamız gerekiyor? Bu bize ne sağlıyor? Gerçek şu ki, böyle bir analiz olmadan yukarıda tartışılan fonksiyonların türevlerini güvenilir bir şekilde bulamayız.

Devam etmek için iki kavrama daha ihtiyacımız olacak: iç ve dış işlevler. Bu çok basit şeyüstelik aslında bunları yukarıda zaten analiz etmiştik: En baştaki benzetmemizi hatırlarsak, iç fonksiyon bir "paket", dış fonksiyon ise bir "kutu" dur. Onlar. X'in ilk olarak "sarıldığı" şey bir iç fonksiyondur ve dahili fonksiyonun "sarıldığı" şey zaten dıştır. Neden olduğu açık - dışarıda, bu da dış anlamına geliyor.

Bu örnekte: \(y=tg⁡(log_2⁡x)\), \(\log_2⁡x\) işlevi dahilidir ve
- harici.

Ve bunda: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) dahilidir ve
- harici.

Karmaşık fonksiyonların analizine ilişkin son uygulamayı tamamlayın ve sonunda hepimizin başladığı noktaya geçelim; karmaşık fonksiyonların türevlerini bulacağız:

Tablodaki boşlukları doldurun:


Karmaşık bir fonksiyonun türevi

Bravo bize, nihayet bu konunun "patronuna" ulaştık - aslında bir türev karmaşık fonksiyon ve özellikle de makalenin başındaki o çok korkunç formüle.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Bu formül şu şekilde okunur:

Karmaşık bir fonksiyonun türevi, dış fonksiyonun sabit bir iç fonksiyona göre türevi ile iç fonksiyonun türevinin çarpımına eşittir.

Ve hemen kelimelere göre ayrıştırma şemasına bakın, böylece neyle ne yapacağınızı anlarsınız:

“Türev” ve “ürün” tabirlerinin sıkıntı yaratmamasını diliyorum. “Karmaşık fonksiyon” - bunu zaten çözdük. “Türev”deki yakalama harici fonksiyon değişmeyen bir dahili olana göre. Nedir?

Cevap: Bu, yalnızca dış fonksiyonun değiştiği ve iç fonksiyonun aynı kaldığı bir dış fonksiyonun olağan türevidir. Hala net değil mi? Tamam, bir örnek kullanalım.

Bir \(y=\sin⁡(x^3)\) fonksiyonumuz olsun. Buradaki iç fonksiyonun \(x^3\) olduğu ve dış fonksiyonun olduğu açıktır.
. Şimdi dış kısmın sabit iç bölgeye göre türevini bulalım.

Tanım.\(y = f(x)\) fonksiyonunun, içinde \(x_0\) noktasını içeren belirli bir aralıkta tanımlandığını varsayalım. Argümana bu aralığı terk etmeyecek şekilde bir artış \(\Delta x \) verelim. \(\Delta y \) fonksiyonunun karşılık gelen artışını bulalım (\(x_0 \) noktasından \(x_0 + \Delta x \) noktasına giderken) ve \(\frac(\Delta) ilişkisini oluşturalım y)(\Delta x) \). Bu oranın \(\Delta x \rightarrow 0\'da) bir sınırı varsa, belirtilen sınıra denir bir fonksiyonun türevi\(y=f(x) \) \(x_0 \) noktasındadır ve \(f"(x_0) \)'yi gösterir.

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Türevi belirtmek için sıklıkla y sembolü kullanılır." y" = f(x)'in şu şekilde olduğuna dikkat edin: yeni özellik, ancak doğal olarak yukarıdaki limitin mevcut olduğu tüm x noktalarında tanımlanan y = f(x) fonksiyonuyla ilişkilidir. Bu fonksiyon şu şekilde çağrılır: y = f(x) fonksiyonunun türevi.

Türevin geometrik anlamı aşağıdaki gibidir. y = f(x) fonksiyonunun grafiğine apsis x=a olan ve y eksenine paralel olmayan bir noktada bir teğet çizmek mümkünse f(a) teğetin eğimini ifade eder :
\(k = f"(a)\)

\(k = tg(a) \) olduğundan, \(f"(a) = tan(a) \) eşitliği doğrudur.

