Karmaşık bir fonksiyonun türevi nedir? Türevlerin hesaplanmasına ilişkin kurallar

“Eski” ders kitaplarında buna “zincir” kuralı da denir. Yani eğer y = f (u) ve u = φ (x), yani

y = f (φ(x))

    karmaşık - bileşik fonksiyon (fonksiyonların bileşimi) o zaman

Nerede hesaplama dikkate alındıktan sonra sen = φ(x).



Burada aynı işlevlerden "farklı" bileşimler aldığımızı ve farklılaşma sonucunun doğal olarak "karıştırma" sırasına bağlı olduğunu unutmayın.

Zincir kuralı doğal olarak üç veya daha fazla fonksiyonun bileşimlerine kadar uzanır. Bu durumda türevi oluşturan “zincirde” üç veya daha fazla “bağlantı” olacaktır. İşte çarpmayla ilgili bir benzetme: bir türev tablomuz var; “orada” - çarpım tablosu; "Bizimle" zincir kuralıdır ve "orada" "sütun" çarpma kuralıdır. Bu tür "karmaşık" türevleri hesaplarken, elbette hiçbir yardımcı argüman (u¸v, vb.) tanıtılmaz, ancak bileşimde yer alan fonksiyonların sayısını ve sırasını kendileri için not ettikten sonra, karşılık gelen bağlantılar "dizili" olur. belirtilen sırada.

. Burada “y” anlamını elde etmek için “x” ile beş işlem gerçekleştirilir, yani beş fonksiyonun bir bileşimi vardır: “dış” (sonuncusu) - üstel - e  ; daha ileride ters sıra sakinleştirici. (♦) 2;

trigonometrik günah

(); sakinleştirici. () 3 ve son olarak logaritmik ln.(). Bu yüzden

Aşağıdaki örneklerle "bir taşla birkaç kuş vuracağız": karmaşık fonksiyonların türevini alacağız ve temel fonksiyonların türevleri tablosuna ekleme yapacağız. Bu yüzden: 4. Bir kuvvet fonksiyonu için - y = x α - iyi bilinen "temel" yöntemini kullanarak onu yeniden yazmak logaritmik özdeşlik

" - b=e ln b - x α = x α ln x formunda elde ederiz

.

5. Ücretsiz

üstel fonksiyon

sahip olacağımız tekniğin aynısını kullanarak

6. Keyfi bir logaritmik fonksiyon için, yeni bir tabana geçiş için iyi bilinen formülü kullanarak tutarlı bir şekilde şunu elde ederiz:

7. Teğetin (kotanjant) türevini almak için bölümlerin türev alma kuralını kullanırız:
,

Son olarak bunları ve yine kolayca elde edilebilen diğer bazı türevleri aşağıdaki tabloda özetleyelim.

Tanımı takip ederseniz, bir fonksiyonun bir noktadaki türevi, Δ fonksiyonunun artış oranının limitidir. sen argüman artışına Δ X:

Her şey açık görünüyor. Ancak fonksiyonun türevini hesaplamak için bu formülü kullanmayı deneyin. F(X) = X 2 + (2X+ 3) · e X günah X. Her şeyi tanımı gereği yaparsanız, birkaç sayfalık hesaplamalardan sonra uykuya dalacaksınız. Bu nedenle daha basit ve etkili yollar var.

Başlangıç ​​olarak, tüm fonksiyon çeşitliliğinden, temel fonksiyonlar olarak adlandırılanları ayırt edebildiğimizi not ediyoruz. Bu göreceli basit ifadeler türevleri uzun süredir hesaplanan ve tabloda listelenen. Bu tür fonksiyonların türevleriyle birlikte hatırlanması oldukça kolaydır.

Temel fonksiyonların türevleri

Temel işlevler aşağıda listelenenlerin tamamıdır. Bu fonksiyonların türevlerinin ezbere bilinmesi gerekir. Üstelik bunları ezberlemek hiç de zor değil; bu yüzden temel düzeydedirler.

