Keyfi bir taban kullanarak logaritma değerlerini bulma. Doğal logaritma, fonksiyon ln x

1.1. Tamsayılı bir üssün üssünü belirleme

X 1 = X
X 2 = X * X
X 3 = X * X * X

X N = X * X * … * X - N kere

1.2. Sıfır derece.

Tanım gereği genel olarak kabul edilir ki sıfır derece herhangi bir sayı 1'e eşittir:

1.3. Negatif derece.

X -N = 1/X N

1.4. Kesirli kuvvet, kök.

X 1/N = X'in N kökü.

Örneğin: X 1/2 = √X.

1.5. Güç ekleme formülü.

X (N+M) = X N *X M

1.6.Üsleri çıkarma formülü.

X (N-M) = X N /X M

1.7. Kuvvetleri çarpma formülü.

X N*M = (X N) M

1.8. Bir kesri bir kuvvete yükseltmek için formül.

(X/Y) N = X N /Y N

2. Sayı e.

e sayısının değeri aşağıdaki limite eşittir:

E = lim(1+1/N), N → ∞ olarak.

17 haneli doğrulukla e sayısı 2,71828182845904512'dir.

3. Euler eşitliği.

Bu eşitlik matematikte özel bir rol oynayan beş sayıyı birbirine bağlar: 0, 1, e, pi, sanal birim.

E (i*pi) + 1 = 0

4. Üstel fonksiyon exp(x)

tecrübe(x) = e x

5. Üstel fonksiyonun türevi

Üstel fonksiyon vardır dikkat çekici özellik: Bir fonksiyonun türevi üstel fonksiyonun kendisine eşittir:

(ifade(x))" = tecrübe(x)

6. Logaritma.

6.1. Logaritma fonksiyonunun tanımı

Eğer x = b y ise logaritma fonksiyondur

Y = Günlük b(x).

Logaritma, bir sayının hangi kuvvete yükseltilmesi gerektiğini gösterir - logaritmanın tabanı (b) verilen numara(X). Logaritma fonksiyonu sıfırdan büyük X için tanımlanır.

Örneğin: Log 10 (100) = 2.

6.2. Ondalık logaritma

Bu 10 tabanının logaritmasıdır:

Y = Log 10(x) .

Log(x) ile gösterilir: Log(x) = Log 10 (x).

Ondalık logaritmanın kullanımına bir örnek desibeldir.

6.3. Desibel

Öğe ayrı bir sayfada vurgulanır Desibel

6.4. İkili logaritma

Bu 2 tabanının logaritması:

Y = Günlük 2 (x).

Lg(x) ile gösterilir: Lg(x) = Log 2 (X)

6.5. Doğal logaritma

Bu, e tabanının logaritmasıdır:

Y = Log e(x) .

Ln(x) ile gösterilir: Ln(x) = Log e (X)
Doğal logaritmaters fonksiyonüstel işlevler deneyimi(X).

6.6. Karakteristik noktalar

Loga(1) = 0
Log a (a) = 1

6.7. Ürün logaritması formülü

Log a (x*y) = Log a (x)+Log a (y)

6.8. Bölümün logaritması formülü

Log a (x/y) = Log a (x)-Log a (y)

6.9. Güç formülünün logaritması

Log a (x y) = y*Log a (x)

6.10. Farklı bir tabana sahip logaritmaya dönüştürme formülü

Log b (x) = (Log a (x))/Log a (b)

Örnek:

Günlük 2 (8) = Günlük 10 (8)/Günlük 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. Hayatta faydalı formüller

Çoğu zaman hacmi alana veya uzunluğa dönüştürmede sorunlar vardır ve ters problem-- Alanın hacme dönüştürülmesi. Örneğin levhalar küp (metreküp) halinde satılıyor ve içinde bulunan levhalarla ne kadar duvar alanının kaplanabileceğini hesaplamamız gerekiyor. belli bir hacim, tahtaların hesaplanmasına bakın, bir küpte kaç tane tahta var. Veya duvarın boyutları biliniyorsa tuğla sayısını hesaplamanız gerekir, bkz. tuğla hesaplama.


