Verilene eşit bir vektörün oluşturulması. Bir noktadan bir düzleme olan mesafenin hesaplanması

Bir vektörün cebirsel izdüşümü herhangi bir eksende vektörün uzunluğunun çarpımına ve eksen ile vektör arasındaki açının kosinüsüne eşittir:

Pr a b = |b|cos(a,b) veya

Burada a b vektörlerin skaler çarpımıdır, |a| - a vektörünün modülü.

Talimatlar. Пp a b vektörünün izdüşümünü bulmak için çevrimiçi mod a ve b vektörlerinin koordinatlarını belirtmek gerekir. Bu durumda vektör düzlemde (iki koordinat) ve uzayda (üç koordinat) belirtilebilir. Ortaya çıkan çözüm bir Word dosyasına kaydedilir. Vektörler noktaların koordinatları aracılığıyla belirtiliyorsa, bu hesap makinesini kullanmanız gerekir.

Verilen:
iki vektör koordinatı
üç vektör koordinatı
A: ; ;
B: ; ;

Vektör projeksiyonlarının sınıflandırılması

Tanım vektör projeksiyonuna göre projeksiyon türleri

Koordinat sistemine göre projeksiyon türleri

Vektör Projeksiyon Özellikleri

  1. Bir vektörün geometrik izdüşümü bir vektördür (bir yönü vardır).
  2. Bir vektörün cebirsel izdüşümü bir sayıdır.

Vektör projeksiyon teoremleri

Teorem 1. Vektörlerin toplamının herhangi bir eksene izdüşümü, vektörlerin toplamlarının aynı eksene izdüşümüne eşittir.


Teorem 2. Bir vektörün herhangi bir eksene cebirsel izdüşümü, vektörün uzunluğunun ve eksen ile vektör arasındaki açının kosinüsünün çarpımına eşittir:

Pr a b = |b|cos(a,b)

Vektör projeksiyonlarının türleri

  1. OX eksenine projeksiyon.
  2. OY eksenine projeksiyon.
  3. bir vektöre projeksiyon.
OX ekseninde projeksiyonOY ekseninde projeksiyonVektöre projeksiyon
A'B' vektörünün yönü OX ekseninin yönüyle çakışıyorsa, A'B' vektörünün izdüşümünün pozitif işareti vardır.
A'B' vektörünün yönü OY ekseninin yönüyle çakışıyorsa, A'B' vektörünün izdüşümünün pozitif işareti vardır.
A'B' vektörünün yönü NM vektörünün yönüyle çakışıyorsa, A'B' vektörünün izdüşümünün pozitif işareti vardır.
Vektörün yönü OX ekseninin yönünün tersi ise, A'B' vektörünün izdüşümü şu şekildedir: negatif işaret.
A'B' vektörünün yönü OY ekseninin yönünün tersi ise, A'B' vektörünün izdüşümü negatif işarete sahiptir.
A'B' vektörünün yönü NM vektörünün yönünün tersi ise, A'B' vektörünün izdüşümü negatif işarete sahiptir.
AB vektörü OX eksenine paralelse, A'B' vektörünün izdüşümü AB vektörünün mutlak değerine eşittir.

AB vektörü OY eksenine paralelse, A'B' vektörünün izdüşümü AB vektörünün mutlak değerine eşittir.

AB vektörü NM vektörüne paralelse, A'B' vektörünün izdüşümü AB vektörünün mutlak değerine eşittir.

AB vektörü OX eksenine dik ise, o zaman A'B' izdüşümü sıfıra eşittir (sıfır vektör).

AB vektörü OY eksenine dikse, A'B' izdüşümü sıfıra eşittir (sıfır vektör).

AB vektörü NM vektörüne dikse, A'B' izdüşümü sıfıra eşittir (sıfır vektör).

1. Soru: Bir vektörün izdüşümü negatif işaretli olabilir mi? Cevap: Evet, projeksiyon vektörü negatif bir değer olabilir. Bu durumda vektörün ters yön(OX ekseninin ve AB vektörünün nasıl yönlendirildiğine bakın)
2. Soru: Bir vektörün izdüşümü, vektörün mutlak değeriyle çakışabilir mi? Cevap: Evet, yapabilir. Bu durumda vektörler paraleldir (veya aynı doğru üzerinde yer alır).
3. Soru: Bir vektörün izdüşümü sıfıra eşit olabilir mi (boş vektör). Cevap: Evet, yapabilir. Bu durumda vektör, karşılık gelen eksene (vektöre) diktir.

Örnek 1. Vektör (Şekil 1), OX ekseni ile 60°'lik bir açı oluşturur (a vektörü ile belirtilir). OE bir ölçek birimi ise |b|=4 olur, yani .

Aslında vektörün uzunluğu (geometrik projeksiyon b) 2'ye eşittir ve yönü OX ekseninin yönü ile çakışır.

Örnek 2. Vektör (Şekil 2), OX ekseniyle (a vektörüyle) (a,b) = 120o açı oluşturur. Uzunluk |b| b vektörü 4'e eşittir, yani pr a b=4·cos120 o = -2.

Aslında vektörün uzunluğu 2'dir ve yönü eksen yönünün tersidir.

Giriş seviyesi

Koordinatlar ve vektörler. Kapsamlı rehber (2019)

Bu makalede, birçok geometri problemini basit aritmetiğe indirgemenizi sağlayacak bir "sihirli değnek"i tartışmaya başlayacağız. Bu "çubuk", özellikle de inşaat konusunda emin olmadığınızda hayatınızı çok daha kolaylaştırabilir. mekansal figürler, bölümler vb. Bütün bunlar belirli bir hayal gücü ve pratik beceriler gerektirir. Burada ele almaya başlayacağımız yöntem, her türden neredeyse tamamen soyutlama yapmanızı sağlayacaktır. geometrik yapılar ve muhakeme. Yöntem denir "koordinat yöntemi". Bu yazıda aşağıdaki soruları ele alacağız:

  1. Koordinat düzlemi
  2. Düzlemdeki noktalar ve vektörler
  3. İki noktadan bir vektör oluşturma
  4. Vektör uzunluğu (iki nokta arasındaki mesafe)​
  5. Segmentin ortasının koordinatları
  6. Vektörlerin nokta çarpımı
  7. İki vektör arasındaki açı

Koordinat yöntemine neden böyle denildiğini zaten tahmin ettiğinizi düşünüyorum. Doğru, bu ismi aldı çünkü çalışmıyor geometrik nesneler ve onlarla sayısal özellikler(koordinatlar). Geometriden cebire geçmemizi sağlayan dönüşümün kendisi de bir koordinat sisteminin tanıtılmasından ibarettir. Orijinal şekil düzse koordinatlar iki boyutludur, şekil üç boyutluysa koordinatlar üç boyutludur. Bu yazıda sadece iki boyutlu durumu ele alacağız. Ve makalenin asıl amacı size bazılarının nasıl kullanılacağını öğretmektir. temel teknikler koordinat yöntemi (bazen Birleşik Devlet Sınavının B Bölümündeki planimetri ile ilgili problemleri çözerken yararlı oldukları ortaya çıkar). Bu konuyla ilgili sonraki iki bölüm, C2 problemlerini (stereometri problemi) çözme yöntemlerinin tartışılmasına ayrılmıştır.

Koordinat yöntemini tartışmaya nereden başlamak mantıklı olur? Muhtemelen koordinat sistemi kavramından. Onunla ilk karşılaştığınız zamanı hatırlayın. Bana öyle geliyor ki 7. sınıfta varoluşu öğrendiğinde doğrusal fonksiyon, Örneğin. Bunu nokta nokta inşa ettiğinizi hatırlatmama izin verin. Hatırlıyor musun? Sen seçtin keyfi sayı, bunu formülde yerine koydum ve bu şekilde hesapladım. Örneğin, eğer, o zaman, eğer, o zaman vb. Sonunda ne elde ettiniz? Ve koordinatları olan puanlar aldınız: ve. Daha sonra bir “çapraz” (koordinat sistemi) çizdiniz, üzerinde bir ölçek seçtiniz (birim segment olarak kaç hücreye sahip olacağınız) ve elde ettiğiniz noktaları üzerinde işaretleyerek bunları düz bir çizgiyle birleştirdiniz; çizgi fonksiyonun grafiğidir.

Burada size biraz daha ayrıntılı olarak anlatılması gereken birkaç nokta var:

1. Kolaylık olması açısından tek bir segment seçersiniz, böylece her şey çizime güzel ve kompakt bir şekilde sığar

2. Eksenin soldan sağa, eksenin aşağıdan yukarıya doğru gittiği kabul edilir.

3. Dik açılarda kesişirler ve kesiştikleri noktaya orijin denir. Bir harfle belirtilir.

4. Bir noktanın koordinatlarını yazarken, örneğin, parantez içinde solda noktanın eksen boyunca ve sağda eksen boyunca koordinatları vardır. Özellikle, bu şu anlama gelir:

5. Herhangi bir noktayı belirlemek için koordinat ekseni koordinatlarını belirtmeniz gerekir (2 sayı)

6. Eksen üzerinde yer alan herhangi bir nokta için,

7. Eksen üzerinde yer alan herhangi bir nokta için,

8. Eksene x ekseni denir

9. Eksen y ekseni olarak adlandırılır

Şimdi bunu seninle yapalım sonraki adım: İki noktayı işaretleyelim. Bu iki noktayı bir doğru parçasıyla birleştirelim. Ve sanki noktadan noktaya bir doğru parçası çiziyormuşuz gibi oku koyacağız: yani parçamızı yönlendirilmiş hale getireceğiz!

Başka bir yönlü segmentin ne dendiğini hatırlıyor musunuz? Doğru, buna vektör deniyor!

Yani noktayı noktaya bağlarsak, ve başlangıç ​​A noktası olacak ve son B noktası olacak, sonra bir vektör elde ederiz. Sen de bu inşaatı 8. sınıfta yapmıştın, hatırladın mı?

Noktalar gibi vektörlerin de iki sayı ile gösterilebileceği ortaya çıktı: bu sayılara vektör koordinatları denir. Soru: Bir vektörün koordinatlarını bulmak için başlangıç ​​ve bitiş koordinatlarını bilmemiz sizce yeterli midir? Görünüşe göre evet! Ve bu çok basit bir şekilde yapılır:

Böylece, bir vektörde nokta başlangıç ​​ve son da son olduğundan, vektör aşağıdaki koordinatlara sahiptir:

Örneğin, eğer öyleyse vektörün koordinatları

Şimdi bunun tersini yapalım, vektörün koordinatlarını bulalım. Bunun için neyi değiştirmemiz gerekiyor? Evet, başlangıcı ve bitişi değiştirmeniz gerekiyor: şimdi vektörün başlangıcı noktada olacak ve sonu da noktada olacak. Daha sonra:

Dikkatlice bakın, vektörler arasındaki fark nedir? Tek farkları koordinatlardaki işaretlerdir. Onlar zıttır. Bu gerçek genellikle şu şekilde yazılır:

Bazen hangi noktanın vektörün başlangıcı, hangisinin sonu olduğu açıkça belirtilmezse, vektörler ikiden fazla sayı ile gösterilir. büyük harflerle ve bir küçük harf, örneğin: , vb.

Şimdi biraz pratik kendiniz ve aşağıdaki vektörlerin koordinatlarını bulun:

Muayene:

Şimdi biraz daha zor bir problemi çözün:

Başlangıç ​​noktası bir noktada olan bir vektörün ko-or-di-na-you'su vardır. Abs-cis-su noktalarını bulun.

Yine de oldukça sıradan: Noktanın koordinatları olsun. Daha sonra

Sistemi vektör koordinatlarının ne olduğunun tanımına göre derledim. O halde noktanın koordinatları vardır. Apsisle ilgileniyoruz. Daha sonra

Cevap:

Vektörlerle başka neler yapabilirsiniz? Evet hemen hemen her şey aynı sıradan sayılar(Bölme yapamazsınız ancak iki şekilde çarpabilirsiniz; bunlardan birini biraz sonra burada tartışacağız)

  1. Vektörler birbirine eklenebilir
  2. Vektörler birbirinden çıkarılabilir
  3. Vektörler sıfırdan farklı bir sayıyla çarpılabilir (veya bölünebilir)
  4. Vektörler birbirleriyle çarpılabilir

Tüm bu işlemlerin çok net bir geometrik temsili vardır. Örneğin, toplama ve çıkarma için üçgen (veya paralelkenar) kuralı:

Bir vektör bir sayıyla çarpıldığında veya bölündüğünde uzar, daralır veya yön değiştirir:

Ancak burada koordinatlara ne olacağı sorusuyla ilgileneceğiz.

1. İki vektörü toplarken (çıkarırken), bunların koordinatlarını öğe öğe ekleriz (çıkarırız). Yani:

2. Bir vektörü bir sayıyla çarparken (bölerken), tüm koordinatları bu sayıyla çarpılır (bölülür):

Örneğin:

· Yüzyıldan bugüne eş-or-di-nat miktarını bulun.

Önce vektörlerin her birinin koordinatlarını bulalım. İkisi de aynı kökene sahiptir; başlangıç ​​noktası. Bunların sonu farklıdır. Daha sonra, . Şimdi vektörün koordinatlarını hesaplayalım. O halde ortaya çıkan vektörün koordinatlarının toplamı eşittir.