Yani, temel fonksiyonların türevleri:

İsim İşlev Türev
Devamlı F(X) = C, CR 0 (evet, sıfır!)
Rasyonel üslü kuvvet F(X) = X N N · X N − 1
Sinüs F(X) = günah X çünkü X
Kosinüs F(X) = çünkü X −günah X(eksi sinüs)
Teğet F(X) = tg X 1/çünkü 2 X
Kotanjant F(X) = ctg X − 1/günah 2 X
Doğal logaritma F(X) = günlük X 1/X
Keyfi logaritma F(X) = günlük A X 1/(X içinde A)
Üstel fonksiyon F(X) = e X e X(Hiçbir şey değişmedi)

Bir temel fonksiyon keyfi bir sabitle çarpılırsa, yeni fonksiyonun türevi de kolaylıkla hesaplanır:

(C · F)’ = C · F ’.

Genel olarak sabitler türevin işaretinden çıkarılabilir. Örneğin:

(2X 3)’ = 2 · ( X 3)’ = 2 3 X 2 = 6X 2 .

Açıkçası, temel işlevler birbirine eklenebilir, çarpılabilir, bölünebilir ve çok daha fazlası yapılabilir. Bu şekilde, artık özellikle basit olmayan, aynı zamanda aşağıdakilere göre türevlenebilir yeni işlevler ortaya çıkacaktır: belirli kurallar. Bu kurallar aşağıda tartışılmaktadır.

Toplam ve farkın türevi

Fonksiyonlar verilsin F(X) Ve G(X), türevleri tarafımızca bilinmektedir. Örneğin yukarıda tartışılan temel işlevleri alabilirsiniz. Daha sonra bu fonksiyonların toplamının ve farkının türevini bulabilirsiniz:

  1. (F + G)’ = F ’ + G
  2. (FG)’ = F ’ − G

Yani iki fonksiyonun toplamının (farkının) türevi, türevlerin toplamına (farkına) eşittir. Daha fazla şart olabilir. Örneğin, ( F + G + H)’ = F ’ + G ’ + H ’.

Açıkça söylemek gerekirse cebirde “çıkarma” kavramı yoktur. Bir kavram var" negatif eleman" Bu nedenle fark FG toplam olarak yeniden yazılabilir F+ (−1) G ve sonra yalnızca bir formül kalır - toplamın türevi.

F(X) = X 2 + günah x; G(X) = X 4 + 2X 2 − 3.

İşlev F(X) iki temel fonksiyonun toplamıdır, dolayısıyla:

F ’(X) = (X 2 + günah X)’ = (X 2)’ + (günah X)’ = 2X+ çünkü x;

İşlev için de benzer şekilde mantık yürütüyoruz G(X). Sadece zaten üç terim var (cebir açısından):

G ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Cevap:
F ’(X) = 2X+ çünkü x;
G ’(X) = 4X · ( X 2 + 1).

Ürünün türevi

Matematik mantıksal bir bilimdir, pek çok kişi bir toplamın türevinin türevlerin toplamına eşit olması durumunda çarpımın türevinin alınacağına inanır. çarpmak">türevlerin çarpımına eşittir. Ama canınız cehenneme! Bir çarpımın türevi tamamen farklı bir formül kullanılarak hesaplanır. Yani:

(F · G) ’ = F ’ · G + F · G

Formül basit ama sıklıkla unutuluyor. Ve sadece okul çocukları değil, öğrenciler de. Sonuç yanlış çözülmüş problemlerdir.

Görev. Fonksiyonların türevlerini bulun: F(X) = X 3 çünkü x; G(X) = (X 2 + 7X− 7) · e X .

İşlev F(X) iki temel fonksiyonun ürünüdür, dolayısıyla her şey basittir:

F ’(X) = (X 3 çünkü X)’ = (X 3) çünkü X + X 3 (çünkü X)’ = 3X 2 çünkü X + X 3 (−sin X) = X 2 (3cos XX günah X)

İşlev G(X) ilk faktör biraz daha karmaşıktır, ancak genel şema bu değişmez. Açıkçası, fonksiyonun ilk faktörü G(X) bir polinomdur ve türevi toplamın türevidir. Sahibiz:

G ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X· (2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Cevap:
F ’(X) = X 2 (3cos XX günah X);
G ’(X) = X(X+ 9) · e X .

Lütfen son adımda türevin çarpanlara ayrıldığını unutmayın. Resmi olarak bunun yapılmasına gerek yoktur, ancak çoğu türev kendi başına hesaplanmaz, fonksiyonu incelemek için hesaplanır. Bu, türevin ayrıca sıfıra eşitleneceği, işaretlerinin belirleneceği vb. anlamına gelir. Böyle bir durumda, bir ifadenin çarpanlara ayrılması daha iyidir.