Şimdi türevin tanımını yaklaşık eşitlikler açısından yorumlayalım. \(y = f(x)\) fonksiyonunun belirli bir \(x\) noktasında türevi olsun:
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Bu, x noktası yakınında yaklaşık eşitliğin \(\frac(\Delta y)(\Delta x) \approx f"(x) \), yani \(\Delta y \approx f"(x) \cdot\ olduğu anlamına gelir. Delta x\). Ortaya çıkan yaklaşık eşitliğin anlamlı anlamı şu şekildedir: Fonksiyonun artışı argümanın artışıyla “hemen hemen orantılıdır” ve orantı katsayısı da türevin değeridir. verilen nokta X. Örneğin, \(y = x^2\) fonksiyonu için yaklaşık eşitlik \(\Delta y \approx 2x \cdot \Delta x \) geçerlidir. Bir türevin tanımını dikkatlice analiz edersek, onu bulmak için bir algoritma içerdiğini görürüz.

Formüle edelim.

y = f(x) fonksiyonunun türevi nasıl bulunur?

1. \(x\) değerini sabitleyin, \(f(x)\)'i bulun
2. \(x\) argümanına bir artış \(\Delta x\) verin, şuraya gidin: yeni nokta\(x+ \Delta x \), bul \(f(x+ \Delta x) \)
3. Fonksiyonun artışını bulun: \(\Delta y = f(x + \Delta x) - f(x) \)
4. \(\frac(\Delta y)(\Delta x) \) ilişkisini oluşturun
5. $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$'ı hesaplayın
Bu limit fonksiyonun x noktasındaki türevidir.

Bir y = f(x) fonksiyonunun x noktasında türevi varsa, bu fonksiyona x noktasında türevlenebilir denir. y = f(x) fonksiyonunun türevini bulma prosedürüne denir farklılaşma fonksiyonlar y = f(x).

Şu soruyu tartışalım: Bir fonksiyonun bir noktadaki sürekliliği ve türevlenebilirliği birbiriyle nasıl ilişkilidir?

y = f(x) fonksiyonunun x noktasında türevi olsun. Daha sonra fonksiyonun grafiğine M(x; f(x)) noktasında bir teğet çizilebilir ve hatırlayın, teğetin açısal katsayısı f "(x)'e eşittir. Böyle bir grafik "kırılamaz" M noktasında, yani fonksiyon x noktasında sürekli olmalıdır.

Bunlar “uygulamalı” argümanlardı. Daha kesin bir gerekçe sunalım. Eğer y = f(x) fonksiyonu x noktasında türevlenebilirse, o zaman yaklaşık eşitlik \(\Delta y \approx f"(x) \cdot \Delta x\) sağlanır. Bu eşitlikte ise \(\Delta x \) sıfıra yönelirse \(\Delta y \) sıfıra yönelecektir ve bu, fonksiyonun bir noktadaki sürekliliğinin koşuludur.

Bu yüzden, Bir fonksiyon x noktasında türevlenebilirse o noktada süreklidir.

Tersi ifade doğru değildir. Örneğin: fonksiyon y = |x| her yerde süreklidir, özellikle x = 0 noktasında, ancak fonksiyonun grafiğine “birleşim noktasında” (0; 0) teğet mevcut değildir. Bir fonksiyonun grafiğine bir noktada teğet çizilemiyorsa o noktada türev mevcut değildir.

Başka bir örnek. \(y=\sqrt(x)\) fonksiyonu, x = 0 noktası da dahil olmak üzere tüm sayı doğrusu üzerinde süreklidir. Ve fonksiyonun grafiğine teğet, x = 0 noktası da dahil olmak üzere herhangi bir noktada mevcuttur. Ancak bu noktada teğet y eksenine denk gelir, yani apsis eksenine diktir, denklemi x = 0 şeklindedir. Eğim katsayısı böyle bir çizgi yok, bu da \(f"(0) \)'nin de mevcut olmadığı anlamına geliyor

Böylece bir fonksiyonun yeni bir özelliği olan türevlenebilirlik ile tanıştık. Bir fonksiyonun grafiğinden onun türevlenebilir olduğu sonucuna nasıl varılabilir?