Cevap:

Şimdi aşağıdaki sorunu kendiniz çözün:

· Vektör koordinatlarının toplamını bulun

Kontrol ediyoruz:

Şimdi şu problemi ele alalım: üzerinde iki noktamız var koordinat düzlemi. Aralarındaki mesafe nasıl bulunur? Birinci nokta ve ikincisi olsun. Aralarındaki mesafeyi ile gösterelim. Açıklık sağlamak için aşağıdaki çizimi yapalım:

Ne yaptım? Öncelikle bağlandım noktalar ve bir ayrıca bir noktadan eksene paralel bir çizgi çizdim ve bir noktadan da eksene paralel bir çizgi çizdim. Bir noktada kesişerek dikkat çekici bir şekil mi oluşturdular? Onun nesi bu kadar özel? Evet, sen ve ben neredeyse her şeyi biliyoruz dik üçgen. Elbette Pisagor teoremi. Gerekli bölüm bu üçgenin hipotenüsüdür ve bölümler bacaklardır. Noktanın koordinatları nelerdir? Evet, resimden bulmak kolaydır: Parçalar eksenlere paralel olduğundan ve sırasıyla uzunluklarını bulmak kolaydır: Parçaların uzunluklarını sırasıyla ile belirtirsek, o zaman

Şimdi Pisagor teoremini kullanalım. Bacakların uzunluklarını biliyoruz, hipotenüsü bulacağız:

Dolayısıyla iki nokta arasındaki mesafe, koordinatlardan olan farkların karelerinin toplamının köküdür. Veya - iki nokta arasındaki mesafe, onları birleştiren parçanın uzunluğudur.

Noktalar arasındaki mesafenin yöne bağlı olmadığını görmek kolaydır. Daha sonra:

Buradan üç sonuç çıkarıyoruz:

İki nokta arasındaki mesafeyi hesaplama konusunda biraz pratik yapalım:

Örneğin, eğer ve arasındaki mesafe şuna eşitse:

Veya başka bir yoldan gidelim: vektörün koordinatlarını bulun

Ve vektörün uzunluğunu bulun:

Gördüğünüz gibi aynı şey!

Şimdi biraz kendiniz pratik yapın:

Görev: Belirtilen noktalar arasındaki mesafeyi bulun:

Kontrol ediyoruz:

Kulağa biraz farklı gelse de, aynı formülü kullanan birkaç problem daha var:

1. Göz kapağı uzunluğunun karesini bulun.

2. Göz kapağı uzunluğunun karesini bulun

Sanırım onlarla zorluk çekmeden başa çıktın? Kontrol ediyoruz:

1. Bu da dikkat içindir) Vektörlerin koordinatlarını daha önce bulmuştuk: . O halde vektörün koordinatları vardır. Uzunluğunun karesi şuna eşit olacaktır:

2. Vektörün koordinatlarını bulun

O zaman uzunluğunun karesi

Karmaşık bir şey yok, değil mi? Basit aritmetik, başka bir şey değil.

1. Aşağıdaki problemler açık bir şekilde sınıflandırılamaz; bunlar daha çok genel bilgi ve basit resimler çizme becerisiyle ilgilidir.

Noktayı apsis eksenine bağlayan kesimden gelen açının sinüsünü bulun.

Burada nasıl ilerleyeceğiz? Eksen ile arasındaki açının sinüsünü bulmamız gerekiyor. Sinüs'ü nerede arayabiliriz? Bu doğru, bir dik üçgende. Peki ne yapmamız gerekiyor? Bu üçgeni inşa edin!

Noktanın koordinatları ve olduğundan, segment eşittir ve segmenttir. Açının sinüsünü bulmamız gerekiyor. Size sinüsün bir oran olduğunu hatırlatmama izin verin karşı taraf o zaman hipotenüse

Bize yapacak ne kaldı? Hipotenüsü bulun. Bunu iki şekilde yapabilirsiniz: Pisagor teoremini kullanarak (bacaklar bilinir!) veya iki nokta arasındaki mesafe formülünü kullanarak (aslında ilk yöntemle aynı şeydir!). Ben ikinci yola gideceğim:

Cevap:

Bir sonraki görev size daha da kolay görünecek. Noktanın koordinatlarında.

Görev 2. Per-pen-di-ku-lyar'ın ab-ciss eksenine indirildiği noktadan itibaren. Nai-di-te abs-cis-su os-no-va-niya per-pen-di-ku-la-ra.

Bir çizim yapalım:

Bir dikmenin tabanı x eksenini (ekseni) kestiği noktadır, benim için bu bir noktadır. Şekil koordinatlara sahip olduğunu göstermektedir: . Apsisle yani “x” bileşeniyle ilgileniyoruz. O eşittir.

Cevap: .

Görev 3.Önceki problemin koşullarında, noktadan koordinat eksenlerine olan mesafelerin toplamını bulun.

Bir noktadan eksenlere olan mesafenin ne olduğunu biliyorsanız, görev genellikle basittir. Bilirsin? Umarım, ama yine de hatırlatacağım:

Peki, hemen yukarıdaki çizimimde zaten böyle bir dik çizgi çizmiş miydim? Hangi eksendedir? Eksene. Peki uzunluğu ne kadardır? O eşittir. Şimdi eksene kendiniz dik bir çizgi çizin ve uzunluğunu bulun. Eşit olacak değil mi? O zaman toplamları eşittir.

Cevap: .

Görev 4. Görev 2 koşullarında noktanın koordinatını bulun, simetrik nokta apsis eksenine göre.

Simetrinin ne olduğu sizin için sezgisel olarak açık sanırım? Pek çok nesnede bu var: pek çok bina, masa, uçak, pek çok geometrik şekiller: top, silindir, kare, eşkenar dörtgen vb. Kabaca söylemek gerekirse simetri şu şekilde anlaşılabilir: bir şekil iki (veya daha fazla) özdeş yarıdan oluşur. Bu simetriye eksenel simetri denir. O halde eksen nedir? Bu tam olarak şeklin göreceli olarak eşit yarıya "kesilebileceği" çizgidir (bu resimde simetri ekseni düzdür):

Şimdi görevimize geri dönelim. Eksene göre simetrik olan bir nokta aradığımızı biliyoruz. O halde bu eksen simetri eksenidir. Bu, eksenin parçayı iki eşit parçaya keseceği bir noktayı işaretlememiz gerektiği anlamına gelir. Böyle bir noktayı kendiniz işaretlemeye çalışın. Şimdi benim çözümümle karşılaştırın:

Sizin için de aynı şekilde mi sonuçlandı? İyi! Bulunan noktanın koordinatıyla ilgileniyoruz. Eşittir

Cevap:

Şimdi söyleyin bana, birkaç saniye düşündükten sonra, A noktasına ordinatına göre simetrik olan bir noktanın apsisi ne olur? Cevabınız nedir? Doğru cevap: .

İÇİNDE genel durum kural şu ​​şekilde yazılabilir:

Apsis eksenine göre bir noktaya simetrik bir noktanın koordinatları vardır:

Ordinat eksenine göre bir noktaya simetrik bir noktanın koordinatları vardır:

Eh, şimdi tamamen korkutucu görev: orijine göre noktaya simetrik olan bir noktanın koordinatlarını bulun. Önce kendin düşün, sonra çizimime bak!

Cevap:

Şimdi paralelkenar problemi:

Görev 5: Noktalar ver-shi-na-mi pa-ral-le-lo-gram-ma olarak görünür. Bu noktada or-di'yi bulun.

Bu sorunu iki şekilde çözebilirsiniz: mantık ve koordinat yöntemi. Önce koordinat yöntemini kullanacağım, sonra size bunu nasıl farklı şekilde çözebileceğinizi anlatacağım.

Noktanın apsisinin eşit olduğu oldukça açıktır. (noktadan apsis eksenine çizilen dik üzerinde yer alır). Ordinatı bulmamız gerekiyor. Şeklimizin paralelkenar olmasından yararlanalım, bu şu anlama geliyor. İki nokta arasındaki mesafe formülünü kullanarak doğru parçasının uzunluğunu bulalım:

Noktayı eksene bağlayan dikmeyi indiriyoruz. Kesişme noktasını harfle belirteceğim.

Segmentin uzunluğu eşittir. (bu noktayı tartıştığımız yerde sorunu kendiniz bulun), sonra Pisagor teoremini kullanarak parçanın uzunluğunu bulacağız:

Bir parçanın uzunluğu tam olarak ordinatıyla çakışır.

Cevap: .

Başka bir çözüm (Sadece bunu gösteren bir resim vereceğim)

Çözüm ilerlemesi:

1. Davranış

2. Noktanın ve uzunluğun koordinatlarını bulun

3. Bunu kanıtlayın.

Bir tane daha bölüm uzunluğu sorunu:

Noktalar üçgenin üstünde görünür. Orta çizgisinin paralel uzunluğunu bulun.

Bir üçgenin orta çizgisinin ne olduğunu hatırlıyor musunuz? O zaman bu görev sizin için temeldir. Hatırlamıyorsan sana hatırlatayım: Üçgenin orta çizgisi, orta noktaları birleştiren çizgidir zıt taraflar. Tabana paralel ve yarısına eşittir.

Taban bir segmenttir. Uzunluğunu daha önce aramamız gerekiyordu, eşit. Daha sonra uzunluk orta hat yarısı kadar ve eşit.

Cevap: .

Yorum Yap: Bu sorun, biraz sonra ele alacağımız başka bir şekilde çözülebilir.

Bu arada, işte size birkaç problem; onlarla pratik yapın, çok basitler ama koordinat yöntemini kullanmada daha iyi olmanıza yardımcı oluyorlar!

1. Noktalar tra-pe-yonların en üstünde görünür. Orta çizgisinin uzunluğunu bulun.

2. Noktalar ve görünümler ver-shi-na-mi pa-ral-le-lo-gram-ma. Bu noktada or-di-bulun.

3. Noktayı birleştirerek kesimden itibaren uzunluğu bulun ve

4. Koordinat düzleminde renkli şeklin arkasındaki alanı bulun.

5. Merkezi na-cha-le ko-or-di-nat'ta olan bir daire bu noktadan geçiyor. Onun yarıçapını bulun.

6. Çemberin yarıçapını bulun, dik açı hakkında tanımlayın-san-noy-no-ka, bir şeyin üst kısımlarının bir eş-ya da -di-na-varlığı var, o kadar sorumlusunuz ki

Çözümler:

1. Bir yamuğun orta çizgisinin tabanlarının toplamının yarısına eşit olduğu bilinmektedir. Taban eşittir ve taban. Daha sonra

Cevap:

2. Bu problemi çözmenin en kolay yolu (paralelkenar kuralı) olduğunu not etmektir. Vektörlerin koordinatlarını hesaplamak zor değildir: . Vektörleri eklerken koordinatlar eklenir. Sonra koordinatları var. Vektörün orijini koordinatların olduğu nokta olduğundan nokta da bu koordinatlara sahiptir. Ordinatla ilgileniyoruz. O eşittir.

Cevap:

3. Hemen iki nokta arasındaki mesafe formülüne göre hareket ediyoruz:

Cevap:

4. Resme bakın ve gölgeli alanın hangi iki şeklin arasına sıkıştırıldığını söyleyin? İki kare arasına sıkıştırılmıştır. Daha sonra istenen şeklin alanı, büyük karenin alanından küçük olanın alanına eşittir. Taraf küçük kare noktaları birleştiren bir segmenttir ve uzunluğu

O zaman küçük karenin alanı

Tam olarak aynısını yapıyoruz büyük kare: Kenarı noktaları birleştiren bir doğru parçası olup uzunluğu

O zaman büyük karenin alanı

İstenilen şeklin alanını aşağıdaki formülü kullanarak buluyoruz:

Cevap:

5. Eğer bir çemberin merkezi orijine sahipse ve bir noktadan geçiyorsa, yarıçapı tam olarak şu şekilde olacaktır: uzunluğa eşit segment (bir çizim yapın ve bunun neden açık olduğunu anlayacaksınız). Bu parçanın uzunluğunu bulalım:

Cevap:

6. Bir dikdörtgenin çevrelediği dairenin yarıçapının yarıya eşit onun köşegenleri. İki köşegenden herhangi birinin uzunluğunu bulalım (sonuçta, bir dikdörtgende bunlar eşittir!)

Cevap:

Peki her şeyin üstesinden geldin mi? Bunu anlamak çok zor olmadı değil mi? Burada tek bir kural var - görsel bir resim oluşturabilmek ve içindeki tüm verileri basitçe "okuyabilmek".

Çok az şeyimiz kaldı. Aslında tartışmak istediğim iki nokta daha var.

Bu basit sorunu çözmeye çalışalım. İki puan verelim. Doğru parçasının orta noktasının koordinatlarını bulun. Bu sorunun çözümü şu şekildedir: Nokta istenen orta olsun, o zaman koordinatları vardır:

Yani: parçanın ortasının koordinatları = parçanın uçlarının karşılık gelen koordinatlarının aritmetik ortalaması.

Bu kural çok basittir ve genellikle öğrenciler için zorluk yaratmaz. Hangi problemlerde ve nasıl kullanıldığını görelim:

1. Kesimden-di-te veya-di-na-tu se-re-di-ny'yi bulun, noktayı bağlayın ve

2. Puanlar dünyanın zirvesi gibi görünüyor. Dia-go-na-ley'in per-re-se-che-niya'sını bul.

3. Çemberin merkezini bulun, dikdörtgen-no-ka hakkında-san-noy'u tanımlayın, bir şeyin üstleri co-or-di-na-you-sorumlu bir şekilde-ama var.

Çözümler:

1. İlk sorun tam bir klasiktir. Segmentin ortasını belirlemek için hemen ilerliyoruz. Koordinatları var. Ordinat eşittir.