İki fonksiyon varsa F(X) Ve G(X), Ve G(X) ≠ 0 ilgilendiğimiz kümede tanımlayabiliriz yeni özellik H(X) = F(X)/G(X). Böyle bir fonksiyonun türevini de bulabilirsiniz:

Zayıf değil, değil mi? Eksi nereden geldi? Neden G 2? Ve bu yüzden! Bu en çok biri karmaşık formüller- Şişe olmadan çözemezsin. Bu nedenle, onu incelemek daha iyidir spesifik örnekler.

Görev. Fonksiyonların türevlerini bulun:

Her kesrin payı ve paydası temel fonksiyonları içerir, bu nedenle ihtiyacımız olan tek şey bölümün türevinin formülüdür:


Geleneğe göre, payı çarpanlara ayıralım - bu, cevabı büyük ölçüde basitleştirecektir:

Karmaşık bir fonksiyonun mutlaka yarım kilometre uzunluğunda bir formül olması gerekmez. Örneğin fonksiyonu almanız yeterli F(X) = günah X ve değişkeni değiştirin X diyelim ki X 2 + ln X. İşe yarayacak F(X) = günah ( X 2 + ln X) - bu karmaşık bir fonksiyondur. Onun da bir türevi var ama yukarıda tartışılan kuralları kullanarak onu bulmak mümkün olmayacak.

Ne yapmalıyım? Bu gibi durumlarda değişkeni ve türev formülünü değiştirmek yardımcı olur karmaşık fonksiyon:

F ’(X) = F ’(T) · T', Eğer Xşununla değiştirilir: T(X).

Kural olarak, bu formülün anlaşılmasındaki durum, bölümün türevinden daha da üzücüdür. Bu nedenle spesifik örneklerle açıklamak daha doğru olacaktır. detaylı açıklama her adımda.

Görev. Fonksiyonların türevlerini bulun: F(X) = e 2X + 3 ; G(X) = günah ( X 2 + ln X)

Fonksiyonda ise şunu unutmayın F(X) ifade 2 yerine X+3 kolay olacak X, o zaman işe yarayacak temel fonksiyon F(X) = e X. Bu nedenle bir değişiklik yapıyoruz: 2 olsun X + 3 = T, F(X) = F(T) = e T. Aşağıdaki formülü kullanarak karmaşık bir fonksiyonun türevini ararız:

F ’(X) = F ’(T) · T ’ = (e T)’ · T ’ = e T · T

Ve şimdi - dikkat! Ters değiştirme işlemini gerçekleştiriyoruz: T = 2X+ 3. Şunu elde ederiz:

F ’(X) = e T · T ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Şimdi fonksiyona bakalım G(X). Açıkçası değiştirilmesi gerekiyor X 2 + ln X = T. Sahibiz:

G ’(X) = G ’(T) · T' = (günah T)’ · T' = çünkü T · T

Ters değiştirme: T = X 2 + ln X. Daha sonra:

G ’(X) = çünkü ( X 2 + ln X) · ( X 2 + ln X)’ = çünkü ( X 2 + ln X) · (2 X + 1/X).

İşte bu! Buradan görülebileceği gibi son ifade, tüm sorun türev toplamının hesaplanmasına indirgenmişti.

Cevap:
F ’(X) = 2 · e 2X + 3 ;
G ’(X) = (2X + 1/X) çünkü ( X 2 + ln X).

Derslerimde sıklıkla "türev" terimi yerine "asal" kelimesini kullanıyorum. Örneğin, miktardan bir asal sayı toplamına eşit vuruşlar. Bu daha açık mı? Bu iyi.

Dolayısıyla türevi hesaplamak, yukarıda tartışılan kurallara göre aynı vuruşlardan kurtulmak anlamına gelir. Gibi son örnek Rasyonel bir üsle türev gücüne dönelim:

(X N)’ = N · X N − 1

Bu rolde çok az kişi bunu biliyor N iyi performans gösterebilir kesirli sayı. Örneğin, kök X 0,5. Ya kökün altında süslü bir şey varsa? Sonuç yine karmaşık bir işlev olacaktır; bu tür yapıları testler ve sınavlar.

Görev. Fonksiyonun türevini bulun:

Öncelikle kökü rasyonel üssü olan bir kuvvet olarak yeniden yazalım:

F(X) = (X 2 + 8X − 7) 0,5 .