Bunun cevabı aslında yukarıda verilmiştir. Bir noktada apsis eksenine dik olmayan bir fonksiyonun grafiğine teğet çizmek mümkünse, o zaman bu noktada fonksiyon türevlenebilirdir. Bir fonksiyonun grafiğinin bir noktada teğeti yoksa veya apsis eksenine dikse, bu noktada fonksiyon türevlenebilir değildir.

Farklılaşma kuralları

Türev bulma işlemine denir farklılaşma. Bu işlemi gerçekleştirirken çoğu zaman bölümler, toplamlar, fonksiyonların çarpımları ve ayrıca "fonksiyonların fonksiyonları" yani karmaşık fonksiyonlarla çalışmak zorunda kalırsınız. Türevin tanımından yola çıkarak bu işi kolaylaştıracak türev kurallarını türetebiliriz. Eğer C - sabit sayı ve f=f(x), g=g(x) bazı türevlenebilir fonksiyonlarsa, aşağıdakiler doğrudur farklılaşma kuralları:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Karmaşık bir fonksiyonun türevi:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Bazı fonksiyonların türevleri tablosu

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Üzerinde en basit türevleri analiz ettik ve ayrıca türev alma kuralları ve bazılarıyla tanıştık. teknik yöntemler türevlerini bulmak. Bu nedenle, fonksiyonların türevleri konusunda pek iyi değilseniz veya bu makaledeki bazı noktalar tam olarak anlaşılamadıysa, önce yukarıdaki dersi okuyun. Lütfen ciddi bir ruh hali içine girin - materyal basit değil, ama yine de onu basit ve net bir şekilde sunmaya çalışacağım.

Uygulamada, karmaşık bir fonksiyonun türeviyle çok sık uğraşmanız gerekir, hatta diyebilirim ki, size türevleri bulma görevi verildiğinde hemen hemen her zaman.

Karmaşık bir fonksiyonun türevini almak için kuraldaki (No. 5) tabloya bakıyoruz:

Hadi çözelim. Öncelikle girişe dikkat edelim. Burada iki fonksiyonumuz var - ve mecazi anlamda konuşursak, fonksiyon fonksiyonun içinde yuvalanmıştır. Bu tür bir fonksiyona (bir fonksiyon diğerinin içine yerleştirildiğinde) karmaşık fonksiyon denir.

Fonksiyonu çağıracağım harici fonksiyon ve fonksiyon – dahili (veya iç içe geçmiş) fonksiyon.

! Bu tanımlar teorik değildir ve ödevlerin nihai tasarımında yer almamalıdır. başvuruyorum resmi olmayan ifadeler“harici fonksiyon”, “dahili” fonksiyon sadece materyali anlamanızı kolaylaştırmak içindir.

Durumu açıklığa kavuşturmak için şunları göz önünde bulundurun:

Örnek 1

Bir fonksiyonun türevini bulun

Sinüs altında sadece "X" harfi değil, ifadenin tamamı var, dolayısıyla türevi tablodan hemen bulmak işe yaramayacak. Ayrıca ilk dört kuralın burada uygulanmasının imkansız olduğunu da fark ettik, bir fark var gibi görünüyor, ancak gerçek şu ki sinüs "parçalara ayrılamaz":

İÇİNDE bu örnekte Açıklamalarımdan, bir fonksiyonun karmaşık bir fonksiyon olduğu ve polinomun bir iç fonksiyon (gömme) ve bir dış fonksiyon olduğu zaten sezgisel olarak açıktır.

İlk adım Karmaşık bir fonksiyonun türevini bulurken yapmanız gereken şey Hangi fonksiyonun dahili, hangisinin harici olduğunu anlayın.