Cevap:

2. Bu dörtgenin bir paralelkenar (hatta eşkenar dörtgen) olduğunu görmek kolaydır. Kenar uzunluklarını hesaplayıp birbirleriyle karşılaştırarak bunu kendiniz kanıtlayabilirsiniz. Paralelkenarlar hakkında ne biliyorum? Köşegenleri kesişme noktasına göre ikiye bölünmüştür! Evet! Peki köşegenlerin kesişme noktası nedir? Bu herhangi bir köşegenin ortasıdır! Özellikle köşegeni seçeceğim. O zaman noktanın koordinatları vardır. Noktanın ordinatı eşittir.

Cevap:

3. Dikdörtgenin çevrelediği dairenin merkezi neyle çakışmaktadır? Köşegenlerinin kesişme noktasına denk gelir. Dikdörtgenin köşegenleri hakkında ne biliyorsunuz? Eşittirler ve kesişme noktası onları ikiye böler. Görev bir öncekine indirildi. Örneğin köşegeni ele alalım. O zaman çevrel çemberin merkezi ise orta noktadır. Koordinatları arıyorum: Apsis eşittir.

Cevap:

Şimdi kendi başınıza biraz pratik yapın, kendinizi test edebilmeniz için her sorunun yanıtını vereceğim.

1. Çemberin yarıçapını bulun, üçgen açıyı tanımlayın, hayır-ka, bir şeyin üst kısımlarının üzerinizde bir koordinatı var

2. Çemberin merkezini bulun-di-te veya-di-on-noy'u, üstleri koordinatlara sahip olan üçgen-no-ka hakkında tanımlayın

3. Ab-ciss eksenine karşılık gelecek şekilde merkezi bir noktada olan bir dairenin yarıçapı nasıl olmalıdır?

4. Eksenin yeniden kesildiği noktayı bulun ve kesip noktayı birleştirin ve

Cevaplar:

Her şey başarılı mıydı? Gerçekten öyle umuyorum! Şimdi - son itiş. Şimdi özellikle dikkatli olun. Şimdi açıklayacağım materyal yalnızca Kısım B'deki koordinat yöntemindeki basit problemlerle doğrudan ilgili değil, aynı zamanda Problem C2'nin her yerinde bulunuyor.

Hangi sözlerimi henüz tutmadım? Vektörler üzerinde hangi işlemleri tanıtmaya söz verdiğimi ve hangilerini sonuçta tanıttığımı hatırlıyor musunuz? Hiçbir şeyi unutmadığıma emin misin? Unutmuş olmak! Vektör çarpımının ne anlama geldiğini açıklamayı unuttum.

Bir vektörü bir vektörle çarpmanın iki yolu vardır. Seçilen yönteme bağlı olarak farklı nitelikteki nesneler elde edeceğiz:

Çapraz çarpım oldukça akıllıca yapılmıştır. Bir sonraki makalede bunun nasıl yapılacağını ve neden gerekli olduğunu tartışacağız. Ve bunda skaler çarpıma odaklanacağız.

Bunu hesaplamamıza izin veren iki yol vardır:

Tahmin ettiğiniz gibi sonuç aynı olmalı! O halde önce ilk yönteme bakalım:

Koordinatlar aracılığıyla nokta çarpımı

Bul: - skaler çarpım için genel kabul görmüş gösterim

Hesaplama formülü aşağıdaki gibidir:

yani nokta çarpım= vektör koordinatlarının çarpımlarının toplamı!

Örnek:

Bul-di-te

Çözüm:

Her bir vektörün koordinatlarını bulalım:

Skaler çarpımı aşağıdaki formülü kullanarak hesaplıyoruz:

Cevap:

Bakın kesinlikle karmaşık bir şey yok!

Peki, şimdi kendiniz deneyin:

· Yüzyılların skaler bir pro-iz-ve-de-nie'sini bulun ve

Başarabildin mi? Belki küçük bir yakalama fark ettiniz? Kontrol edelim:

Vektör koordinatları aşağıdaki gibi son görev! Cevap: .

Koordinat olana ek olarak, skaler çarpımı hesaplamanın başka bir yolu da vardır, yani vektörlerin uzunlukları ve aralarındaki açının kosinüsü aracılığıyla:

Ve vektörleri arasındaki açıyı belirtir.

Yani skaler çarpım, vektörlerin uzunlukları ile aralarındaki açının kosinüsünün çarpımına eşittir.

Madem ki çok daha basit olan birinci formüle sahibiz, en azından içinde kosinüs yok, bu ikinci formüle neden ihtiyacımız var? Ve birinci ve ikinci formüllerden vektörler arasındaki açıyı nasıl bulacağımızı çıkarabilmemiz için buna ihtiyaç var!

O zaman vektörün uzunluğunun formülünü hatırlayalım!

Daha sonra bu verileri skaler çarpım formülünde değiştirirsem şunu elde ederim:

Ama öte yandan:

Peki sen ve ben ne elde ettik? Artık iki vektör arasındaki açıyı hesaplamamızı sağlayan bir formülümüz var! Bazen kısa olması açısından şu şekilde de yazılır:

Yani, vektörler arasındaki açıyı hesaplama algoritması aşağıdaki gibidir:

  1. Koordinatlar aracılığıyla skaler çarpımı hesaplayın
  2. Vektörlerin uzunluklarını bulun ve çarpın
  3. 1. noktanın sonucunu 2. noktanın sonucuna bölün

Örneklerle pratik yapalım:

1. Göz kapakları ile arasındaki açıyı bulun. Cevabı grad-du-sah'ta verin.

2. Önceki problemin koşullarında vektörler arasındaki kosinüsü bulun

Haydi şunu yapalım: İlk sorunu çözmenize yardım edeceğim ve ikincisini kendiniz yapmaya çalışın! Kabul etmek? O zaman başlayalım!

1. Bu vektörler bizim eski dostlarımızdır. Skaler çarpımlarını zaten hesaplamıştık ve eşitti. Koordinatları: , . Sonra uzunluklarını buluyoruz:

Sonra vektörler arasındaki kosinüsü ararız:

Açının kosinüsü nedir? Burası köşe.

Cevap:

Şimdi ikinci sorunu kendiniz çözün ve sonra karşılaştırın! Çok kısa bir çözüm sunacağım:

2. Koordinatları vardır, koordinatları vardır.

Vektörler arasındaki açı olsun ve sonra

Cevap:

B kısmındaki problemlerin doğrudan vektörler ve koordinat yöntemi ile ilgili olduğuna dikkat edilmelidir. sınav kağıdı oldukça nadir. Ancak C2 problemlerinin büyük çoğunluğu bir koordinat sistemi getirilerek kolayca çözülebilir. Yani bu makaleyi, çözmemiz gereken oldukça akıllı yapılar yapacağımız temel olarak düşünebilirsiniz. karmaşık görevler.

KOORDİNATLAR VE VEKTÖRLER. ORTALAMA SEVİYE

Sen ve ben koordinat yöntemini incelemeye devam ediyoruz. Son bölümde bir seri elde ettik önemli formüller, aşağıdakilere izin verir:

  1. Vektör koordinatlarını bulun
  2. Bir vektörün uzunluğunu bulun (alternatif olarak: iki nokta arasındaki mesafe)
  3. Vektörleri ekleyin ve çıkarın. Bunları gerçek sayıyla çarpın
  4. Bir segmentin orta noktasını bulun
  5. Vektörlerin nokta çarpımını hesaplayın
  6. Vektörler arasındaki açıyı bulun

Elbette koordinat yönteminin tamamı bu 6 noktaya sığmıyor. Üniversitede aşina olacağınız analitik geometri gibi bir bilimin temelini oluşturur. Sorunları tek bir eyalette çözmenize olanak sağlayacak bir temel oluşturmak istiyorum. sınav. B bölümünün görevlerini ele aldık. Şimdi yüksek kaliteye geçme zamanı yeni seviye! Bu makale, koordinat yöntemine geçmenin mantıklı olacağı C2 problemlerini çözmeye yönelik bir yönteme ayrılacaktır. Bu makullük problemde neyin bulunması gerektiği ve hangi rakamın verildiği ile belirlenir. Dolayısıyla sorular şu şekildeyse koordinat yöntemini kullanırdım:

  1. İki düzlem arasındaki açıyı bulun
  2. Düz bir çizgi ile bir düzlem arasındaki açıyı bulun
  3. İki düz çizgi arasındaki açıyı bulun
  4. Bir noktadan bir düzleme olan mesafeyi bulun
  5. Bir noktadan bir çizgiye olan mesafeyi bulun
  6. Düz bir çizgiden bir düzleme olan mesafeyi bulun
  7. İki çizgi arasındaki mesafeyi bulun

Problem cümlesinde verilen şekil dönen bir cisim ise (top, silindir, koni...)

Koordinat yöntemi için uygun rakamlar şunlardır:

  1. Dikdörtgen paralel yüzlü
  2. Piramit (üçgen, dörtgen, altıgen)

Ayrıca deneyimlerime göre için koordinat yöntemini kullanmak uygun değildir.:

  1. Kesit alanlarını bulma
  2. Vücut hacimlerinin hesaplanması

Ancak şunu hemen belirtmek gerekir ki koordinat yöntemi için üç "olumsuz" durum pratikte oldukça nadirdir. Çoğu görevde, özellikle üç boyutlu yapılarda (bazen oldukça karmaşık olabilen) çok güçlü değilseniz kurtarıcınız olabilir.

Yukarıda listelediğim tüm rakamlar nelerdir? Artık örneğin bir kare, bir üçgen, bir daire gibi düz değiller, hacimlidirler! Buna göre iki boyutlu değil üç boyutlu bir koordinat sistemi düşünmemiz gerekiyor. Oluşturulması oldukça kolaydır: apsis ve ordinat eksenine ek olarak başka bir eksen, uygulama ekseni tanıtacağız. Şekil şematik olarak göreceli konumlarını göstermektedir:

Hepsi birbirine dik ve koordinatların orijini diyeceğimiz bir noktada kesişiyor. Daha önce olduğu gibi, apsis eksenini, ordinat eksenini ve tanıtılan uygulama eksenini - göstereceğiz.

Daha önce düzlemdeki her nokta iki sayıyla (apsis ve koordinat) tanımlanıyorsa, uzaydaki her nokta zaten üç sayıyla (apsis, ordinat ve aplike) tanımlanıyordu. Örneğin:

Buna göre bir noktanın apsisi eşittir, ordinatı dır ve uygulaması dır.

Bazen bir noktanın apsisine, bir noktanın apsis eksenine izdüşümü, ordinat - bir noktanın ordinat eksenine izdüşümü ve uygulama - bir noktanın uygulama eksenine izdüşümü de denir. Buna göre bir nokta verilirse koordinatları olan bir nokta:

bir noktanın düzleme izdüşümüne denir

bir noktanın düzleme izdüşümüne denir

Doğal olarak şu soru ortaya çıkıyor: İki boyutlu durum için türetilen tüm formüller uzayda geçerli midir? Cevap evet, adil ve aynı görünüme sahipler. Küçük bir detay için. Sanırım hangisi olduğunu zaten tahmin ettiniz. Tüm formüllerde uygulama ekseninden sorumlu bir terim daha eklememiz gerekecek. Yani.

1. Eğer iki puan verilirse: , o zaman:

  • Vektör koordinatları:
  • İki nokta arasındaki mesafe (veya vektör uzunluğu)
  • Segmentin orta noktasının koordinatları vardır

2. Eğer iki vektör verilirse: ve, o zaman:

  • Bunların skaler çarpımı şuna eşittir:
  • Vektörler arasındaki açının kosinüsü şuna eşittir:

Ancak uzay o kadar basit değil. Anladığınız gibi, bir koordinat daha eklemek, bu alanda "yaşayan" figürlerin yelpazesine önemli bir çeşitlilik katıyor. Ve daha fazla anlatım için, kabaca konuşursak, düz çizginin bazı "genellemelerini" tanıtmam gerekecek. Bu “genelleme” bir düzlem olacaktır. Uçak hakkında ne biliyorsun? Uçak nedir sorusunu cevaplamaya çalışın. Bunu söylemek çok zor. Ancak hepimiz sezgisel olarak bunun neye benzediğini hayal ederiz:

Kabaca söylemek gerekirse, bu uzaya sıkışmış bir tür sonsuz "çarşaftır". “Sonsuzluk”, düzlemin her yöne uzandığı, yani alanının sonsuza eşit olduğu anlaşılmalıdır. Ancak bu “uygulamalı” açıklama, uçağın yapısı hakkında en ufak bir fikir vermiyor. Ve bizimle ilgilenecek olan odur.

Geometrinin temel aksiyomlarından birini hatırlayalım:

Veya uzaydaki analogu:

Elbette, bir çizginin denklemini verilen iki noktadan nasıl çıkaracağınızı hatırlıyorsunuz; bu hiç de zor değil: eğer ilk noktanın koordinatları varsa: ve ikincisi, o zaman çizginin denklemi aşağıdaki gibi olacaktır:

Bunu 7. sınıfta almıştın. Uzayda bir çizginin denklemi şuna benzer: Bize koordinatları olan iki nokta verilse: o zaman bunlardan geçen çizginin denklemi şu şekilde olur:

Örneğin bir çizgi noktalardan geçer:

Bu nasıl anlaşılmalıdır? Bu şu şekilde anlaşılmalıdır: Koordinatları aşağıdaki sistemi sağlıyorsa, bir nokta bir çizgi üzerinde yer alır:

Doğrunun denklemiyle pek ilgilenmeyeceğiz ama en çok dikkat etmemiz gerekiyor. önemli kavram vektör düz çizgiyi yönlendiriyor. - belirli bir çizgi üzerinde veya ona paralel olan sıfırdan farklı herhangi bir vektör.