Kaynağa aktif bir bağlantı kurulması koşuluyla site malzemelerinin kullanılmasına izin verilir.

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak doğru olmadığından sıradan sayılar, burada kurallar var, bunlara ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor - onlar olmadan tek bir ciddi sorun çözülemez. logaritmik problem. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+ günlük A sen= günlük A (X · sen);
  2. kayıt A X- günlük A sen= günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen aklınızda bulundurun: kilit nokta Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller hesaplamanıza yardımcı olacaktır logaritmik ifade tek tek parçaları sayılmasa bile (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra oldukça ortaya çıkıyorlar normal sayılar. Birçoğu bu gerçek üzerine inşa edilmiştir testler. Peki ya kontroller? benzer ifadeler Birleşik Devlet Sınavında tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

sanırım son örnek açıklama gerekli. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Verilmesine izin ver logaritma günlüğü A X. Daha sonra herhangi bir sayı için CÖyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı gelse ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Güçleri çarpma kurallarını göz önünde bulundurarak aynı temel, şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. kayıt A A= 1 logaritmik birim. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfır. Temel A herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa - logaritma sıfıra eşit! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

b sayısının (b > 0) a tabanına (a > 0, a ≠ 1) logaritması– b'yi elde etmek için a sayısının yükseltilmesi gereken üs.

b'nin 10 tabanındaki logaritması şu şekilde yazılabilir: günlük(b) ve e tabanına göre logaritma (doğal logaritma) ln(b).

Logaritma problemlerini çözerken sıklıkla kullanılır:

Logaritmanın özellikleri

Dört ana var logaritmanın özellikleri.

a > 0, a ≠ 1, x > 0 ve y > 0 olsun.

Özellik 1. Çarpımın logaritması

Ürünün logaritması toplamına eşit logaritmalar:

log a (x ⋅ y) = log a x + log a y

Özellik 2. Bölümün logaritması

Bölümün logaritması logaritma farkına eşittir:

log a (x / y) = log a x – log a y

Özellik 3. Gücün logaritması

Derecenin logaritması ürüne eşit Logaritma başına kuvvetler:

Logaritmanın tabanı derece ise o zaman başka bir formül uygulanır:

Özellik 4. Kökün logaritması

Bu özellik bir kuvvetin logaritmasının özelliğinden elde edilebilir, çünkü n'inci kuvvetin kökü güce eşit 1/n:

Bir tabandaki logaritmayı başka bir tabandaki logaritmaya dönüştürme formülü

Bu formül aynı zamanda logaritmalarla ilgili çeşitli görevleri çözerken sıklıkla kullanılır:

Özel durum:

Logaritmaların karşılaştırılması (eşitsizlikler)

Logaritma altında aynı tabanlara sahip iki f(x) ve g(x) fonksiyonumuz olsun ve aralarında bir eşitsizlik işareti olsun:

Bunları karşılaştırmak için önce logaritmanın tabanına bakmanız gerekir:

  • a > 0 ise f(x) > g(x) > 0
  • 0 ise< a < 1, то 0 < f(x) < g(x)

Logaritmalarla ilgili problemler nasıl çözülür: örnekler

Logaritmalarla ilgili sorunlar Görev 5 ve Görev 7'de 11. sınıf için Matematikte Birleşik Devlet Sınavına dahil edilen görevleri web sitemizde uygun bölümlerde bulabilirsiniz. Ayrıca matematik görev bankasında logaritmalı görevler bulunur. Tüm örnekleri sitede arama yaparak bulabilirsiniz.