Durumunda basit örnekler Sinüs altına bir polinomun gömülü olduğu açık görünüyor. Peki ya her şey açık değilse? Hangi fonksiyonun harici, hangisinin dahili olduğunu doğru bir şekilde nasıl belirleyebilirim? Bunu yapmak için zihinsel olarak veya taslak halinde yapılabilecek aşağıdaki tekniği kullanmanızı öneririm.

İfadesinin değerini hesaplamak için bir hesap makinesi kullanmamız gerektiğini hayal edelim (bir yerine herhangi bir sayı olabilir).

İlk önce neyi hesaplayacağız? Öncelikle aşağıdaki eylemi gerçekleştirmeniz gerekecek: bu nedenle polinom bir iç fonksiyon olacaktır:

ikinci olarak bulunması gerekecek, dolayısıyla sinüs – harici bir fonksiyon olacak:

Bizden sonra HEPSİ SATILDI iç ve dış fonksiyonlarda, karmaşık fonksiyonların farklılaşması kuralını uygulamanın zamanı geldi .

Karar vermeye başlayalım. Dersten Türevi nasıl bulunur? herhangi bir türevin çözümünün tasarımının her zaman böyle başladığını hatırlıyoruz - ifadeyi parantez içine alıyoruz ve sağ üst köşeye bir çizgi koyuyoruz:

Başta Dış fonksiyonun (sinüs) türevini bulun, türev tablosuna bakın temel işlevler ve bunu fark ediyoruz. Tüm tablo formülleri, “x”in karmaşık bir ifadeyle değiştirilmesi durumunda da geçerlidir, V bu durumda:

Lütfen iç fonksiyonun değişmedi, dokunmuyoruz.

Peki, oldukça açık ki

Formülün uygulanmasının sonucu son haliyle şöyle görünür:

Sabit çarpan genellikle ifadenin başına yerleştirilir:

Herhangi bir yanlış anlama varsa çözümü bir kağıda yazıp açıklamaları tekrar okuyun.

Örnek 2

Bir fonksiyonun türevini bulun

Örnek 3

Bir fonksiyonun türevini bulun

Her zaman olduğu gibi şunu yazıyoruz:

Nerede harici bir fonksiyona sahip olduğumuzu ve nerede dahili bir fonksiyona sahip olduğumuzu bulalım. Bunu yapmak için (zihinsel olarak veya taslak halinde) ifadenin değerini hesaplamaya çalışırız. İlk önce ne yapmalısınız? Her şeyden önce, tabanın neye eşit olduğunu hesaplamanız gerekir: bu nedenle polinom bir iç fonksiyondur:

Ve ancak o zaman üs alma işlemi gerçekleştirilir, bu nedenle, güç fonksiyonu harici bir fonksiyondur:

Formüle göre , öncelikle dış fonksiyonun türevini, bu durumda dereceyi bulmanız gerekir. Tabloda arıyorum gerekli formül: . Bir kez daha tekrarlıyoruz: herhangi tablo formülü yalnızca “x” için değil aynı zamanda karmaşık ifadeler için de geçerlidir. Böylece, karmaşık bir fonksiyonun türevini alma kuralını uygulamanın sonucu Sonraki:

Dış fonksiyonun türevini aldığımızda iç fonksiyonumuzun değişmediğini bir kez daha vurguluyorum:

Şimdi geriye kalan tek şey iç fonksiyonun çok basit bir türevini bulmak ve sonucu biraz değiştirmek:

Örnek 4

Bir fonksiyonun türevini bulun

Bu bir örnektir bağımsız karar(Dersin sonunda cevap verin).

Karmaşık bir fonksiyonun türevine ilişkin anlayışınızı pekiştirmek için yorumsuz bir örnek vereceğim, kendi başınıza anlamaya çalışın, dış fonksiyonun nerede ve iç fonksiyonun nerede olduğunu, görevlerin neden bu şekilde çözüldüğünü düşünün.