Şimdi bir değişiklik yapıyoruz: izin ver X 2 + 8X − 7 = T. Türevi aşağıdaki formülü kullanarak buluyoruz:

F ’(X) = F ’(T) · T ’ = (T 0,5)' · T' = 0,5 · T−0,5 · T ’.

Ters değiştirme işlemini yapalım: T = X 2 + 8X− 7. Elimizde:

F ’(X) = 0,5 · ( X 2 + 8X− 7) −0,5 · ( X 2 + 8X− 7)’ = 0,5 (2) X+ 8) ( X 2 + 8X − 7) −0,5 .

Son olarak köklere dönelim:

Ön topçu hazırlığından sonra, 3-4-5 işlevin iç içe geçtiği örnekler daha az korkutucu olacaktır. Belki aşağıdaki iki örnek bazılarına karmaşık gelebilir, ancak eğer bunları anlarsanız (birisi acı çekecektir), o zaman hemen hemen her şey diferansiyel hesap Bir çocuğun şakası gibi görünecek.

Örnek 2

Bir fonksiyonun türevini bulun

Daha önce belirtildiği gibi, karmaşık bir fonksiyonun türevini bulurken her şeyden önce gereklidir Sağ Yatırımlarınızı ANLAYIN. Şüphelenilen durumlarda hatırlatırım faydalı numara: örneğin "x"in deneysel değerini alırız ve (zihinsel olarak veya taslakta) yerine koymaya çalışırız verilen değer"korkunç bir ifadeye" dönüştü.

1) Öncelikle toplamın en derin gömülü olduğu anlamına gelen ifadeyi hesaplamamız gerekir.

2) O zaman logaritmayı hesaplamanız gerekir:

4) Daha sonra kosinüsün küpünü alın:

5) Beşinci adımda fark:

6) Ve son olarak en dıştaki fonksiyon: karekök:

Karmaşık bir fonksiyonun türevini almak için formül en çok tersten uygulanacaktır harici fonksiyon, en iç kısmına. Biz karar veriyoruz:

Hiçbir hata yok gibi görünüyor:

1) Karekökün türevini alın.

2) Kuralı kullanarak farkın türevini alın

3) Bir üçlünün türevi sıfırdır. İkinci terimde derecenin (küp) türevini alıyoruz.

4) Kosinüsün türevini alın.

6) Ve son olarak en derine yerleştirmenin türevini alıyoruz.

Çok zor görünebilir ama bu en acımasız örnek değil. Örneğin Kuznetsov'un koleksiyonunu ele alalım; analiz edilen türevin tüm güzelliğini ve sadeliğini takdir edeceksiniz. Bir öğrencinin karmaşık bir fonksiyonun türevini nasıl bulacağını anlayıp anlamadığını kontrol etmek için sınavda benzer bir şey vermeyi sevdiklerini fark ettim.

Aşağıdaki örnek içindir bağımsız karar.

Örnek 3

Bir fonksiyonun türevini bulun

İpucu: Öncelikle doğrusallık kurallarını ve ürün farklılaştırma kuralını uyguluyoruz

Dersin sonunda tam çözüm ve cevap.

Daha küçük ve daha güzel bir şeye geçmenin zamanı geldi.
Bir örnekte ikinin çarpımının gösterilmesi alışılmadık bir durum değildir, ancak üç fonksiyon. Türevi nasıl bulunur? üçlü ürünlerçarpanlar?

Örnek 4

Bir fonksiyonun türevini bulun

Öncelikle üç fonksiyonun çarpımını iki fonksiyonun çarpımına çevirmenin mümkün olup olmadığına bakalım. Örneğin çarpımda iki polinom olsaydı parantezleri açabilirdik. Ancak söz konusu örnekte tüm işlevler farklıdır: derece, üs ve logaritma.

Bu gibi durumlarda gerekli sıraylaürün farklılaştırma kuralını uygulayın iki kere

İşin püf noktası, "y" ile iki fonksiyonun çarpımını, "ve" ile de logaritmayı belirtmemizdir: . Bu neden yapılabilir? Gerçekten mi - bu iki faktörün bir ürünü değil ve kural işe yaramıyor mu? Karmaşık bir şey yok:


Şimdi kuralı ikinci kez uygulamaya devam ediyor parantez içine almak için:

Hala sapkın olabilir ve parantezlerin dışına bir şeyler çıkarabilirsiniz, ancak bu durumda Cevabı bu formda bırakmak daha iyidir - kontrol edilmesi daha kolay olacaktır.