Örneğin, her iki vektör de bir düz çizginin yön vektörleridir. Bir doğru üzerinde uzanan bir nokta ve onun yön vektörü olsun. O zaman doğrunun denklemi aşağıdaki biçimde yazılabilir:

Bir kez daha söylüyorum, düz çizgi denklemiyle pek ilgilenmeyeceğim ama yön vektörünün ne olduğunu hatırlamanıza gerçekten ihtiyacım var! Tekrar: bu, bir doğru üzerinde veya ona paralel olan sıfırdan farklı HERHANGİ bir vektördür.

Geri çekilmek verilen üç noktaya dayalı bir düzlemin denklemi artık o kadar önemsiz değil ve genellikle bu konu kursta ele alınmıyor lise. Ama boşuna! Karmaşık sorunları çözmek için koordinat yöntemine başvurduğumuzda bu teknik hayati önem taşır. Ancak yeni bir şeyler öğrenmeye hevesli olduğunuzu varsayıyorum? Üstelik, genellikle derste çalışılan tekniği zaten kullanabildiğiniz ortaya çıktığında üniversitedeki öğretmeninizi etkileyebileceksiniz. analitik geometri. Öyleyse başlayalım.

Bir düzlemin denklemi, bir düzlem üzerindeki düz bir çizginin denkleminden çok farklı değildir, yani şu şekildedir:

bazı sayılar (hepsi değil) sıfıra eşit) ve değişkenler, örneğin: vb. Gördüğünüz gibi bir düzlemin denklemi düz bir çizginin denkleminden (doğrusal fonksiyon) çok farklı değildir. Ancak sen ve ben ne tartıştık hatırlıyor musun? Aynı doğru üzerinde yer almayan üç noktamız varsa, o zaman düzlemin denkleminin bunlardan benzersiz bir şekilde yeniden oluşturulabileceğini söyledik. Ama nasıl? Size bunu açıklamaya çalışacağım.

Düzlemin denklemi şu olduğundan:

Ve noktalar bu düzleme aitse, her noktanın koordinatlarını düzlem denkleminde yerine koyarken doğru kimliği elde etmeliyiz:

Bu nedenle bilinmeyen üç denklemin çözülmesi gerekiyor! İkilem! Ancak bunu her zaman varsayabilirsiniz (bunu yapmak için bölmeniz gerekir). Böylece üç bilinmeyenli üç denklem elde ederiz:

Ancak böyle bir sistemi çözmeyeceğiz, ondan çıkan gizemli ifadeyi yazacağız:

Verilen üç noktadan geçen bir düzlemin denklemi

\[\sol| (\begin(array)(*(20)(c))(x - (x_0))&((x_1) - (x_0))&((x_2) - (x_0))\\(y - (y_0) )&((y_1) - (y_0))&((y_2) - (y_0))\\(z - (z_0))&((z_1) - (z_0))&((z_2) - (z_0)) \end(array)) \right| = 0\]

Durmak! Bu nedir? Çok sıradışı bir modül! Ancak karşınızda gördüğünüz nesnenin modülle hiçbir ilgisi yoktur. Bu nesneye üçüncü dereceden determinant denir. Artık düzlemde koordinat yöntemiyle uğraştığınızda aynı determinantlarla çok sık karşılaşacaksınız. Üçüncü dereceden determinant nedir? İşin tuhafı, bu sadece bir sayı. Belirleyiciyle hangi belirli sayıyı karşılaştıracağımızı anlamak için kalır.

Önce üçüncü dereceden determinantı daha genel bir biçimde yazalım:

Bazı numaralar nerede? Ayrıca ilk indeks ile satır numarasını, indeks ile ise sütun numarasını kastediyoruz. Örneğin şu anlama geliyor verilen numara ikinci sıra ile üçüncü sütunun kesiştiği noktada yer alır. Haydi giyelim sonraki soru: Böyle bir determinantı tam olarak nasıl hesaplayacağız? Yani, onunla hangi spesifik sayıyı karşılaştıracağız? Üçüncü dereceden determinant için buluşsal (görsel) bir üçgen kuralı vardır, şöyle görünür: aşağıdaki gibi:

  1. Ana köşegenin elemanlarının çarpımı (sol üst köşeden sağ alta kadar) ana köşegene “dik” olan birinci üçgeni oluşturan elemanların çarpımı Ana köşegene “dik” olan ikinci üçgeni oluşturan elemanların çarpımı ana diyagonal
  2. İkincil köşegenin elemanlarının çarpımı (sağ üst köşeden sol alta kadar) ikincil köşegene “dik” olan birinci üçgeni oluşturan elemanların çarpımı İkinci köşegene “dik” olan ikinci üçgeni oluşturan elemanların çarpımı ikincil diyagonal
  3. Daha sonra determinant, adımda elde edilen değerler arasındaki farka eşittir ve

Bütün bunları rakamlarla yazarsak aşağıdaki ifadeyi elde ederiz:

Bununla birlikte, bu formdaki hesaplama yöntemini hatırlamanıza gerek yoktur; sadece üçgenleri kafanızda tutmanız ve neyin neye ekleneceği ve daha sonra neyin neyden çıkarılacağı fikrini aklınızda tutmanız yeterlidir).

Üçgen yöntemini bir örnekle açıklayalım:

1. Belirleyiciyi hesaplayın:

Ne eklediğimizi ve ne çıkardığımızı bulalım:

Artı ile gelen terimler:

Bu ana köşegendir: elemanların çarpımı eşittir

İlk üçgen, "ana köşegene dik: elemanların çarpımı eşittir"

İkinci üçgen, "ana köşegene dik: elemanların çarpımı eşittir"

Üç sayıyı toplayın:

Eksi ile gelen terimler

Bu bir yan köşegendir: elemanların çarpımı eşittir

İlk üçgen, “ikincil köşegenlere dik: elemanların çarpımı eşittir

İkinci üçgen, “ikincil köşegenlere dik: elemanların çarpımı eşittir

Üç sayıyı toplayın:

Geriye kalan tek şey “artı” terimlerin toplamını “eksi” terimlerin toplamından çıkarmaktır:

Böylece,

Gördüğünüz gibi üçüncü dereceden determinantların hesaplanmasında karmaşık veya doğaüstü hiçbir şey yoktur. Üçgenleri hatırlamak ve izin vermemek önemlidir. aritmetik hatalar. Şimdi bunu kendiniz hesaplamaya çalışın:

Görev: Belirtilen noktalar arasındaki mesafeyi bulun:

  1. Ana köşegene dik olan ilk üçgen:
  2. Ana köşegene dik ikinci üçgen:
  3. Artı ile terimlerin toplamı:
  4. İkincil köşegene dik olan ilk üçgen:
  5. Yan köşegenlere dik olan ikinci üçgen:
  6. Eksili terimlerin toplamı:
  7. Artı olan terimlerin toplamı eksi eksi olan terimlerin toplamı:

İşte birkaç belirleyici daha: değerlerini kendiniz hesaplayın ve cevaplarla karşılaştırın:

Cevaplar:

Peki her şey çakıştı mı? Harika, o zaman devam edebilirsiniz! Zorluklar varsa, tavsiyem şu: İnternette determinantı çevrimiçi hesaplamak için birçok program var. İhtiyacınız olan tek şey, kendi determinantınızı bulmak, onu kendiniz hesaplamak ve ardından bunu programın hesapladığıyla karşılaştırmaktır. Ve sonuçlar çakışmaya başlayana kadar böyle devam eder. Bu anın gelmesinin uzun sürmeyeceğine eminim!

Şimdi üç noktadan geçen bir düzlemin denkleminden bahsederken yazdığım determinant konusuna geri dönelim. verilen puanlar:

İhtiyacınız olan tek şey, değerini doğrudan hesaplamak (üçgen yöntemini kullanarak) ve sonucu sıfıra ayarlamaktır. Doğal olarak bunlar değişken olduğundan onlara bağlı bazı ifadeler elde edersiniz. Aynı düz çizgi üzerinde yer almayan üç noktadan geçen bir düzlemin denklemi olacak olan bu ifadedir!

Bunu basit bir örnekle açıklayalım:

1. Noktalardan geçen bir düzlemin denklemini oluşturun

Bu üç nokta için bir determinant derliyoruz:

Basitleştirelim:

Şimdi bunu doğrudan üçgen kuralını kullanarak hesaplıyoruz:

\[(\left| (\begin(array)(*(20)(c))(x + 3)&2&6\\(y - 2)&0&1\\(z + 1)&5&0\end(array)) \ sağ| = \left((x + 3) \right) \cdot 0 \cdot 0 + 2 \cdot 1 \cdot \left((z + 1) \right) + \left((y - 2) \right) \cdot 5 \cdot 6 - )\]

Böylece noktalardan geçen düzlemin denklemi şu şekildedir:

Şimdi bir sorunu kendiniz çözmeye çalışın, sonra tartışacağız:

2. Noktalardan geçen düzlemin denklemini bulun

Şimdi çözümü tartışalım:

Bir determinant oluşturalım:

Ve değerini hesaplayın:

O halde düzlemin denklemi şu şekildedir:

Veya azaltarak şunu elde ederiz:

Şimdi kendi kendini kontrol etmek için iki görev:

  1. Üç noktadan geçen bir düzlemin denklemini oluşturun:

Cevaplar:

Her şey çakıştı mı? Yine bazı zorluklar varsa o zaman tavsiyem şudur: Kafanızdan üç puan alın (ile büyük ölçüde büyük olasılıkla aynı düz çizgi üzerinde uzanmayacaklardır), bunlara dayanarak bir uçak inşa edersiniz. Daha sonra kendinizi çevrimiçi olarak kontrol edersiniz. Örneğin sitede:

Ancak determinantların yardımıyla sadece düzlemin denklemini oluşturmayacağız. Hatırlayın, size vektörler için sadece nokta çarpımının tanımlanmadığını söylemiştim. Karışık çarpımın yanı sıra vektör çarpımı da vardır. Ve eğer iki vektörün skaler çarpımı bir sayı ise, o zaman iki vektörün vektör çarpımı bir vektör olacak ve bu vektör verilenlere dik olacaktır:

Üstelik modülü olacak alana eşit vektörler üzerine inşa edilmiş paralelkenar ve. Bu vektör Bir noktadan çizgiye olan mesafeyi hesaplamak için buna ihtiyacımız olacak. Nasıl sayabiliriz? vektör çarpımı vektörler ve koordinatları verilmişse? Üçüncü dereceden determinant yine yardımımıza koşuyor. Ancak vektör çarpımını hesaplamak için kullanılan algoritmaya geçmeden önce küçük bir açıklama yapmam gerekiyor.

Bu arasöz temel vektörlerle ilgilidir.

Şekilde şematik olarak gösterilmiştir:

Neden bunlara temel denildiğini düşünüyorsunuz? Önemli olan şu:

Veya resimde:

Bu formülün geçerliliği açıktır çünkü:

Vektör çizimleri

Artık çapraz çarpımı tanıtmaya başlayabilirim:

İki vektörün vektör çarpımı bir vektördür ve aşağıdaki kurala göre hesaplanır:

Şimdi çapraz çarpımın hesaplanmasına ilişkin bazı örnekler verelim:

Örnek 1: Vektörlerin çapraz çarpımını bulun:

Çözüm: Bir determinant oluşturuyorum:

Ve bunu hesaplıyorum:

Şimdi temel vektörler üzerinden yazdıktan sonra olağan vektör gösterimine döneceğim:

Böylece:

Şimdi dene.

Hazır? Kontrol ediyoruz:

Ve geleneksel olarak iki kontrol için görevler:

  1. Aşağıdaki vektörlerin vektör çarpımını bulun:
  2. Aşağıdaki vektörlerin vektör çarpımını bulun:

Cevaplar:

Üç vektörün karışık çarpımı

İhtiyacım olan son yapı üç vektörün karışık çarpımıdır. Skaler gibi bir sayıdır. Bunu hesaplamanın iki yolu vardır. - bir determinant yoluyla, - bir karma çarpım aracılığıyla.

Yani bize üç vektör verilsin:

Daha sonra ile gösterilen üç vektörün karışık çarpımı şu şekilde hesaplanabilir:

1. - yani karışık çarpım bir vektörün skaler çarpımı ile diğer iki vektörün vektör çarpımıdır

Örneğin, üç vektörün karışık çarpımı şöyledir:

Vektör çarpımını kullanarak bunu kendiniz hesaplamaya çalışın ve sonuçların eşleştiğinden emin olun!

Ve yine - iki örnek bağımsız karar:

Cevaplar:

Koordinat sisteminin seçilmesi

Artık karmaşık stereometrik geometri problemlerini çözmek için gerekli tüm bilgi temeline sahibiz. Ancak bunları çözmek için doğrudan örneklere ve algoritmalara geçmeden önce şu soru üzerinde durmanın faydalı olacağını düşünüyorum: Tam olarak nasıl belirli bir şekil için bir koordinat sistemi seçin. Sonuçta bu bir seçim göreceli konum Uzaydaki koordinat sistemleri ve şekiller, sonuçta hesaplamaların ne kadar hantal olacağını belirleyecek.