Logaritma nedir

Logaritmalar her zaman dikkate alınmıştır karmaşık konu V okul kursu matematik. Çok var farklı tanımlar logaritma, ancak bazı nedenlerden dolayı çoğu ders kitabı bunların en karmaşık ve başarısız olanını kullanır.

Logaritmayı basit ve net bir şekilde tanımlayacağız. Bunu yapmak için bir tablo oluşturalım:

Yani iki gücümüz var.

Logaritmalar - özellikleri, formüller, nasıl çözüleceği

Alt satırdaki sayıyı alırsanız, bu sayıyı elde etmek için ikiyi yükseltmeniz gereken gücü kolayca bulabilirsiniz. Örneğin, 16 elde etmek için ikinin dördüncü kuvvetini yükseltmeniz gerekir. Ve 64'ü elde etmek için ikinin altıncı gücünü artırmanız gerekir. Bu tablodan görülebilmektedir.

Ve şimdi - aslında logaritmanın tanımı:

x argümanının a tabanı, x sayısını elde etmek için a sayısının yükseltilmesi gereken kuvvettir.

Tanım: log a x = b, burada a tabandır, x argümandır, b ise logaritmanın gerçekte eşit olduğu şeydir.

Örneğin, 2 3 = 8 ⇒ log 2 8 = 3 (2 3 = 8 olduğundan 8'in 2 tabanlı logaritması üçtür). Aynı başarı ile log 2 64 = 6, çünkü 2 6 = 64.

Bir sayının belirli bir tabana göre logaritmasını bulma işlemine denir. Şimdi tablomuza yeni bir satır ekleyelim:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
günlük 2 2 = 1 günlük 2 4 = 2 günlük 2 8 = 3 günlük 2 16 = 4 günlük 2 32 = 5 günlük 2 64 = 6

Ne yazık ki tüm logaritmalar bu kadar kolay hesaplanamıyor. Örneğin, log 2 5'i bulmaya çalışın. Tabloda 5 sayısı yok ama mantık, logaritmanın aralıkta bir yerde olacağını söylüyor. Çünkü 2 2< 5 < 2 3 , а чем daha fazla derece iki, sayı ne kadar büyükse.

Bu tür sayılara irrasyonel denir: Ondalık noktadan sonraki sayılar sonsuza kadar yazılabilir ve asla tekrarlanmaz. Logaritmanın irrasyonel olduğu ortaya çıkarsa, onu bu şekilde bırakmak daha iyidir: log 2 5, log 3 8, log 5 100.

Logaritmanın iki değişkenli (taban ve argüman) bir ifade olduğunu anlamak önemlidir. İlk başta birçok kişi temelin nerede olduğunu ve argümanın nerede olduğunu karıştırıyor. Kaçınmak için sinir bozucu yanlış anlaşılmalar, sadece resme bakın:

Önümüzde bir logaritmanın tanımından başka bir şey yok. Hatırlamak: logaritma bir kuvvettir Bir argüman elde etmek için tabanın içine inşa edilmesi gerekir. Bir güce yükseltilen tabandır - resimde kırmızıyla vurgulanmıştır. Tabanın her zaman altta olduğu ortaya çıktı! Öğrencilerime bu harika kuralı daha ilk derste anlatıyorum ve hiçbir kafa karışıklığı ortaya çıkmıyor.

Logaritmalar nasıl sayılır

Tanımı çözdük; geriye kalan tek şey logaritmanın nasıl sayılacağını öğrenmek. "log" işaretinden kurtulun. Başlangıç ​​olarak, tanımdan iki önemli gerçeğin çıktığını not ediyoruz:

  1. Argüman ve taban her zaman sıfırdan büyük olmalıdır. Bu, derecenin tanımından kaynaklanmaktadır. rasyonel gösterge Logaritmanın tanımı buraya gelir.
  2. Taban birden farklı olmalıdır, çünkü bir dereceye kadar bir hala bir olarak kalır. Bu nedenle “iki elde etmek için kişinin hangi güce yükseltilmesi gerekir” sorusu anlamsızdır. Böyle bir derece yok!