Örnek 5

a) Fonksiyonun türevini bulun

b) Fonksiyonun türevini bulun

Örnek 6

Bir fonksiyonun türevini bulun

Burada bir kökümüz var ve kökü farklılaştırabilmek için onun bir güç olarak temsil edilmesi gerekiyor. Böylece öncelikle fonksiyonu türev almaya uygun forma getiriyoruz:

Fonksiyonu analiz ettiğimizde, üç terimin toplamının bir iç fonksiyon olduğu, bir güce yükselmenin ise bir dış fonksiyon olduğu sonucuna varıyoruz. Karmaşık fonksiyonların farklılaşma kuralını uyguluyoruz :

Dereceyi yine bir radikal (kök) olarak temsil ediyoruz ve iç fonksiyonun türevi için toplamın türevini almak için basit bir kural uyguluyoruz:

Hazır. Ayrıca parantez içindeki ifadeyi de verebilirsiniz. ortak payda ve her şeyi bir kesir olarak yazın. Elbette güzel, ancak hantal uzun türevler elde ettiğinizde bunu yapmamak daha iyidir (kafanın karışması, gereksiz bir hata yapılması kolaydır ve öğretmenin kontrol etmesi sakıncalı olacaktır).

Örnek 7

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Bazen karmaşık bir fonksiyonun türevini alma kuralı yerine bir bölümün türevini alma kuralını kullanabileceğinizi belirtmek ilginçtir. ancak böyle bir çözüm alışılmadık bir sapkınlık gibi görünecek. Burada tipik örnek:

Örnek 8

Bir fonksiyonun türevini bulun

Burada bölümün farklılaşma kuralını kullanabilirsiniz ancak karmaşık bir fonksiyonun türev alma kuralı yoluyla türevini bulmak çok daha karlı:

Fonksiyonu türev için hazırlıyoruz - eksiyi türev işaretinden çıkarıyoruz ve kosinüsü paya yükseltiyoruz:

Kosinüs bir iç fonksiyondur, üstel ise harici bir fonksiyondur.
Kuralımızı kullanalım :

Dahili fonksiyonun türevini buluyoruz ve kosinüsü tekrar sıfırlıyoruz:

Hazır. Ele alınan örnekte işaretlerin karıştırılmaması önemlidir. Bu arada kuralı kullanarak çözmeye çalışın , yanıtların eşleşmesi gerekir.

Örnek 9

Bir fonksiyonun türevini bulun

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Şu ana kadar karmaşık bir fonksiyonda yalnızca bir yuvalamanın olduğu durumlara baktık. Pratik görevlerde, iç içe geçmiş bebekler gibi, 3 veya hatta 4-5 fonksiyonun aynı anda iç içe geçtiği türevleri sıklıkla bulabilirsiniz.

Örnek 10

Bir fonksiyonun türevini bulun

Bu fonksiyonun eklerini anlayalım. Deneysel değeri kullanarak ifadeyi hesaplamaya çalışalım. Hesap makinesine nasıl güvenebiliriz?

İlk önce bulmanız gerekir; bu, ark sinüsünün en derin gömme olduğu anlamına gelir:

Bu birin ark sinüsünün karesi alınmalıdır:

Ve son olarak yedinin bir kuvvetini alıyoruz:

Yani bu örnekte üç tane var farklı işlevler ve en içteki fonksiyon ark sinüs ve en dıştaki fonksiyon üstel fonksiyon olmak üzere iki yerleştirme.

Karar vermeye başlayalım

Kurala göre Öncelikle dış fonksiyonun türevini almanız gerekir. Türev tablosuna bakıyoruz ve türevi buluyoruz üstel fonksiyon: Tek farkımız “X” yerine elimizde karmaşık ifade bu formülün geçerliliğini ortadan kaldırmaz. Yani, karmaşık bir fonksiyonun türevini alma kuralını uygulamanın sonucu Sonraki.

Ön topçu hazırlığından sonra, 3-4-5 işlevin iç içe geçtiği örnekler daha az korkutucu olacaktır. Belki aşağıdaki iki örnek bazılarına karmaşık gelebilir, ancak eğer bunları anlarsanız (birisi acı çekecektir), o zaman hemen hemen her şey diferansiyel hesap Bir çocuğun şakası gibi görünecek.