Bu bölümde aşağıdaki rakamları dikkate aldığımızı hatırlatmama izin verin:

  1. Dikdörtgen paralel yüzlü
  2. Düz prizma (üçgen, altıgen...)
  3. Piramit (üçgen, dörtgen)
  4. Tetrahedron (üçgen piramit ile aynı)

Dikdörtgen paralel yüzlü veya küp için size aşağıdaki yapıyı öneririm:

Yani figürü “köşeye” yerleştireceğim. Küp ve paralel yüzlü çok iyi figürlerdir. Onlar için köşelerinin koordinatlarını her zaman kolayca bulabilirsiniz. Örneğin, eğer (şekilde gösterildiği gibi)

bu durumda köşelerin koordinatları aşağıdaki gibidir:

Elbette bunu hatırlamanıza gerek yok, ancak küpü veya küpü en iyi nasıl konumlandıracağınızı unutmayın. küboid- arzu edilir.

Düz prizma

Prizma daha zararlı bir figürdür. Uzayda farklı şekillerde konumlandırılabilir. Ancak aşağıdaki seçenek bana en kabul edilebilir görünüyor:

Üçgen prizma:

Yani üçgenin kenarlarından birini tamamen eksene yerleştiriyoruz ve köşelerden biri koordinatların orijini ile çakışıyor.

Altıgen prizma:

Yani köşelerden biri orijine denk gelir ve kenarlardan biri eksen üzerinde yer alır.

Dörtgen ve altıgen piramit:

Durum bir küpe benzer: Tabanın iki tarafını koordinat eksenleriyle hizalıyoruz ve köşelerden birini koordinatların kökeniyle hizalıyoruz. Tek hafif zorluk noktanın koordinatlarını hesaplamak olacaktır.

Altıgen bir piramit için - altıgen prizmayla aynı. Ana görev yine tepe noktasının koordinatlarını bulmak olacaktır.

Tetrahedron (üçgen piramit)

Durum üçgen prizma için verdiğim duruma çok benziyor: bir köşe orijine denk geliyor, bir taraf koordinat ekseninde yatıyor.

Artık sen ve ben nihayet sorunları çözmeye başlamaya yaklaştık. Makalenin en başında söylediklerimden şu sonucu çıkarabilirsiniz: C2 problemlerinin çoğu 2 kategoriye ayrılır: açı problemleri ve mesafe problemleri. Öncelikle açı bulma problemlerine bakacağız. Bunlar sırasıyla aşağıdaki kategorilere ayrılır (karmaşıklık arttıkça):

Açı bulma problemleri

  1. İki düz çizgi arasındaki açıyı bulma
  2. İki düzlem arasındaki açıyı bulma

Bu problemlere sırasıyla bakalım: İki düz çizgi arasındaki açıyı bularak başlayalım. Unutma, sen ve ben karar vermedik mi? benzer örnekler daha erken mi? Hatırlıyor musunuz, buna benzer bir şeyimiz vardı zaten... İki vektör arasındaki açıyı arıyorduk. Hatırlatayım, eğer iki vektör verilirse ve aralarındaki açı bağıntıdan bulunursa:

Şimdi amacımız iki düz çizgi arasındaki açıyı bulmak. “Düz resme” bakalım:

İki düz çizgi kesiştiğinde kaç açı elde ettik? Sadece birkaç şey. Doğru, bunlardan sadece ikisi eşit değil, diğerleri ise onlara dik (ve dolayısıyla onlarla çakışıyor). Peki iki düz çizgi arasındaki açıyı hangi açı olarak düşünmeliyiz: veya? Burada kural şudur: iki düz çizgi arasındaki açı her zaman dereceden fazla değildir. Yani iki açıdan her zaman en küçük olan açıyı seçeceğiz. derece ölçüsü. Yani bu resimde iki düz çizgi arasındaki açı eşittir. Kurnaz matematikçiler, her seferinde iki açıdan en küçüğünü bulma zahmetine girmemek için bir modül kullanmayı önerdiler. Böylece iki düz çizgi arasındaki açı aşağıdaki formülle belirlenir:

Dikkatli bir okuyucu olarak sizin şu soruyu sormanız gerekirdi: Bir açının kosinüsünü hesaplamak için ihtiyaç duyduğumuz sayıların aynısını tam olarak nereden alıyoruz? Cevap: Bunları doğruların yön vektörlerinden alacağız! Böylece iki düz çizgi arasındaki açıyı bulma algoritması aşağıdaki gibidir:

  1. Formül 1'i uyguluyoruz.

Veya daha ayrıntılı olarak:

  1. İlk düz çizginin yön vektörünün koordinatlarını arıyoruz
  2. İkinci düz çizginin yön vektörünün koordinatlarını arıyoruz
  3. Skaler çarpımlarının modülünü hesaplıyoruz
  4. İlk vektörün uzunluğunu arıyoruz
  5. İkinci vektörün uzunluğunu arıyoruz
  6. 4. noktanın sonuçlarını 5. noktanın sonuçlarıyla çarpın
  7. 3. noktanın sonucunu 6. noktanın sonucuna bölüyoruz. Doğrular arasındaki açının kosinüsünü alıyoruz
  8. Eğer bu sonuç açıyı doğru bir şekilde hesaplamanıza olanak tanır, onu arayın
  9. Aksi takdirde ark kosinüs yoluyla yazarız

Eh, şimdi sıra sorunlara geçiyor: İlk ikisinin çözümünü ayrıntılı olarak göstereceğim, diğerinin çözümünü ayrıntılı olarak sunacağım. kısaca ve son iki problem için sadece cevap vereceğim; onlar için tüm hesaplamaları kendiniz yapmalısınız.

Görevler:

1. Sağ tet-ra-ed-re'de, tet-ra-ed-ra'nın yüksekliği ile orta taraf arasındaki açıyı bulun.

2. Sağdaki altı köşeli pi-ra-mi-de'de yüz os-no-va-niya eşittir ve yan kenarlar eşittir, ve çizgileri arasındaki açıyı bulun.

3. Sağdaki dört kömürlü pi-ra-mi-dy'nin tüm kenarlarının uzunlukları birbirine eşittir. Düz çizgiler arasındaki açıyı bulun ve eğer kesimden itibaren - verilen pi-ra-mi-dy ile iseniz, nokta bo-co-ikinci kaburga üzerinde se-re-di-dir

4. Küpün kenarında düz çizgiler arasındaki açıyı bulacak şekilde bir nokta vardır.

5. Nokta - küpün kenarlarında Düz çizgiler arasındaki açıyı bulun.

Görevleri bu sıraya göre düzenlemem tesadüf değil. Koordinat yönteminde gezinmeye başlamak için henüz zamanınız olmasa da, ben en "sorunlu" rakamları kendim analiz edeceğim ve en basit küple uğraşmayı size bırakacağım! Yavaş yavaş tüm rakamlarla nasıl çalışılacağını öğrenmeniz gerekecek; konulardan konuya görevlerin karmaşıklığını artıracağım.

Sorunları çözmeye başlayalım:

1. Bir tetrahedron çizin ve daha önce önerdiğim gibi koordinat sistemine yerleştirin. Tetrahedron düzgün olduğundan tüm yüzleri (taban dahil) düzgün üçgenler. Kenarın uzunluğu verilmediğine göre bunu eşit alabilirim. Sanırım açının aslında tetrahedronumuzun ne kadar "gerildiğine" bağlı olmayacağını anladınız mı? Ayrıca tetrahedrondaki yüksekliği ve ortancayı da çizeceğim. Yol boyunca tabanını çizeceğim (bizim için de faydalı olacak).

ile arasındaki açıyı bulmam gerekiyor. Ne biliyoruz? Sadece noktanın koordinatını biliyoruz. Bu, noktaların koordinatlarını bulmamız gerektiği anlamına gelir. Şimdi şöyle düşünüyoruz: Bir nokta, üçgenin yüksekliklerinin (veya açıortaylarının veya kenarortaylarının) kesişme noktasıdır. Ve bir nokta yükseltilmiş bir noktadır. Nokta segmentin ortasıdır. O zaman nihayet şunu bulmamız gerekiyor: noktaların koordinatları: .

En basit şeyle başlayalım: bir noktanın koordinatları. Şekle bakın: Bir noktanın uygulamasının sıfıra eşit olduğu açıktır (nokta düzlem üzerindedir). Ordinatı eşittir (ortanca olduğu için). Apsislerini bulmak daha zordur. Ancak bu Pisagor teoremine dayanarak kolaylıkla yapılabilir: Bir üçgen düşünün. Hipotenüsü eşittir ve bacaklarından biri eşittir O halde:

Sonunda elimizde: .

Şimdi noktanın koordinatlarını bulalım. Uygulamasının yine sıfıra eşit olduğu ve koordinatının bir noktanın koordinatıyla aynı olduğu açıktır. Apsisini bulalım. Bunu hatırlarsanız, bu oldukça önemsiz bir şekilde yapılır. yükseklikler eşkenar üçgen kesişme noktası orantılı olarak bölünür, üstten sayıyorum. Çünkü: , o zaman parçanın uzunluğuna eşit olan noktanın gerekli apsisi şuna eşittir: . Buna göre noktanın koordinatları şöyledir:

Noktanın koordinatlarını bulalım. Apsis ve koordinatının noktanın apsis ve koordinatıyla örtüştüğü açıktır. Ve uygulama, segmentin uzunluğuna eşittir. - bu üçgenin bacaklarından biri. Bir üçgenin hipotenüsü bir segmenttir - bir bacak. Kalın harflerle işaretlediğim nedenlerle aranıyor:

Nokta segmentin ortasıdır. O zaman parçanın orta noktasının koordinatlarının formülünü hatırlamamız gerekiyor:

İşte bu kadar, şimdi yön vektörlerinin koordinatlarını arayabiliriz:

Her şey hazır: tüm verileri formüle yerleştiriyoruz:

Böylece,

Cevap:

Bu tür “korkutucu” yanıtlardan korkmamalısınız: C2 görevleri için bu yaygın bir uygulamadır. Bu bölümdeki “güzel” cevaba şaşırmayı tercih ederim. Ayrıca, fark ettiğiniz gibi, Pisagor teoremi ve eşkenar üçgenin yükseklik özelliği dışında pratikte hiçbir şeye başvurmadım. Yani stereometrik problemi çözmek için minimum düzeyde stereometri kullandım. Bundaki kazanç oldukça hantal hesaplamalarla kısmen “söndürülmüştür”. Ama oldukça algoritmikler!

2. Doğru olanı çizelim altıgen piramit koordinat sistemi ve tabanıyla birlikte:

Çizgiler arasındaki açıyı bulmamız gerekiyor. Böylece görevimiz noktaların koordinatlarını bulmaktır: . Küçük bir çizim kullanarak son üçünün koordinatlarını bulacağız ve noktanın koordinatı üzerinden tepe noktasının koordinatını bulacağız. Yapılacak çok iş var ama başlamamız gerekiyor!

a) Koordinat: Uygulama ve ordinatının sıfıra eşit olduğu açıktır. Apsis'i bulalım. Bunu yapmak için bir dik üçgen düşünün. Ne yazık ki, burada sadece eşit olan hipotenüsü biliyoruz. Bacağını bulmaya çalışacağız (çünkü bacağın iki katı uzunluğunun bize noktanın apsisini vereceği açıktır). Onu nasıl arayabiliriz? Piramidin tabanında nasıl bir figür olduğunu hatırlayalım mı? Bu normal bir altıgen. Bu ne anlama gelir? Bu, tüm kenarların ve tüm açıların eşit olduğu anlamına gelir. Böyle bir açı bulmamız gerekiyor. Herhangi bir fikrin var mı? Pek çok fikir var ama bir formül var:

Açıların toplamı normal n-gon eşit .

Böylece açıların toplamı düzenli altıgen derecelere eşittir. O zaman açıların her biri şuna eşittir:

Fotoğrafa tekrar bakalım. Doğru parçasının açının ortaortayı olduğu açıktır. Daha sonra açı derecelere eşit. Daha sonra:

O zaman nereden.

Böylece koordinatları vardır

b) Artık noktanın koordinatını kolaylıkla bulabiliriz: .

c) Noktanın koordinatlarını bulun. Apsisleri segmentin uzunluğuna denk geldiğinden eşittir. Ordinatı bulmak da çok zor değil: Noktaları birleştirirsek ve çizginin kesişme noktasını örneğin olarak belirlersek. (basit inşaatı kendiniz yapın). O halde B noktasının ordinatı, parçaların uzunluklarının toplamına eşittir. Üçgene tekrar bakalım. Daha sonra

O zamandan bu yana noktanın koordinatları var

d) Şimdi noktanın koordinatlarını bulalım. Dikdörtgeni düşünün ve şunu kanıtlayın: Böylece noktanın koordinatları:

e) Geriye tepe noktasının koordinatlarını bulmak kalır. Apsis ve koordinatının noktanın apsis ve koordinatıyla örtüştüğü açıktır. Uygulamayı bulalım. O zamandan beri. Bir dik üçgen düşünün. Sorunun koşullarına göre yan kaburga. Bu benim üçgenimin hipotenüsü. O halde piramidin yüksekliği bir bacaktır.

O zaman noktanın koordinatları vardır:

İşte bu kadar, ilgimi çeken tüm noktaların koordinatları elimde. Düz çizgilerin yönlendirici vektörlerinin koordinatlarını arıyorum:

Bu vektörler arasındaki açıyı arıyoruz:

Cevap:

Yine, bu problemi çözerken, düzenli bir n-gon'un açılarının toplamı formülü ve ayrıca bir dik üçgenin kosinüs ve sinüs tanımı dışında herhangi bir karmaşık teknik kullanmadım.