Bu tür kısıtlamalara denir bölge kabul edilebilir değerler (ODZ). Logaritmanın ODZ'sinin şu şekilde göründüğü ortaya çıktı: log a x = b ⇒x > 0, a > 0, a ≠ 1.

B sayısı (logaritmanın değeri) üzerinde herhangi bir kısıtlama olmadığını unutmayın. Örneğin logaritma negatif olabilir: log 2 0,5 = −1, çünkü 0,5 = 2 −1.

Ancak şimdi sadece düşünüyoruz sayısal ifadeler Logaritmanın CVD'sini bilmenin gerekli olmadığı durumlarda. Sorunların yazarları tarafından tüm kısıtlamalar zaten dikkate alınmıştır. Ama gittiklerinde logaritmik denklemler ve eşitsizlikler nedeniyle DHS gereklilikleri zorunlu hale gelecektir. Sonuçta, temel ve argüman, yukarıdaki kısıtlamalara tam olarak uymayan çok güçlü yapılar içerebilir.

Şimdi düşünelim genel şema Logaritmaların hesaplanması. Üç adımdan oluşur:

  1. A tabanını ve x argümanını, mümkün olan minimum tabanı birden büyük olacak şekilde bir kuvvet olarak ifade edin. Bu arada ondalık sayılardan kurtulmak daha iyidir;
  2. b değişkeninin denklemini çözün: x = a b ;
  3. Ortaya çıkan b sayısı cevap olacaktır.

İşte bu! Logaritmanın irrasyonel olduğu ortaya çıkarsa, bu zaten ilk adımda görülecektir. Tabanın olması şartı birden fazla, çok önemlidir: hata olasılığını azaltır ve hesaplamaları büyük ölçüde basitleştirir. Aynısı ondalık sayılar: Bunları hemen normal olanlara dönüştürürseniz, çok daha az hata olacaktır.

Belirli örnekleri kullanarak bu şemanın nasıl çalıştığını görelim:

Görev. Logaritmayı hesaplayın: log 5 25

  1. Tabanı ve argümanı beşin kuvveti olarak düşünelim: 5 = 5 1; 25 = 52;
  2. Denklemi oluşturup çözelim:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Cevabını aldık: 2.

Görev. Logaritmayı hesaplayın:

Görev. Logaritmayı hesaplayın: log 4 64

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 4 = 2 2; 64 = 26;
  2. Denklemi oluşturup çözelim:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Cevabını aldık: 3.

Görev. Logaritmayı hesaplayın: log 16 1

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 16 = 2 4; 1 = 2 0;
  2. Denklemi oluşturup çözelim:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Cevabını aldık: 0.

Görev. Logaritmayı hesaplayın: log 7 14

  1. Tabanı ve argümanı yedinin kuvveti olarak düşünelim: 7 = 7 1; 7 1 olduğundan 14 yedinin kuvveti olarak temsil edilemez< 14 < 7 2 ;
  2. İtibaren önceki paragraf buradan logaritmanın sayılmadığı sonucu çıkar;
  3. Cevap değişiklik yok: log 7 14.

Son örnekle ilgili küçük bir not. Bir sayının başka bir sayının tam kuvveti olmadığından nasıl emin olabilirsiniz? Çok basit; sadece parçalara ayırın asal faktörler. Genişlemenin en az iki farklı faktörü varsa, sayı tam bir kuvvet değildir.

Görev. Sayıların tam kuvvetleri olup olmadığını öğrenin: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tam derece, çünkü yalnızca bir çarpan vardır;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - tam bir kuvvet değildir, çünkü iki çarpan vardır: 3 ve 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tam derece;
35 = 7 · 5 - yine kesin bir kuvvet değil;
14 = 7 · 2 - yine kesin bir derece değil;

Şunu da belirtelim ki biz kendimiz asal sayılar her zaman kendilerinin kesin dereceleridir.