Ele alınan örnek ikinci şekilde çözülebilir:

Her iki çözüm de kesinlikle eşdeğerdir.

Örnek 5

Bir fonksiyonun türevini bulun

Bu, kendi başınıza çözmeye yönelik bir örnektir; örnekte, ilk yöntem kullanılarak çözülmüştür.

Kesirlerle benzer örneklere bakalım.

Örnek 6

Bir fonksiyonun türevini bulun

Buraya gidebileceğiniz birkaç yol var:

Veya bunun gibi:

Ancak önce bölümün türev alma kuralını kullanırsak çözüm daha kısa bir şekilde yazılacaktır. , payın tamamını alarak:

Prensip olarak örnek çözülmüştür ve olduğu gibi bırakılırsa hata olmayacaktır. Ancak zamanınız varsa, cevabın basitleştirilip basitleştirilemeyeceğini görmek için her zaman taslağı kontrol etmeniz önerilir.

Payın ifadesini şuna indirgeyelim: ortak payda ve üç katlı kesirden kurtulun:

Ek basitleştirmelerin dezavantajı, türevi bulurken değil, sıradan okul dönüşümleri sırasında hata yapma riskinin olmasıdır. Öte yandan öğretmenler sıklıkla ödevi reddediyor ve türevi “akla getirmesini” istiyorlar.

Kendi başınıza çözebileceğiniz daha basit bir örnek:

Örnek 7

Bir fonksiyonun türevini bulun

Türevi bulma yöntemlerinde uzmanlaşmaya devam ediyoruz ve şimdi türev için "korkunç" bir logaritmanın önerildiği tipik bir durumu ele alacağız.

Giriş seviyesi

Bir fonksiyonun türevi. Kapsamlı Kılavuz (2019)

Tepelik bir alandan geçen düz bir yol düşünelim. Yani yukarı aşağı gidiyor ama sağa sola dönmüyor. Eksen yol boyunca yatay ve dikey olarak yönlendirilirse, yol çizgisi bazı sürekli fonksiyonların grafiğine çok benzer olacaktır:

Eksen belli bir seviyede sıfır rakımdır; yaşamda deniz seviyesini öyle kullanırız.

Böyle bir yolda ilerlerken aynı zamanda yukarı veya aşağı da hareket ediyoruz. Şunu da söyleyebiliriz: argüman değiştiğinde (apsis ekseni boyunca hareket), fonksiyonun değeri de değişir (ordinat ekseni boyunca hareket). Şimdi yolumuzun “dikliğini” nasıl belirleyeceğimizi düşünelim? Bu nasıl bir değer olabilir? Çok basit: Belirli bir mesafeye doğru ilerlerken yüksekliğin ne kadar değişeceği. Sonuçta, farklı alanlar yollarda (x ekseni boyunca) bir kilometre ilerleyerek yükselecek veya alçalacağız farklı miktarlar deniz seviyesine göre metre (koordinat ekseni boyunca).

İlerlemeyi gösterelim (“delta x” okuyun).

Yunanca harf (delta), matematikte "değişim" anlamına gelen bir önek olarak yaygın olarak kullanılır. Yani bu nicelikteki bir değişikliktir, bir değişikliktir; peki o nedir? Doğru, büyüklükte bir değişiklik.

Önemli: Bir ifade tek bir bütündür, tek bir değişkendir. “Delta”yı asla “x”ten veya başka bir harften ayırmayın!

Yani örneğin .

Böylece yatay olarak ileriye doğru ilerledik. Yolun çizgisini bir fonksiyonun grafiğiyle karşılaştırırsak yükselişi nasıl gösteririz? Kesinlikle, . Yani ilerledikçe daha da yükseliriz. Değerin hesaplanması kolaydır: Başlangıçta yüksekteysek ve hareket ettikten sonra kendimizi yüksekte bulursak, o zaman. Eğer bitiş noktası

ilkinden daha düşük olduğu ortaya çıktı, negatif olacak - bu, yükseldiğimiz değil alçaldığımız anlamına geliyor.

Yolun bir bölümünde bir kilometre ileri gidildiğinde yolun bir kilometre yukarıya çıktığını varsayalım. O halde bu yerdeki eğim eşittir. Peki ya yol m ileri giderken km düşerse? O halde eğim eşittir.