3. Piramidin kenarlarının uzunlukları yine bize verilmediğinden onları sayacağım bire eşit. Böylece, sadece yan kenarlar değil, TÜM kenarlar birbirine eşit olduğundan, piramidin tabanında ve bende bir kare var ve yan yüzler- düzenli üçgenler. Problem metninde verilen tüm verileri not ederek böyle bir piramidi ve tabanını bir düzlem üzerine çizelim:

ile arasındaki açıyı arıyoruz. Noktaların koordinatlarını araştırırken çok kısa hesaplamalar yapacağım. Bunları “deşifre etmeniz” gerekecek:

b) - segmentin ortası. Koordinatları:

c) Pisagor teoremini kullanarak bir üçgende doğru parçasının uzunluğunu bulacağım. Bunu bir üçgende Pisagor teoremini kullanarak bulabilirim.

Koordinatlar:

d) - segmentin ortası. Koordinatları

e) Vektör koordinatları

f) Vektör koordinatları

g) Açının aranması:

Küp - en basit şekil. Eminim bunu kendi başınıza çözeceksiniz. 4. ve 5. sorunun cevapları aşağıdaki gibidir:

Düz bir çizgi ile bir düzlem arasındaki açıyı bulma

Basit bulmacaların zamanı bitti! Şimdi örnekler daha da karmaşık olacak. Düz bir çizgi ile düzlem arasındaki açıyı bulmak için şu şekilde ilerleyeceğiz:

  1. Üç noktayı kullanarak düzlemin denklemini oluşturuyoruz
    ,
    üçüncü dereceden bir determinant kullanarak.
  2. İki nokta kullanarak düz çizginin yönlendirici vektörünün koordinatlarını ararız:
  3. Düz bir çizgi ile bir düzlem arasındaki açıyı hesaplamak için formülü uygularız:

Gördüğünüz gibi bu formül, iki düz çizgi arasındaki açıları bulmak için kullandığımız formüle çok benziyor. Sağ taraftaki yapı tamamen aynıdır ve solda artık daha önce olduğu gibi kosinüsü değil sinüsü arıyoruz. Eh, bir kötü eylem daha eklendi: uçağın denklemini aramak.

Ertelemeyelim çözüm örnekleri:

1. Ana-ama-va-ni-em doğrudan prizma-biz sizin-fakir-ren-üçgeninin-takma adı ile eşitiz-ve-o prizma-biz eşitiz. Düz çizgi ile düzlem arasındaki açıyı bulun

2. Batıdan dikdörtgen bir par-ral-le-le-pi-pe-de'de Düz çizgi ile düzlem arasındaki açıyı bulun

3. Altı köşeli bir sağ prizmada tüm kenarlar eşittir. Düz çizgi ile düzlem arasındaki açıyı bulun.

4. Bilinen kaburgaların os-no-va-ni-em'i ile sağ üçgen pi-ra-mi-de'de Bir köşe bulun, ob-ra-zo-van -taban olarak düz ve düz, griden geçen kaburga ve

5. Tepe noktası olan dik dörtgen pi-ra-mi-dy'nin tüm kenarlarının uzunlukları birbirine eşittir. Nokta pi-ra-mi-dy'nin kenarı tarafındaysa, düz çizgi ile düzlem arasındaki açıyı bulun.

Yine ilk iki problemi detaylı, üçüncüyü kısaca çözeceğim ve son ikisini kendi başınıza çözmenize bırakacağım. Ayrıca, zaten üçgenle uğraşmak zorundaydınız ve dörtgen piramitler, ancak prizmalarla - henüz değil.

Çözümler:

1. Bir prizmayı ve tabanını tasvir edelim. Bunu koordinat sistemiyle birleştirelim ve problem ifadesinde verilen tüm verileri not edelim:

Oranlara uymadığım için özür dilerim, ancak sorunu çözmek için bu aslında o kadar da önemli değil. Uçak, prizmamın basitçe "arka duvarı"dır. Böyle bir düzlemin denkleminin şu şekilde olduğunu basitçe tahmin etmek yeterlidir:

Ancak bu doğrudan gösterilebilir:

Bu düzlemde rastgele üç nokta seçelim: örneğin .

Düzlemin denklemini oluşturalım:

Kendiniz için egzersiz yapın: Bu determinantı kendiniz hesaplayın. Başarılı oldun mu? O zaman düzlemin denklemi şöyle görünür:

Veya sadece

Böylece,

Örneği çözmek için düz çizginin yön vektörünün koordinatlarını bulmam gerekiyor. Nokta koordinatların orijini ile çakıştığı için vektörün koordinatları noktanın koordinatlarıyla çakışacaktır. Bunu yapmak için önce noktanın koordinatlarını buluyoruz.

Bunu yapmak için bir üçgen düşünün. Tepe noktasından yüksekliği (medyan ve açıortay olarak da bilinir) çizelim. Çünkü noktanın ordinatı eşittir. Bu noktanın apsisini bulmak için doğru parçasının uzunluğunu hesaplamamız gerekir. Pisagor teoremine göre elimizde:

O zaman noktanın koordinatları vardır:

Nokta "yükseltilmiş" bir noktadır:

O zaman vektör koordinatları şöyledir:

Cevap:

Gördüğünüz gibi, bu tür sorunları çözerken temelde zor olan hiçbir şey yoktur. Aslında prizma gibi bir şeklin “düzlüğü” ile süreç biraz daha basitleştirilmiştir. Şimdi bir sonraki örneğe geçelim:

2. Bir paralel uçlu çizin, içine bir düzlem ve düz bir çizgi çizin ve ayrıca alt tabanını ayrı ayrı çizin:

İlk önce düzlemin denklemini buluyoruz: İçinde bulunan üç noktanın koordinatları:

(ilk iki koordinat açık bir şekilde elde edilir ve son koordinat noktasından resimden rahatlıkla bulabilirsiniz). Daha sonra düzlemin denklemini oluştururuz:

Hesaplıyoruz:

Kılavuz vektörün koordinatlarını arıyoruz: Koordinatlarının noktanın koordinatlarıyla örtüştüğü açık değil mi? Koordinatlar nasıl bulunur? Bunlar, uygulanan eksen boyunca birer yükseltilmiş noktanın koordinatlarıdır! . Sonra istenen açıyı ararız:

Cevap:

3. Düzenli bir altıgen piramit çizin ve içine bir düzlem ve düz bir çizgi çizin.

Burada bir düzlem çizmek bile sorunlu, bu sorunu çözmekten bahsetmiyorum bile, ancak koordinat yöntemi umursamıyor! Çok yönlülüğü ana avantajıdır!

Uçak üç noktadan geçer: . Koordinatlarını arıyoruz:

1). Son iki noktanın koordinatlarını kendiniz bulun. Bunun için altıgen piramit problemini çözmeniz gerekecek!

2) Düzlemin denklemini oluşturuyoruz:

Vektörün koordinatlarını arıyoruz: . (Üçgen piramit problemine tekrar bakın!)

3) Bir açı arıyorum:

Cevap:

Gördüğünüz gibi bu görevlerde doğaüstü derecede zor olan hiçbir şey yok. Sadece köklere çok dikkat etmeniz gerekiyor. Sadece son iki sorunun cevabını vereceğim:

Gördüğünüz gibi problemleri çözme tekniği her yerde aynıdır: Asıl görev, köşelerin koordinatlarını bulmak ve bunları belirli formüllerde değiştirmektir. Açıları hesaplamak için hala bir sınıf problemi daha ele almamız gerekiyor:

İki düzlem arasındaki açıların hesaplanması

Çözüm algoritması şu şekilde olacaktır:

  1. Üç noktayı kullanarak ilk düzlemin denklemini ararız:
  2. Diğer üç noktayı kullanarak ikinci düzlemin denklemini ararız:
  3. Formülü uyguluyoruz:

Gördüğünüz gibi formül, düz çizgiler arasındaki ve düz çizgi ile düzlem arasındaki açıları aradığımız önceki iki formüle çok benziyor. Bu yüzden bunu hatırlamanız sizin için zor olmayacak. Görevlerin analizine geçelim:

1. Sağ üçgen prizmanın tabanının kenarı eşittir ve yan yüzün köşegeni eşittir. Düzlem ile prizmanın eksen düzlemi arasındaki açıyı bulun.

2. Tüm kenarları eşit olan sağdaki dört köşeli pi-ra-mi-de'de, kalem-di-ku- noktasından geçen düzlem ile düzlem kemiği arasındaki açının sinüsünü bulun. lyar-ama düz.

3. Normal bir dört köşeli prizmada tabanın kenarları eşittir ve yan kenarlar eşittir. Benden-che-on'un kenarında bir nokta var ki. Düzlemler arasındaki açıyı bulun ve

4. Bir dik dörtgen prizmada tabanın kenarları eşit ve yan kenarlar eşittir. Bu noktadan itibaren kenarda bir nokta var ve böylece düzlemler arasındaki açıyı bulun.

5. Bir küpte düzlemler ile düzlemler arasındaki açının kosinüsünü bulun.

Sorun çözümleri:

1. Düzenli (tabanda bir eşkenar üçgen) üçgen prizma çiziyorum ve problem ifadesinde görünen düzlemleri bunun üzerine işaretliyorum:

İki düzlemin denklemlerini bulmamız gerekiyor: Tabanın denklemi önemsizdir: karşılık gelen determinantı üç noktayı kullanarak oluşturabilirsiniz, ancak denklemi hemen oluşturacağım:

Şimdi denklemi bulalım Noktanın koordinatları vardır Nokta - Üçgenin ortancası ve yüksekliği olduğundan, üçgende Pisagor teoremi kullanılarak kolayca bulunur. O zaman noktanın koordinatları vardır: Noktanın uygulamasını bulalım. Bunu yapmak için bir dik üçgen düşünün.

Daha sonra aşağıdaki koordinatları elde ederiz: Düzlemin denklemini oluştururuz.

Düzlemler arasındaki açıyı hesaplıyoruz:

Cevap:

2. Çizim yapmak:

En zor şey, noktadan dik olarak geçen bu gizemli düzlemin ne olduğunu anlamaktır. Peki, asıl mesele şu ki, bu nedir? Önemli olan dikkat! Aslında çizgi diktir. Düz çizgi aynı zamanda diktir. O halde bu iki doğrunun içinden geçen düzlem, doğruya dik olacak ve bu arada, noktadan geçecektir. Bu düzlem aynı zamanda piramidin tepesinden de geçer. Sonra istenen uçak - Ve uçak zaten bize verildi. Noktaların koordinatlarını arıyoruz.

Noktanın koordinatını noktadan geçerek buluyoruz. Küçük resimden noktanın koordinatlarının şu şekilde olacağı sonucunu çıkarmak kolaydır: Piramidin tepesinin koordinatlarını bulmak için şimdi ne bulunacak? Ayrıca yüksekliğini de hesaplamanız gerekir. Bu, aynı Pisagor teoremi kullanılarak yapılır: önce bunu kanıtlayın (önemsiz olarak tabanda bir kare oluşturan küçük üçgenlerden). Koşullu olarak elimizde:

Artık her şey hazır: köşe koordinatları:

Düzlemin denklemini oluşturuyoruz:

Belirleyicileri hesaplama konusunda zaten uzmansınız. Zorluk yaşamadan şunları alacaksınız:

Veya aksi takdirde (her iki tarafı da ikinin köküyle çarparsak)

Şimdi düzlemin denklemini bulalım:

(Düzlem denklemini nasıl elde ettiğimizi unutmadınız değil mi? Bu eksi birin nereden geldiğini anlamıyorsanız, o zaman düzlem denkleminin tanımına geri dönün! Her zaman ondan önce ortaya çıktı. uçağım kökene aitti!)

Belirleyiciyi hesaplıyoruz:

(Düzlemin denkleminin noktalardan geçen doğrunun denklemiyle örtüştüğünü fark edebilirsiniz! Nedenini bir düşünün!)

Şimdi açıyı hesaplayalım:

Sinüs bulmamız gerekiyor:

Cevap:

3. Zor soru: nedir bu? dikdörtgen prizma, Sizce nasıl? Bu sadece iyi bildiğiniz bir paralelyüz! Hemen bir çizim yapalım! Tabanı ayrı ayrı tasvir etmenize bile gerek yok; burada çok az faydası var:

Daha önce de belirttiğimiz gibi düzlem bir denklem biçiminde yazılmıştır:

Şimdi bir uçak oluşturalım

Hemen düzlemin denklemini yaratıyoruz:

Bir açı arıyorum:

Şimdi son iki sorunun cevapları:

Artık biraz ara vermenin zamanı geldi çünkü sen ve ben harikayız ve harika bir iş çıkardık!

Koordinatlar ve vektörler. İleri seviye

Bu yazıda sizinle koordinat yöntemi kullanılarak çözülebilecek başka bir problem sınıfını tartışacağız: mesafe hesaplama problemleri. Yani aşağıdaki durumları ele alacağız:

  1. Kesişen çizgiler arasındaki mesafenin hesaplanması.

Bu görevleri artan zorluk derecesine göre sıraladım. Bulmak en kolayı gibi görünüyor noktadan düzleme uzaklık ve en zor şey bulmaktır geçiş çizgileri arasındaki mesafe. Tabii ki hiçbir şey imkansız değildir! Ertelemeyelim ve hemen birinci sınıf sorunları ele almaya başlayalım:

Bir noktadan bir düzleme olan mesafenin hesaplanması

Bu sorunu çözmek için neye ihtiyacımız var?

1. Nokta koordinatları

Dolayısıyla gerekli tüm verileri alır almaz formülü uyguluyoruz:

Bir düzlemin denklemini nasıl oluşturduğumuzu zaten biliyor olmalısınız. önceki görevler Geçen bölümde tartıştığım şey. Hemen görevlere geçelim. Şema şu şekildedir: 1, 2 - Karar vermenize yardımcı oluyorum ve biraz ayrıntılı olarak 3, 4 - yalnızca cevap, çözümü kendiniz gerçekleştirip karşılaştırıyorsunuz. Haydi başlayalım!