Ondalık logaritma

Bazı logaritmalar o kadar yaygındır ki özel bir isme ve sembole sahiptirler.

x argümanının 10 tabanına göre logaritması, yani X sayısını elde etmek için 10 sayısının yükseltilmesi gereken kuvvet. Tanım: lg x.

Örneğin log 10 = 1; lg100 = 2; lg 1000 = 3 - vb.

Artık bir ders kitabında "lg 0.01'i bul" gibi bir ifade göründüğünde şunu bilin: bu bir yazım hatası değil. Bu ondalık logaritma. Ancak bu gösterime aşina değilseniz, istediğiniz zaman yeniden yazabilirsiniz:
günlük x = günlük 10 x

Sıradan logaritmalar için doğru olan her şey ondalık logaritmalar için de doğrudur.

Doğal logaritma

Kendi tanımı olan başka bir logaritma var. Bazı yönlerden ondalık sayıdan bile daha önemlidir. bu yaklaşık Doğal logaritma hakkında.

x argümanının e tabanına göre logaritması, yani. x sayısını elde etmek için e sayısının yükseltilmesi gereken güç. Tanım: ln x.

Birçoğu şunu soracak: e sayısı nedir? Bu irrasyonel sayı, onun kesin değer bulmak ve kaydetmek imkansızdır. Sadece ilk rakamları vereceğim:
e = 2,718281828459…

Bu sayının ne olduğu ve neden ihtiyaç duyulduğu konusunda detaya girmeyeceğiz. E'nin doğal logaritmanın tabanı olduğunu unutmayın:
ln x = log e x

Böylece ln e = 1; ln e 2 = 2; ln e 16 = 16 - vb. Öte yandan ln 2 irrasyonel bir sayıdır. Genel olarak herhangi bir sayının doğal logaritması rasyonel sayı mantıksız. Elbette biri hariç: ln 1 = 0.

Doğal logaritmalar için sıradan logaritmalar için geçerli olan tüm kurallar geçerlidir.

Ayrıca bakınız:

Logaritma. Logaritmanın özellikleri (logaritmanın gücü).

Bir sayı logaritma olarak nasıl temsil edilir?

Logaritmanın tanımını kullanıyoruz.

Logaritma, logaritma işaretinin altındaki sayıyı elde etmek için tabanın yükseltilmesi gereken bir üsdür.

Bu nedenle, belirli bir c sayısını a tabanına göre logaritma olarak temsil etmek için, logaritmanın işaretinin altına logaritmanın tabanıyla aynı tabana sahip bir kuvvet koymanız ve bu c sayısını üs olarak yazmanız gerekir:

Kesinlikle herhangi bir sayı logaritma olarak temsil edilebilir - pozitif, negatif, tam sayı, kesirli, rasyonel, irrasyonel:

Bir testin veya sınavın stresli koşullarında a ve c'yi karıştırmamak için aşağıdaki ezberleme kuralını kullanabilirsiniz:

aşağıda olan aşağı iner, yukarıda olan ise yukarı çıkar.

Örneğin, 2 sayısını 3 tabanına göre logaritma olarak temsil etmeniz gerekir.

Elimizde iki sayımız var - 2 ve 3. Bu sayılar logaritmanın işaretinin altına yazacağımız taban ve üslerdir. Geriye bu sayılardan hangisinin derece tabanına, hangisinin üsse kadar yazılması gerektiğini belirlemek kalıyor.

Bir logaritma gösteriminde 3 tabanı en alttadır, yani ikiyi 3 tabanına göre logaritma olarak temsil ettiğimizde tabana da 3 yazacağız.

2, üçten büyüktür. Ve ikinci derecenin gösteriminde üçün üstüne, yani üslü olarak yazıyoruz:

Logaritmalar. Giriş seviyesi.