Şimdi bir tepenin zirvesine bakalım. Bölümün başlangıcını zirveden yarım kilometre önce ve sonunu yarım kilometre sonra alırsanız yüksekliğin hemen hemen aynı olduğunu görürsünüz.

Yani bizim mantığımıza göre buradaki eğimin neredeyse sıfıra eşit olduğu ortaya çıkıyor ki bu kesinlikle doğru değil. Kilometrelerce uzakta çok şey değişebilir. Daha yeterli ve daha küçük alanların dikkate alınması gerekir. doğru değerlendirme diklik. Örneğin bir metre hareket ettikçe yükseklikteki değişimi ölçerseniz sonuç çok daha doğru olacaktır. Ancak bu doğruluk bile bizim için yeterli olmayabilir - sonuçta yolun ortasında bir direk varsa onu kolayca geçebiliriz. O halde hangi mesafeyi seçmeliyiz? Santimetre? Milimetre? Daha azı daha fazladır!

İÇİNDE gerçek hayat Mesafeleri en yakın milimetreye kadar ölçmek fazlasıyla yeterlidir. Ancak matematikçiler her zaman mükemmellik için çabalarlar. Bu nedenle kavram icat edildi sonsuz küçük yani mutlak değer isimlendirebileceğimiz herhangi bir sayıdan küçüktür. Örneğin şöyle diyorsunuz: trilyonuncu! Ne kadar az? Ve bu sayıyı -'ye bölerseniz daha da az olacaktır. Ve benzeri. Bir niceliğin sonsuz küçük olduğunu yazmak istersek şöyle yazarız: (“x sıfıra doğru gider” şeklinde okuruz). Anlamak çok önemli bu sayının sıfıra eşit olmadığını! Ama buna çok yakın. Bu, ona bölebileceğiniz anlamına gelir.

Sonsuz küçük kavramının karşısındaki kavram sonsuz büyüktür (). Muhtemelen eşitsizlikler üzerinde çalışırken bununla zaten karşılaşmışsınızdır: bu sayı, aklınıza gelebilecek herhangi bir sayıdan modülo daha büyüktür. Mümkün olan en büyük sayıyı bulursanız, bunu ikiyle çarpın, daha da büyük bir sayı elde edeceksiniz. Ve hala sonsuzluk Dahası ne olacak? Aslında sonsuz büyük ve sonsuz küçük birbirinin tersidir, yani at ve tam tersi: at.

Şimdi yolumuza geri dönelim. İdeal olarak hesaplanan eğim, yolun sonsuz küçük bir bölümü için hesaplanan eğimdir, yani:

Sonsuz küçük bir yer değiştirmeyle yükseklikteki değişimin de sonsuz küçük olacağını not ediyorum. Ama size sonsuz küçüklüğün şu anlama gelmediğini hatırlatmama izin verin: sıfıra eşit. Sonsuz küçük sayıları birbirine bölerseniz oldukça fazla sonuç elde edebilirsiniz. normal numara, Örneğin, . Yani küçük bir değer diğerinden tam olarak kat daha büyük olabilir.

Bütün bunlar ne için? Yol, diklik... Araba rallisine gitmiyoruz ama matematik öğretiyoruz. Ve matematikte her şey tamamen aynıdır, yalnızca farklı adlandırılır.

Türev kavramı

Bir fonksiyonun türevi, argümanın sonsuz küçük bir artışı için fonksiyonun artışının argümanın artışına oranıdır.

Kademeli olarak matematikte değişim diyorlar. Bağımsız değişkenin () eksen boyunca hareket ettikçe ne ölçüde değiştiğine denir argüman artışı Eksen boyunca bir mesafe kadar ileri doğru hareket edildiğinde fonksiyonun (yüksekliğin) ne kadar değiştiğine denir. fonksiyon artışı ve belirlenir.

Yani bir fonksiyonun türevi ne zamana oranıdır. Türevi fonksiyonla aynı harfle, yalnızca sağ üstte bir asal sayıyla veya basitçe belirtiriz. Şimdi bu gösterimleri kullanarak türev formülünü yazalım:

Yol benzetmesinde olduğu gibi burada fonksiyon arttığında türev pozitif, azaldığında ise negatif olur.

Türev sıfıra eşit olabilir mi? Kesinlikle. Örneğin düz yatay bir yolda gidiyorsak diklik sıfırdır. Ve bu doğru, yükseklik hiç değişmiyor. Türevde de durum aynıdır: Sabit bir fonksiyonun (sabit) türevi sıfıra eşittir:

çünkü böyle bir fonksiyonun artışı herhangi biri için sıfıra eşittir.