Örnek 2

Bir fonksiyonun türevini bulun

Daha önce belirtildiği gibi, karmaşık bir fonksiyonun türevini bulurken her şeyden önce gereklidir Sağ Yatırımlarınızı ANLAYIN. Şüphelenilen durumlarda hatırlatırım faydalı numara: Örneğin “x”in deneysel anlamını alıyoruz ve (zihnimizde veya taslakta) bu anlamı “korkunç ifade”nin yerine koymaya çalışıyoruz.

1) Öncelikle toplamın en derin gömülü olduğu anlamına gelen ifadeyi hesaplamamız gerekir.

2) O zaman logaritmayı hesaplamanız gerekir:

4) Daha sonra kosinüsün küpünü alın:

5) Beşinci adımda fark şudur:

6) Ve son olarak en dıştaki fonksiyon kareköktür:

Karmaşık bir fonksiyonun türevini almak için formül kullanılacak ters sıra, en dıştaki fonksiyondan en içteki fonksiyona doğru. Biz karar veriyoruz:

Hatasız görünüyor:

1) Karekökün türevini alın.

2) Kuralı kullanarak farkın türevini alın

3) Bir üçlünün türevi sıfırdır. İkinci terimde derecenin (küp) türevini alıyoruz.

4) Kosinüsün türevini alın.

6) Ve son olarak en derine yerleştirmenin türevini alıyoruz.

Çok zor görünebilir ama bu en acımasız örnek değil. Örneğin Kuznetsov'un koleksiyonunu ele alalım; analiz edilen türevin tüm güzelliğini ve sadeliğini takdir edeceksiniz. Bir öğrencinin karmaşık bir fonksiyonun türevini nasıl bulacağını anlayıp anlamadığını kontrol etmek için sınavda benzer bir şey vermeyi sevdiklerini fark ettim.

Aşağıdaki örnek kendi başınıza çözmeniz içindir.

Örnek 3

Bir fonksiyonun türevini bulun

İpucu: Öncelikle doğrusallık kurallarını ve ürün farklılaştırma kuralını uyguluyoruz

Dersin sonunda tam çözüm ve cevap.

Daha küçük ve daha güzel bir şeye geçmenin zamanı geldi.
Bir örnekte ikinin çarpımının gösterilmesi alışılmadık bir durum değildir, ancak üç fonksiyon. Türevi nasıl bulunur? üçlü ürünlerçarpanlar?

Örnek 4

Bir fonksiyonun türevini bulun

Öncelikle üç fonksiyonun çarpımını iki fonksiyonun çarpımına çevirmenin mümkün olup olmadığına bakalım. Örneğin çarpımda iki polinom olsaydı parantezleri açabilirdik. Ancak söz konusu örnekte tüm işlevler farklıdır: derece, üs ve logaritma.

Bu gibi durumlarda gerekli sıraylaürün farklılaştırma kuralını uygulayın iki kere

İşin püf noktası, "y" ile iki fonksiyonun çarpımını, "ve" ile de logaritmayı belirtmemizdir: . Bu neden yapılabilir? Gerçekten mi - bu iki faktörün bir ürünü değil ve kural işe yaramıyor mu? Karmaşık bir şey yok:


Şimdi kuralı ikinci kez uygulamaya devam ediyor parantez içine almak için:

Ayrıca bükülebilir ve parantezlerin dışına bir şeyler çıkarabilirsiniz, ancak bu durumda cevabı tam olarak bu formda bırakmak daha iyidir - kontrol edilmesi daha kolay olacaktır.

Ele alınan örnek ikinci şekilde çözülebilir:

Her iki çözüm de kesinlikle eşdeğerdir.

Örnek 5

Bir fonksiyonun türevini bulun

Bu, bağımsız bir çözüme bir örnektir; örnekte birinci yöntem kullanılarak çözülür.

Kesirlerle benzer örneklere bakalım.