Logaritmalar

Logaritma pozitif sayı B dayalı A, Nerede a > 0, a ≠ 1, sayının yükseltilmesi gereken üs olarak adlandırılır A almak için B.

logaritmanın tanımı kısaca şu şekilde yazılabilir:

Bu eşitlik aşağıdakiler için geçerlidir: b > 0, a > 0, a ≠ 1. Genellikle denir logaritmik özdeşlik.
Bir sayının logaritmasını bulma işlemine denir logaritma ile.

Logaritmanın özellikleri:

Ürünün logaritması:

Bölümün logaritması:

Logaritma tabanını değiştirmek:

Derecenin logaritması:

Kökün logaritması:

Güç tabanlı logaritma:





Ondalık ve doğal logaritmalar.

Ondalık logaritma sayılar bu sayının logaritmasını 10 tabanına çağırır ve   lg yazar B
Doğal logaritma sayılara o sayının tabana göre logaritması denir e, Nerede e- yaklaşık olarak 2,7'ye eşit irrasyonel bir sayı. Aynı zamanda ln yazıyorlar B.

Cebir ve geometri üzerine diğer notlar

Logaritmanın temel özellikleri

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log a x ve log a y. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma log a x verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir.

Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. log a a = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. log a 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa logaritma sıfıra eşittir! Çünkü 0 = 1, tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Yani iki gücümüz var. Alt satırdaki sayıyı alırsanız, bu sayıyı elde etmek için ikiyi yükseltmeniz gereken gücü kolayca bulabilirsiniz. Örneğin, 16 elde etmek için ikinin dördüncü kuvvetini yükseltmeniz gerekir. Ve 64'ü elde etmek için ikinin altıncı gücünü artırmanız gerekir. Bu tablodan görülebilmektedir.

Ve şimdi - aslında logaritmanın tanımı:

x'in logaritması tabanı, x'i elde etmek için a'nın yükseltilmesi gereken kuvvettir.

Tanım: log a x = b, burada a tabandır, x argümandır, b ise logaritmanın gerçekte eşit olduğu şeydir.

Örneğin, 2 3 = 8 ⇒ log 2 8 = 3 (2 3 = 8 olduğundan 8'in 2 tabanlı logaritması üçtür). Aynı başarı günlüğü ile 2 64 = 6, çünkü 2 6 = 64.

Bir sayının belirli bir tabana göre logaritmasını bulma işlemine logaritma denir. Şimdi tablomuza yeni bir satır ekleyelim:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
günlük 2 2 = 1günlük 2 4 = 2 günlük 2 8 = 3günlük 2 16 = 4 günlük 2 32 = 5günlük 2 64 = 6

Ne yazık ki tüm logaritmalar bu kadar kolay hesaplanamıyor. Örneğin, log 2 5'i bulmayı deneyin. Tabloda 5 sayısı yok ama mantık, logaritmanın parça üzerinde bir yerde olacağını söylüyor. Çünkü 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Bu tür sayılara irrasyonel denir: Ondalık noktadan sonraki sayılar sonsuza kadar yazılabilir ve asla tekrarlanmaz. Logaritmanın irrasyonel olduğu ortaya çıkarsa, onu bu şekilde bırakmak daha iyidir: log 2 5, log 3 8, log 5 100.

Logaritmanın iki değişkenli (taban ve argüman) bir ifade olduğunu anlamak önemlidir. İlk başta birçok kişi temelin nerede olduğunu ve argümanın nerede olduğunu karıştırıyor. Can sıkıcı yanlış anlamaları önlemek için resme bakın:

Önümüzde bir logaritmanın tanımından başka bir şey yok. Hatırlamak: logaritma bir kuvvettir Bir argüman elde etmek için tabanın içine inşa edilmesi gerekir. Bir güce yükseltilen tabandır - resimde kırmızıyla vurgulanmıştır. Tabanın her zaman altta olduğu ortaya çıktı! Öğrencilerime bu harika kuralı daha ilk derste anlatıyorum ve hiçbir kafa karışıklığı ortaya çıkmıyor.