Tepe örneğini hatırlayalım. Segmentin uçlarını birlikte düzenlemenin mümkün olduğu ortaya çıktı farklı taraflar uçlardaki yükseklik aynı olacak, yani bölüm eksene paralel olacak şekilde üstten:

Ancak büyük segmentler yanlış ölçümün işaretidir. Segmentimizi kendine paralel olarak yukarı kaldıracağız, sonra uzunluğu azalacak.

Sonunda tepeye sonsuz derecede yaklaştığımızda, parçanın uzunluğu sonsuz derecede küçük olacaktır. Ancak aynı zamanda eksene paralel kalmıştır, yani uçlarındaki yükseklik farkı sıfıra eşittir (eğiliminde değildir ancak eşittir). Yani türev

Bu şu şekilde anlaşılabilir: En tepede durduğumuzda, sola veya sağa doğru küçük bir kayma, boyumuzu ihmal edilebilecek kadar değiştirir.

Ayrıca tamamen cebirsel bir açıklama da var: Tepe noktasının solunda fonksiyon artar ve sağında azalır. Daha önce öğrendiğimiz gibi, bir fonksiyon arttığında türevi pozitif, azaldığında ise negatif olur. Ancak atlamalar olmadan sorunsuz bir şekilde değişir (çünkü yol eğimini hiçbir yerde keskin bir şekilde değiştirmez). Bu nedenle negatif ile negatif arasında pozitif değerler mutlaka bulunması gerekir. Tepe noktasında, fonksiyonun ne arttığı ne de azaldığı yer olacaktır.

Aynı durum çukur (soldaki fonksiyonun azaldığı, sağdaki fonksiyonun arttığı alan) için de geçerlidir:

Artışlar hakkında biraz daha.

Bu yüzden argümanı büyüklük olarak değiştiriyoruz. Hangi değerden değişiyoruz? Şimdi bu (tartışma) ne hale geldi? Herhangi bir noktayı seçebiliriz ve şimdi oradan dans edeceğiz.

Koordinatı olan bir nokta düşünün. İçindeki fonksiyonun değeri eşittir. Sonra aynı artışı yapıyoruz: koordinatı artırıyoruz. Şimdi argüman ne? Çok kolay: . Şimdi fonksiyonun değeri nedir? Argüman nereye giderse fonksiyon da oraya gider: . Peki ya fonksiyon artışı? Yeni bir şey yok: Bu hala fonksiyonun değişme miktarıdır:

Artışları bulma alıştırması yapın:

  1. Bağımsız değişkenin artışının eşit olduğu bir noktada fonksiyonun artışını bulun.
  2. Aynı şey bir noktada fonksiyon için de geçerlidir.

Çözümler:

İÇİNDE farklı noktalar aynı argüman artışıyla, işlev artışı farklı olacaktır. Bu, her noktadaki türevin farklı olduğu anlamına gelir (bunu en başta tartıştık - yolun dikliği farklı noktalarda farklıdır). Bu nedenle bir türev yazarken hangi noktada olduğunu belirtmeliyiz:

Güç fonksiyonu.

Güç fonksiyonu, argümanın bir dereceye kadar (mantıklı, değil mi?) geçerli olduğu bir fonksiyondur.

Üstelik - herhangi bir ölçüde: .

En basit durum- bu durumda üs:

Bir noktadaki türevini bulalım. Türevin tanımını hatırlayalım:

Yani argüman 'dan 'a değişir. Fonksiyonun artışı nedir?

Artış şudur. Ancak herhangi bir noktadaki bir fonksiyon argümanına eşittir. Bu yüzden:

Türev şuna eşittir:

Türevi şuna eşittir:

b) Şimdi düşünün ikinci dereceden fonksiyon (): .

Şimdi şunu hatırlayalım. Bu, artışın değerinin ihmal edilebileceği anlamına gelir, çünkü bu son derece küçüktür ve bu nedenle diğer terimin arka planına göre önemsizdir:

Böylece başka bir kural bulduk:

c) Mantıksal seriye devam ediyoruz: .