Örnek 6

Bir fonksiyonun türevini bulun

Buraya gidebileceğiniz birkaç yol var:

Veya bunun gibi:

Ancak önce bölümün türev alma kuralını kullanırsak çözüm daha kısa bir şekilde yazılacaktır. , payın tamamını alarak:

Prensip olarak örnek çözülmüştür ve olduğu gibi bırakılırsa hata olmayacaktır. Ancak zamanınız varsa, cevabın basitleştirilip basitleştirilemeyeceğini görmek için her zaman taslağı kontrol etmeniz önerilir.

Payın ifadesini ortak bir paydaya indirgeyelim ve kesrin üç katlı yapısından kurtulalım.:

Ek basitleştirmelerin dezavantajı, türevi bulurken değil, sıradan okul dönüşümleri sırasında hata yapma riskinin olmasıdır. Öte yandan öğretmenler sıklıkla ödevi reddediyor ve türevi “akla getirmesini” istiyorlar.

Kendi başınıza çözebileceğiniz daha basit bir örnek:

Örnek 7

Bir fonksiyonun türevini bulun

Türevi bulma yöntemlerinde uzmanlaşmaya devam ediyoruz ve şimdi türev için "korkunç" bir logaritmanın önerildiği tipik bir durumu ele alacağız.

Bu yazımızda karmaşık fonksiyon gibi önemli bir matematik kavramından bahsedeceğiz ve karmaşık bir fonksiyonun türevinin nasıl bulunacağını öğreneceğiz.

Karmaşık bir fonksiyonun türevini bulmayı öğrenmeden önce, karmaşık fonksiyon kavramını, ne olduğunu, “neyle yenildiğini” ve “doğru şekilde nasıl pişirileceğini” anlayalım.

düşünelim keyfi işlevörneğin şu şekilde:

Fonksiyon denkleminin sağ ve sol tarafındaki argümanın aynı sayı veya ifade olduğuna dikkat edin.

Bir değişken yerine örneğin şu ifadeyi koyabiliriz: . Ve sonra fonksiyonu alıyoruz

İfadeye ara argüman, fonksiyona ise dış fonksiyon diyelim. Bu katı değil matematiksel kavramlar ancak karmaşık fonksiyon kavramının anlamını anlamaya yardımcı olurlar.

Karmaşık fonksiyon kavramının kesin tanımı şu şekildedir:

Bir fonksiyon bir küme üzerinde tanımlansın ve bu fonksiyonun değerlerinin kümesi olsun. Küme (veya onun alt kümesi) fonksiyonun tanım bölgesi olsun. Her birine bir sayı atayalım. Böylece fonksiyon set üzerinde tanımlanacaktır. Buna fonksiyon bileşimi veya karmaşık fonksiyon denir.

Bu tanımda terminolojimizi kullanırsak, harici bir fonksiyon ara argümandır.

Karmaşık bir fonksiyonun türevi aşağıdaki kurala göre bulunur:

Daha açık hale getirmek için bu kuralı şu şekilde yazmak istiyorum:

Bu ifadede kullanılması bir ara fonksiyonu ifade etmektedir.

Bu yüzden. Karmaşık bir fonksiyonun türevini bulmak için ihtiyacınız olan şey

1. Hangi fonksiyonun dışsal olduğunu belirleyin ve türev tablosundan karşılık gelen türevi bulun.

2. Bir ara argüman tanımlayın.

Bu prosedürde en büyük zorluk dış fonksiyonun bulunmasıdır. Bunun için basit bir algoritma kullanılır:

A. Fonksiyonun denklemini yazınız.

B. Bir x değeri için bir fonksiyonun değerini hesaplamanız gerektiğini düşünün. Bunu yapmak için bu x değerini fonksiyon denkleminde yerine koyarsınız ve aritmetik yaparsınız. Yaptığınız son eylem harici işlevdir.

Örneğin, fonksiyonda

Son eylem üs alma işlemidir.

Bu fonksiyonun türevini bulalım. Bunu yapmak için bir ara argüman yazıyoruz