Tanımı çözdük; geriye kalan tek şey logaritmanın nasıl sayılacağını öğrenmek. "log" işaretinden kurtulun. Başlangıç ​​olarak, tanımdan iki önemli gerçeğin çıktığını not ediyoruz:

  1. Argüman ve taban her zaman sıfırdan büyük olmalıdır. Bu, bir derecenin rasyonel bir üsle tanımlanmasından kaynaklanır ve logaritmanın tanımı buna indirgenir.
  2. Taban birden farklı olmalıdır, çünkü bir dereceye kadar bir hala bir olarak kalır. Bu nedenle “iki elde etmek için kişinin hangi güce yükseltilmesi gerekir” sorusu anlamsızdır. Böyle bir derece yok!

Bu tür kısıtlamalara denir kabul edilebilir değerler aralığı(ODZ). Logaritmanın ODZ'sinin şu şekilde göründüğü ortaya çıktı: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

B sayısı (logaritmanın değeri) üzerinde herhangi bir kısıtlama olmadığını unutmayın. Örneğin logaritma negatif olabilir: log 2 0,5 = −1, çünkü 0,5 = 2 −1.

Ancak şimdi yalnızca logaritmanın VA'sını bilmenin gerekli olmadığı sayısal ifadeleri ele alıyoruz. Sorunların yazarları tarafından tüm kısıtlamalar zaten dikkate alınmıştır. Ancak logaritmik denklemler ve eşitsizlikler devreye girdiğinde DL gereklilikleri zorunlu hale gelecektir. Sonuçta, temel ve argüman, yukarıdaki kısıtlamalara tam olarak uymayan çok güçlü yapılar içerebilir.

Şimdi logaritmaları hesaplamak için genel şemaya bakalım. Üç adımdan oluşur:

  1. A tabanını ve x argümanını, mümkün olan minimum tabanı birden büyük olacak şekilde bir kuvvet olarak ifade edin. Bu arada ondalık sayılardan kurtulmak daha iyidir;
  2. b değişkeninin denklemini çözün: x = a b ;
  3. Ortaya çıkan b sayısı cevap olacaktır.

İşte bu! Logaritmanın irrasyonel olduğu ortaya çıkarsa, bu zaten ilk adımda görülecektir. Tabanın birden büyük olması gerekliliği çok önemlidir: bu, hata olasılığını azaltır ve hesaplamaları büyük ölçüde basitleştirir. Ondalık kesirlerde de durum aynıdır: Bunları hemen sıradan kesirlere dönüştürürseniz, çok daha az hata olacaktır.

Belirli örnekleri kullanarak bu şemanın nasıl çalıştığını görelim:

Görev. Logaritmayı hesaplayın: log 5 25

  1. Tabanı ve argümanı beşin kuvveti olarak düşünelim: 5 = 5 1; 25 = 52;
  2. Denklemi oluşturup çözelim:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Cevabını aldık: 2.

Görev. Logaritmayı hesaplayın:

Görev. Logaritmayı hesaplayın: log 4 64

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 4 = 2 2; 64 = 26;
  2. Denklemi oluşturup çözelim:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Cevabını aldık: 3.

Görev. Logaritmayı hesaplayın: log 16 1

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 16 = 2 4; 1 = 2 0;
  2. Denklemi oluşturup çözelim:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Cevabını aldık: 0.

Görev. Logaritmayı hesaplayın: log 7 14

  1. Tabanı ve argümanı yedinin kuvveti olarak düşünelim: 7 = 7 1; 7 1 olduğundan 14 yedinin kuvveti olarak temsil edilemez< 14 < 7 2 ;
  2. Önceki paragraftan logaritmanın sayılmadığı anlaşılmaktadır;
  3. Cevap değişiklik yok: log 7 14.