Görevler:

1. Bir küp verildi. Küpün kenar uzunlukları eşittir. Se-re-di-na'dan kesimden düzleme olan mesafeyi bulun

2. Sağdaki dört kömür pi-ra-mi-evet verildiğinde, tarafın tarafı tabana eşittir. Noktadan kenarlarda - se-re-di-olan düzleme olan mesafeyi bulun.

3. Os-no-va-ni-em ile sağ üçgen pi-ra-mi-de'de, yan kenar eşittir ve os-no-vania'daki yüz-ro-eşittir. Üstten düzleme olan mesafeyi bulun.

4. Bir sağ altıgen prizmada tüm kenarlar eşittir. Bir noktadan bir düzleme olan mesafeyi bulun.

Çözümler:

1. Tek kenarlı bir küp çizin, bir doğru parçası ve bir düzlem oluşturun, parçanın ortasını bir harfle belirtin

.

Öncelikle kolay olanla başlayalım: noktanın koordinatlarını bulun. O zamandan beri (segmentin ortasının koordinatlarını hatırlayın!)

Şimdi üç noktayı kullanarak düzlemin denklemini oluşturuyoruz

\[\sol| (\begin(array)(*(20)(c))x&0&1\\y&1&0\\z&1&1\end(array)) \right| = 0\]

Artık mesafeyi bulmaya başlayabilirim:

2. Tüm verileri işaretlediğimiz bir çizimle yeniden başlıyoruz!

Bir piramit için tabanını ayrı ayrı çizmek faydalı olacaktır.

Pençesiyle tavuk gibi çizim yapmam bile bu sorunu kolaylıkla çözmemize engel olmayacak!

Artık bir noktanın koordinatlarını bulmak çok kolay

Noktanın koordinatları olduğundan,

2. a noktasının koordinatları doğru parçasının ortası olduğuna göre, o zaman

Düzlemdeki iki noktanın daha koordinatlarını sorunsuz bir şekilde bulabiliriz. Düzlem için bir denklem oluşturup onu basitleştiriyoruz:

\[\sol| (\left| (\begin(array)(*(20)(c))x&1&(\frac(3)(2))\\y&0&(\frac(3)(2))\\z&0&(\frac( (\sqrt 3 )(2))\end(array)) \right|) \right| = 0\]

Noktanın koordinatları: olduğundan mesafeyi hesaplarız:

Cevap (çok nadir!):

Peki anladın mı? Bana öyle geliyor ki burada her şey bir önceki bölümde incelediğimiz örneklerdeki kadar teknik. Bu yüzden eminim ki, eğer bu materyale hakim olduysanız, kalan iki problemi çözmeniz sizin için zor olmayacaktır. Size sadece cevapları vereceğim:

Düz bir çizgiden düzleme olan mesafenin hesaplanması

Aslında burada yeni bir şey yok. Düz bir çizgi ve bir düzlem birbirine göre nasıl konumlandırılabilir? Tek bir olasılıkları var: kesişmek ya da düz bir çizginin düzleme paralel olması. Sizce bir düz çizgi ile bu doğrunun kesiştiği düzlem arasındaki mesafe nedir? Bana öyle geliyor ki burada böyle bir mesafenin sıfıra eşit olduğu açık. İlginç bir durum değil.

İkinci durum daha yanıltıcıdır: burada mesafe zaten sıfır değildir. Ancak doğru düzleme paralel olduğundan, doğrunun her noktası bu düzleme eşit uzaklıktadır:

Böylece:

Bu, görevimin bir öncekine indirgendiği anlamına geliyor: Düz bir çizgi üzerindeki herhangi bir noktanın koordinatlarını arıyoruz, düzlemin denklemini arıyoruz ve noktadan düzleme olan mesafeyi hesaplıyoruz. Aslında Birleşik Devlet Sınavında bu tür görevler oldukça nadirdir. Yalnızca bir sorun bulmayı başardım ve içindeki veriler öyleydi ki koordinat yöntemi buna pek uygulanamadı!

Şimdi başka, çok daha önemli bir sorun sınıfına geçelim:

Bir noktanın bir çizgiye olan mesafesini hesaplama

Neye ihtiyacımız var?

1. Mesafeyi aradığımız noktanın koordinatları:

2. Bir doğru üzerinde bulunan herhangi bir noktanın koordinatları

3. Düz çizginin yönlendirici vektörünün koordinatları

Hangi formülü kullanıyoruz?

Bu kesrin paydasının ne anlama geldiği sizin için açık olmalıdır: bu, düz çizginin yönlendirici vektörünün uzunluğudur. Bu çok zor bir paydır! İfadesi, vektörlerin vektör çarpımının modülünü (uzunluğunu) ifade eder ve vektör çarpımının nasıl hesaplanacağını çalışmanın önceki bölümünde inceledik. Bilgilerinizi tazeleyin, artık buna çok ihtiyacımız olacak!

Böylece, problem çözme algoritması aşağıdaki gibi olacaktır:

1. Mesafeyi aradığımız noktanın koordinatlarını arıyoruz:

2. Mesafeyi aradığımız doğru üzerindeki herhangi bir noktanın koordinatlarını arıyoruz:

3. Bir vektör oluşturun

4. Çizginin yönlendirici vektörünü oluşturun

5. Vektör çarpımını hesaplayın

6. Ortaya çıkan vektörün uzunluğunu arıyoruz:

7. Mesafeyi hesaplayın:

Yapacak çok işimiz var ve örnekler oldukça karmaşık olacak! O halde şimdi tüm dikkatinizi odaklayın!

1. Tepesi olan dik üçgen bir pi-ra-mi-da verilmiştir. Pi-ra-mi-dy temelinde yüz-ro-eşittir, sen eşitsin. Gri kenardan, ve noktalarının gri kenarlar olduğu düz çizgiye ve veterinere olan mesafeyi bulun.

2. Kenarların uzunlukları ve düz açılı par-ral-le-le-pi-pe-da buna göre eşittir ve üstten düz çizgiye olan mesafeyi bulun

3. Bir sağ altıgen prizmada tüm kenarlar eşittir; bir noktadan düz bir çizgiye olan mesafeyi bulun

Çözümler:

1. Tüm verileri işaretlediğimiz düzgün bir çizim yapıyoruz:

Yapacak çok işimiz var! Öncelikle neyi arayacağımızı ve hangi sırayla araştıracağımızı kelimelerle anlatmak istiyorum:

1. Noktaların koordinatları ve

2. Nokta koordinatları

3. Noktaların koordinatları ve

4. Vektörlerin koordinatları ve

5. Çapraz çarpımları

6. Vektör uzunluğu

7. Vektör çarpımının uzunluğu

8. Uzaklık

Neyse, önümüzde çok işimiz var! Hadi kolları sıvamış olarak işe başlayalım!

1. Piramidin yüksekliğinin koordinatlarını bulmak için noktanın koordinatlarını bilmemiz gerekir. Uygulaması sıfırdır ve koordinatı apsisine eşit olduğundan parçanın yüksekliğine eşittir. bir eşkenar üçgen, buradan itibaren tepe noktasından sayılarak orana bölünür. Sonunda koordinatları aldık:

Nokta koordinatları

2. - segmentin ortası

3. - segmentin ortası

Segmentin orta noktası

4.Koordinatlar

Vektör koordinatları

5. Vektör çarpımını hesaplayın:

6. Vektör uzunluğu: Değiştirmenin en kolay yolu, parçanın üçgenin orta çizgisi olması, yani tabanın yarısına eşit olmasıdır. Bu yüzden.

7. Vektör çarpımının uzunluğunu hesaplayın:

8. Son olarak mesafeyi buluyoruz:

İşte bu! Size dürüstçe söyleyeceğim: Bu sorunun çözümü geleneksel yöntemler(inşaat yoluyla), çok daha hızlı olurdu. Ama burada her şeyi hazır bir algoritmaya indirgedim! Çözüm algoritmasının sizin için açık olduğunu düşünüyorum? Bu nedenle geri kalan iki sorunu kendiniz çözmenizi isteyeceğim. Cevapları karşılaştıralım mı?

Tekrar ediyorum; bu sorunları inşaat yoluyla çözmek, inşaatlara başvurmaktan daha kolaydır (daha hızlıdır). koordinat yöntemi. Bu çözümü yalnızca size göstermek için gösterdim evrensel yöntem Bu da "hiçbir şey inşa etmeyi bitirmemenizi" sağlar.

Son olarak, son sınıftaki sorunları ele alalım:

Kesişen çizgiler arasındaki mesafenin hesaplanması

Burada problem çözme algoritması öncekine benzer olacaktır. Elimizde ne var:

3. Birinci ve ikinci çizginin noktalarını birleştiren herhangi bir vektör:

Çizgiler arasındaki mesafeyi nasıl buluruz?

Formül aşağıdaki gibidir:

Pay modüldür karışık ürün(bunu önceki bölümde tanıttık) ve payda önceki formüldeki gibidir (düz çizgilerin yönlendirici vektörlerinin vektör çarpımının modülü, aradığımız mesafe).

sana şunu hatırlatacağım

Daha sonra mesafe formülü şu şekilde yeniden yazılabilir::

Bu bir determinantın bir determinantla bölünmesidir! Gerçi dürüst olmak gerekirse burada şaka yapacak vaktim yok! Bu formül aslında çok hantaldır ve oldukça karmaşık hesaplamalar. Senin yerinde olsaydım, buna yalnızca son çare olarak başvururdum!

Yukarıdaki yöntemi kullanarak birkaç sorunu çözmeye çalışalım:

1. Doğru yönde üçgen prizma Tüm kenarları eşit olan düz çizgiler ile arasındaki mesafeyi bulun.

2. Bir dik üçgen prizma verildiğinde, tabanın tüm kenarları gövde kaburgasından geçen kesite eşittir ve se-re-di-well kaburgalar bir karedir. Düz çizgiler arasındaki mesafeyi bulun ve

Birincisine ben karar veririm ve buna göre ikincisine sen karar verirsin!

1. Bir prizma çiziyorum ve düz çizgiler çiziyorum ve

C noktasının koordinatları: o zaman

Nokta koordinatları

Vektör koordinatları

Nokta koordinatları

Vektör koordinatları

Vektör koordinatları

\[\left((B,\overrightarrow (A(A_1)) \overrightarrow (B(C_1)) ) \right) = \left| (\begin(array)(*(20)(l))(\begin(array)(*(20)(c))0&1&0\end(array))\\(\begin(array)(*(20) (c))0&0&1\end(array))\\(\begin(array)(*(20)(c))(\frac((\sqrt 3 ))(2))&( - \frac(1) (2))&1\end(array))\end(array)) \right| = \frac((\sqrt 3 ))(2)\]

Vektörler arasındaki vektör çarpımını hesaplıyoruz ve

\[\overrightarrow (A(A_1)) \cdot \overrightarrow (B(C_1)) = \left| \begin(array)(l)\begin(array)(*(20)(c))(\overrightarrow i )&(\overrightarrow j )&(\overrightarrow k )\end(array)\\\begin(array )(*(20)(c))0&0&1\end(array)\\\begin(array)(*(20)(c))(\frac((\sqrt 3 ))(2))&( - \ frac(1)(2))&1\end(array)\end(array) \right| - \frac((\sqrt 3 ))(2)\overrightarrow k + \frac(1)(2)\overrightarrow i \]

Şimdi uzunluğunu hesaplıyoruz:

Cevap:

Şimdi ikinci görevi dikkatlice tamamlamaya çalışın. Bunun cevabı şu olacaktır: .

Koordinatlar ve vektörler. Kısa açıklama ve temel formüller

Bir vektör yönlendirilmiş bir bölümdür. - vektörün başlangıcı, - vektörün sonu.
Bir vektör veya ile gösterilir.

Mutlak değer vektör - vektörü temsil eden parçanın uzunluğu. Olarak belirtildi.

Vektör koordinatları:

,
\displaystyle a vektörünün uçları nerede?

Vektörlerin toplamı: .

Vektörlerin çarpımı:

Vektörlerin nokta çarpımı:

Bir vektöre genellikle belirli bir yöne sahip bir segment denir. Vektörün hem başlangıcı hem de sonu, vektörün yönünün belirlendiği sabit bir konuma sahiptir. Bir vektörün nasıl oluşturulacağına daha yakından bakalım verilen koordinatlar.

  1. Uzayda bir koordinat sistemi (x, y, z) çizin, eksenlerdeki birim parçalarını işaretleyin.
  2. İki eksende kenara koyun gerekli koordinatlar, onlardan noktalı çizgiler çizin, eksenlere paralel, kavşağa. Koordinatların başlangıç ​​noktasına noktalı çizgi ile bağlanması gereken kesişim noktasını öğrenin.
  3. Başlangıç ​​noktasından sonuç noktasına kadar bir vektör çizin.
  4. Üçüncü eksende kenara koyun doğru numara, başından sonuna kadar bu nokta oluşturulan vektöre paralel olacak noktalı bir çizgi çizin.
  5. Vektörün sonundan, üçüncü eksene paralel, önceki noktadan gelen çizgiyle kesişene kadar noktalı bir çizgi çizin.
  6. Son olarak orijini ve sonuç noktasını bağlayın.

Bazen diğer vektörleri toplamanın veya çıkarmanın sonucu olacak bir vektör oluşturmanız gerekir. Bu nedenle şimdi vektörlerle işlemlere bakacağız, bunları nasıl toplayıp çıkaracağımızı öğreneceğiz.

Bir vektör üzerinde işlemler

Geometrik vektörlerçeşitli şekillerde katlanabilir. Örneğin, vektörleri toplamanın en yaygın yolu üçgen kuralıdır. Bu kurala göre iki vektör eklemek için, ilk vektörün başlangıcı ikincinin sonu ile çakışacak şekilde vektörleri birbirine paralel yerleştirmek gerekirken, ortaya çıkan üçgenin üçüncü tarafı toplam vektörü olacaktır.

Paralelkenar kuralını kullanarak vektörlerin toplamını hesaplamak da mümkündür. Vektörler, bir paralelkenar elde edebilmeniz için bir çizgi çizmeniz gereken her vektöre paralel bir noktadan başlamalıdır. Oluşturulan paralelkenarın köşegeni bu vektörlerin toplamı olacaktır.

İki vektörü çıkarmak için ilk vektörü ve ikincinin karşısındaki vektörü eklemeniz gerekir. Bunun için aşağıdaki formülasyona sahip olan üçgen kuralı da kullanılır: Başlangıçları çakışacak şekilde aktarılan vektörlerin farkı, başlangıcı çıkarılan vektörün sonuyla çakışan bir vektördür ve ayrıca vektörün sonu azaltılıyor.

Standart tanım: “Bir vektör yönlendirilmiş bir bölümdür.” Bu genellikle bir mezunun vektörler hakkındaki bilgisinin kapsamıdır. Kimin “yönlü segmentlere” ihtiyacı var?

Fakat gerçekte vektörler nedir ve ne işe yararlar?
Hava tahmini. "Rüzgar kuzeybatıdan, hızı saniyede 18 metre." Hem rüzgarın yönü (nereden estiği) hem de hızının büyüklüğü (yani mutlak değeri) önemlidir.

Yönü olmayan niceliklere skaler denir. Kütle, iş, elektrik yükü hiçbir yere yönlendirilmedi. Sadece karakterize edilirler sayısal değer- “kaç kilogram” veya “kaç joule”.

Yalnızca fiziksel büyüklükler değil mutlak değer, ama aynı zamanda yöne de vektör denir.

Hız, kuvvet, ivme - vektörler. Onlar için “ne kadar”, “nerede” önemlidir. Örneğin hızlanma serbest düşüş Dünya yüzeyine doğru yönlendirilir ve büyüklüğü 9,8 m/s2'dir. Dürtü, gerginlik elektrik alanı, indüksiyon manyetik alan- ayrıca vektör miktarları.

Bunu hatırlıyor musun? fiziksel büyüklükler Latince veya Yunanca harflerle gösterilir. Harfin üzerindeki ok miktarın vektörel olduğunu gösterir:

İşte başka bir örnek.
Bir araba A noktasından B noktasına hareket ediyor. Nihai sonuç- A noktasından B noktasına hareketi, yani vektöre göre hareketi.

Artık bir vektörün neden yönlendirilmiş bir segment olduğu açıktır. Lütfen vektörün sonunun okun bulunduğu yer olduğuna dikkat edin. Vektör uzunluğu bu parçanın uzunluğu denir. Şununla gösterilir: veya

Şu ana kadar birlikte çalıştık skaler büyüklükler Aritmetik ve temel cebir kurallarına göre. Vektörler yeni bir kavramdır. Bu, matematiksel nesnelerin başka bir sınıfıdır. Kendi kuralları var.

Bir zamanlar sayılar hakkında hiçbir şey bilmiyorduk. Onlarla tanışma 1900'lerde başladı genç sınıfları. Sayıların birbirleriyle karşılaştırılabileceği, eklenebileceği, çıkarılabileceği, çarpılabileceği ve bölünebileceği ortaya çıktı. Bir rakamın bir de sıfır rakamının olduğunu öğrendik.
Artık vektörlerle tanışıyoruz.

Vektörler için "daha fazla" ve "daha az" kavramları mevcut değildir - sonuçta yönleri farklı olabilir. Yalnızca vektör uzunlukları karşılaştırılabilir.

Ancak vektörler için bir eşitlik kavramı vardır.
Eşit sahip vektörler denir aynı uzunluklar ve aynı yön. Bu, vektörün düzlemdeki herhangi bir noktaya kendisine paralel olarak aktarılabileceği anlamına gelir.
Bekar uzunluğu 1 olan bir vektördür. Sıfır, uzunluğu sıfır olan, yani başlangıcı bitişle çakışan bir vektördür.

Vektörlerle çalışmak en uygunudur dikdörtgen sistem koordinatlar - fonksiyon grafiklerini çizdiğimizle aynı. Koordinat sistemindeki her nokta iki sayıya karşılık gelir - x ve y koordinatları, apsis ve ordinat.
Vektör ayrıca iki koordinatla belirtilir:

Burada vektörün koordinatları parantez içinde x ve y olarak yazılmıştır.
Basitçe bulunurlar: vektörün sonunun koordinatı eksi başlangıcının koordinatı.

Vektör koordinatları verilirse uzunluğu formülle bulunur.

Vektör toplama

Vektörleri eklemenin iki yolu vardır.

1. Paralelkenar kuralı. Ve vektörlerini toplamak için her ikisinin de kökenlerini aynı noktaya yerleştiririz. Bir paralelkenar oluşturuyoruz ve aynı noktadan paralelkenarın köşegenini çiziyoruz. Bu, ve vektörlerinin toplamı olacaktır.

Kuğu, kerevit ve turna balığı masalını hatırlıyor musunuz? Çok uğraştılar ama arabayı asla hareket ettirmediler. Nihayet vektör toplamı arabaya uyguladıkları kuvvetler sıfırdı.

2. Vektörleri toplamanın ikinci yolu üçgen kuralıdır. Aynı vektörleri alalım ve . İkinci vektörün başlangıcını birinci vektörün sonuna ekleyeceğiz. Şimdi birincinin başlangıcını ve ikincinin sonunu bağlayalım. Bu, ve vektörlerinin toplamıdır.

Aynı kuralı kullanarak birkaç vektör ekleyebilirsiniz. Bunları birbiri ardına düzenliyoruz ve ardından ilkinin başlangıcını sonuncunun sonuna bağlıyoruz.

A noktasından B noktasına, B'den C'ye, C'den D'ye, sonra E'ye ve F'ye gittiğinizi hayal edin. Bu eylemlerin nihai sonucu A'dan F'ye harekettir.

Vektörleri topladığımızda şunu elde ederiz:

Vektör çıkarma

Vektör, vektörün tersi yönündedir. Ve vektörlerinin uzunlukları eşittir.

Artık vektör çıkarma işleminin ne olduğu açık. Vektör farkı ve, vektör ile vektörün toplamıdır.

Bir vektörü bir sayıyla çarpmak

Bir vektör k sayısıyla çarpıldığında uzunluğu k katından farklı olan bir vektör elde edilir. k sıfırdan büyükse vektörle eş yönlüdür, k sıfırdan küçükse zıt yönlüdür.

Vektörlerin nokta çarpımı

Vektörler sadece sayılarla değil birbirleriyle de çarpılabilir.

Vektörlerin skaler çarpımı, vektörlerin uzunlukları ile aralarındaki açının kosinüsünün çarpımıdır.

Lütfen iki vektörü çarptığımızı ve sonucun bir skaler, yani bir sayı olduğunu unutmayın. Örneğin fizikte mekanik iş iki vektörün skaler çarpımına eşittir - kuvvet ve yer değiştirme:

Vektörler dik ise skaler çarpımları sıfırdır.
Skaler çarpım, vektörlerin koordinatları aracılığıyla şu şekilde ifade edilir:

Skaler çarpım formülünden vektörler arasındaki açıyı bulabilirsiniz:

Bu formül özellikle stereometride kullanışlıdır. Örneğin 14. problemde Profil Birleşik Devlet Sınavı matematikte kesişen çizgiler arasındaki veya bir doğru ile bir düzlem arasındaki açıyı bulmanız gerekir. Problem 14 genellikle vektör yöntemi kullanılarak klasik yönteme göre birkaç kat daha hızlı çözülür.

İÇİNDE okul müfredatı matematikte vektörlerin yalnızca skaler çarpımını incelerler.
İki vektörün çarpımının sonucu bir vektör olduğunda, skaler çarpıma ek olarak bir vektör çarpımının da olduğu ortaya çıktı. Fizikte Birleşik Devlet Sınavına giren herkes Lorentz kuvvetinin ve Ampere kuvvetinin ne olduğunu bilir. Bu kuvvetleri bulmaya yönelik formüller vektör ürünlerini içerir.

Vektörler çok kullanışlı bir matematik aracıdır. Bunu ilk yılınızda göreceksiniz.

Bir vektöre genellikle belirli bir yöne sahip bir segment denir. Vektörün hem başlangıcı hem de sonu, vektörün yönünün belirlendiği sabit bir konuma sahiptir. Verilen koordinatları kullanarak bir vektörün nasıl oluşturulacağına daha yakından bakalım.

  1. Uzayda bir koordinat sistemi (x, y, z) çizin, eksenlerdeki birim parçalarını işaretleyin.
  2. Gerekli koordinatları iki eksene çizin, kesişene kadar eksenlere paralel noktalı çizgiler çizin. Koordinatların başlangıç ​​noktasına noktalı çizgi ile bağlanması gereken kesişim noktasını öğrenin.
  3. Başlangıç ​​noktasından sonuç noktasına kadar bir vektör çizin.
  4. Gerekli sayıyı üçüncü eksene koyun ve bu noktadan oluşturulan vektöre paralel olacak noktalı bir çizgi çizin.
  5. Vektörün sonundan, üçüncü eksene paralel, önceki noktadan gelen çizgiyle kesişene kadar noktalı bir çizgi çizin.
  6. Son olarak orijini ve sonuç noktasını bağlayın.

Bazen diğer vektörleri toplamanın veya çıkarmanın sonucu olacak bir vektör oluşturmanız gerekir. Bu nedenle şimdi vektörlerle işlemlere bakacağız, bunları nasıl toplayıp çıkaracağımızı öğreneceğiz.

Bir vektör üzerinde işlemler

Geometrik vektörler çeşitli şekillerde eklenebilir. Örneğin, vektörleri toplamanın en yaygın yolu üçgen kuralıdır. Bu kurala göre iki vektör eklemek için, ilk vektörün başlangıcı ikincinin sonu ile çakışacak şekilde vektörleri birbirine paralel yerleştirmek gerekirken, ortaya çıkan üçgenin üçüncü tarafı toplam vektörü olacaktır.

Paralelkenar kuralını kullanarak vektörlerin toplamını hesaplamak da mümkündür. Vektörler, bir paralelkenar elde edebilmeniz için bir çizgi çizmeniz gereken her vektöre paralel bir noktadan başlamalıdır. Oluşturulan paralelkenarın köşegeni bu vektörlerin toplamı olacaktır.

İki vektörü çıkarmak için ilk vektörü ve ikincinin karşısındaki vektörü eklemeniz gerekir. Bunun için aşağıdaki formülasyona sahip olan üçgen kuralı da kullanılır: Başlangıçları çakışacak şekilde aktarılan vektörlerin farkı, başlangıcı çıkarılan vektörün sonuyla çakışan bir vektördür ve ayrıca vektörün sonu azaltılıyor.


Dikkat, yalnızca BUGÜN!

DİĞER

Vektör toplama işlemini gerçekleştirmek için duruma bağlı olarak birkaç yol vardır...

Vektör matematiksel nesne yön ve büyüklük ile karakterize edilir. Geometride bir vektöre... denir.

Matematikte bir vektör bir segmenttir Verilen uzunluk X, Y, Z eksenlerinde yön ve koordinatlara sahip olan soru...

Aynı noktadan çıkan iki vektör arasındaki açı, ilk vektörün dönme açısına en yakın açıdır...

eğer biliyorsan uzaysal koordinatlar Belirli bir sistemdeki iki veya daha fazla nokta, o zaman sorun: uzunluğun nasıl bulunacağı...

Bir segmentin uzunluğunu belirlemek mümkündür farklı şekillerde. Bir parçanın uzunluğunun nasıl bulunacağını bulmak için aşağıdakilere sahip olmak yeterlidir:

İvme, hızın değişme hızıdır. Bu nicelik vektöreldir, kendi yönü vardır ve m/s 2 (... olarak) cinsinden ölçülür.

Yönleri belirlemek için gimlet kuralını kullanma manyetik çizgiler(Aksi halde bunlara manyetik çizgiler denir...

Çizimlerdeki resimler geometrik cisimler projeksiyon yöntemiyle inşa edilmiştir. Ama bu tek resim için...

"Ordinat" kelimesi Latince "ordinatus" - "sıraya göre düzenlenmiş" kelimesinden gelir. Ordinat tamamen matematikseldir...

Bir sayının modülü farklı şekilde de adlandırılır mutlak değer bu numara. Modül işaretinin altında varsa...

Bir eşkenar üçgenin köşesinin koordinatlarını bulmak için diğer iki köşesinin koordinatları biliniyorsa...

Bir üçgenin orta çizgisini nasıl hesaplayıp bulacağınızı merak ediyorsunuz. O zaman orta çizginin uzunluğunu bulalım...

Fizikte ivmenin ne olduğuna daha yakından bakalım. Bu, bedene birim zaman başına ilave hız mesajıdır.

Paralelkenarın alanını nasıl bulacağımızı öğrenmeden önce paralelkenarın ne olduğunu ve ne olduğunu hatırlamamız gerekir.