Son örnekle ilgili küçük bir not. Bir sayının başka bir sayının tam kuvveti olmadığından nasıl emin olabilirsiniz? Çok basit; bunu asal çarpanlara ayırmanız yeterli. Genişlemenin en az iki farklı faktörü varsa, sayı tam bir kuvvet değildir.

Görev. Sayıların tam kuvvetleri olup olmadığını öğrenin: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tam derece, çünkü yalnızca bir çarpan vardır;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - tam bir kuvvet değildir, çünkü iki çarpan vardır: 3 ve 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tam derece;
35 = 7 · 5 - yine kesin bir kuvvet değil;
14 = 7 · 2 - yine kesin bir derece değil;

Ayrıca asal sayıların her zaman kendilerinin tam kuvvetleri olduğuna dikkat edin.

Ondalık logaritma

Bazı logaritmalar o kadar yaygındır ki özel bir isme ve sembole sahiptirler.

X'in ondalık logaritması, 10 tabanına göre logaritmasıdır; X sayısını elde etmek için 10 sayısının yükseltilmesi gereken kuvvet. Tanım: lg x.

Örneğin log 10 = 1; lg100 = 2; lg 1000 = 3 - vb.

Artık bir ders kitabında "lg 0.01'i bul" gibi bir ifade göründüğünde şunu bilin: bu bir yazım hatası değil. Bu bir ondalık logaritmadır. Ancak bu gösterime aşina değilseniz, istediğiniz zaman yeniden yazabilirsiniz:
günlük x = günlük 10 x

Sıradan logaritmalar için doğru olan her şey ondalık logaritmalar için de doğrudur.

Doğal logaritma

Kendi tanımı olan başka bir logaritma var. Bazı yönlerden ondalık sayıdan bile daha önemlidir. Doğal logaritmadan bahsediyoruz.

X'in doğal logaritması e tabanının logaritmasıdır, yani. x sayısını elde etmek için e sayısının yükseltilmesi gereken güç. Tanım: ln x .

Birçoğu şunu soracak: e sayısı nedir? Bu irrasyonel bir sayıdır; kesin değeri bulunup yazılamaz. Sadece ilk rakamları vereceğim:
e = 2,718281828459...

Bu sayının ne olduğu ve neden ihtiyaç duyulduğu konusunda detaya girmeyeceğiz. E'nin doğal logaritmanın tabanı olduğunu unutmayın:
ln x = log e x

Böylece ln e = 1; ln e 2 = 2; ln e 16 = 16 - vb. Öte yandan ln 2 irrasyonel bir sayıdır. Genel olarak herhangi bir rasyonel sayının doğal logaritması irrasyoneldir. Elbette biri hariç: ln 1 = 0.

Doğal logaritmalar için sıradan logaritmalar için geçerli olan tüm kurallar geçerlidir.

Logaritma nedir?

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

Logaritma nedir? Logaritmalar nasıl çözülür? Bu sorular birçok mezunun kafasını karıştırıyor. Geleneksel olarak logaritma konusunun karmaşık, anlaşılmaz ve korkutucu olduğu düşünülür. Özellikle logaritmalı denklemler.

Bu kesinlikle doğru değil. Kesinlikle! Bana inanmıyor musun? İyi. Şimdi sadece 10 - 20 dakika içinde:

1. Anlayacaksınız logaritma nedir.

2. Bütün bir sınıfı çözmeyi öğrenin üstel denklemler. Onlar hakkında hiçbir şey duymamış olsanız bile.

3. Basit logaritmaları hesaplamayı öğrenin.

Üstelik bunun için çarpım tablosunu ve bir sayının üssünü nasıl yükselteceğinizi bilmeniz yeterli...

Şüphelerin varmış gibi hissediyorum... Peki, tamam, zamanı işaretle! Hadi gidelim!

Öncelikle şu denklemi kafanızda çözün:

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.