Bu ifade farklı şekillerde basitleştirilebilir: toplamın küpünün kısaltılmış çarpımı formülünü kullanarak ilk parantezi açın veya küp farkı formülünü kullanarak ifadenin tamamını çarpanlara ayırın. Önerilen yöntemlerden herhangi birini kullanarak bunu kendiniz yapmaya çalışın.

Böylece aşağıdakileri elde ettim:

Ve şunu bir kez daha hatırlayalım. Bu, aşağıdakileri içeren tüm terimleri ihmal edebileceğimiz anlamına gelir:

Şunu alıyoruz: .

d) Büyük kuvvetler için de benzer kurallar elde edilebilir:

e) Bu kuralın, tamsayı bile olmayan, isteğe bağlı bir üssü olan bir kuvvet fonksiyonu için genelleştirilebileceği ortaya çıktı:

(2)

Kural şu ​​şekilde formüle edilebilir: "Derece bir katsayı olarak öne çıkarılır ve ardından azaltılır."

Bu kuralı daha sonra kanıtlayacağız (neredeyse en sonunda). Şimdi birkaç örneğe bakalım. Fonksiyonların türevini bulun:

  1. (iki şekilde: formülle ve türev tanımını kullanarak - fonksiyonun artışını hesaplayarak);
  1. . İster inanın ister inanmayın, bu bir güç işlevidir. “Bu nasıl?” gibi sorularınız varsa. Derece nerede?”, “” konusunu hatırlayın!
    Evet, evet, kök de bir derecedir, yalnızca kesirlidir: .
    Bu, karekökümüzün sadece üssü olan bir kuvvet olduğu anlamına gelir:
    .
    Yakın zamanda öğrenilen formülü kullanarak türevi arıyoruz:

    Bu noktada yine belirsizleşirse “” konusunu tekrarlayın!!! (derece hakkında negatif gösterge)

  2. . Şimdi üs:

    Ve şimdi tanım üzerinden (henüz unuttunuz mu?):
    ;
    .
    Şimdi her zamanki gibi aşağıdakileri içeren terimi ihmal ediyoruz:
    .

  3. . Önceki vakaların kombinasyonu: .

Trigonometrik fonksiyonlar.

Burada yüksek matematikten bir olguyu kullanacağız:

İfade ile.

Kanıtı enstitünün ilk yılında öğreneceksiniz (ve oraya ulaşmak için Birleşik Devlet Sınavını iyi bir şekilde geçmeniz gerekir). Şimdi bunu grafiksel olarak göstereceğim:

Fonksiyon mevcut olmadığında grafikteki noktanın kesildiğini görüyoruz. Ama değere ne kadar yakınsa fonksiyon da o kadar yakın demektir.

Ek olarak, bir hesap makinesi kullanarak bu kuralı kontrol edebilirsiniz. Evet, evet, utanmayın, bir hesap makinesi alın, henüz Birleşik Devlet Sınavında değiliz.

O halde deneyelim: ;

Hesap makinenizi Radyan moduna geçirmeyi unutmayın!

vesaire. Ne kadar az olursa o kadar çok olduğunu görüyoruz. daha yakın değer ile ilişki

a) Fonksiyonu düşünün. Her zamanki gibi, artışını bulalım:

Sinüs farkını çarpıma dönüştürelim. Bunu yapmak için şu formülü kullanıyoruz (“” konusunu hatırlayın): .

Şimdi türev:

Bir değişiklik yapalım: . O halde sonsuz küçük için aynı zamanda sonsuz küçüktür: . için ifade şu şekli alır:

Şimdi de bunu şu ifadeyle hatırlıyoruz. Ve ayrıca, toplamda sonsuz küçük bir miktar (yani, at) ihmal edilebilirse ne olur?

Yani anlıyoruz sonraki kural:sinüsün türevi kosinüse eşittir:

Bunlar temel (“tablo”) türevlerdir. İşte tek bir listedeler:

Daha sonra bunlara birkaç tane daha ekleyeceğiz, ancak bunlar en sık kullanıldıkları için en önemlileridir.

Pratik:

  1. Fonksiyonun bir noktadaki türevini bulun;
  2. Fonksiyonun türevini bulun.

Çözümler:

  1. İlk önce türevi bulalım genel görünüm ve ardından değerini değiştirin:
    ;
    .
  2. Burada buna benzer bir şeyimiz var güç fonksiyonu. Onu kendine getirmeye çalışalım
    normal görünüm:
    .
    Harika, artık formülü kullanabilirsiniz:
    .
    .
  3. . Eeeeee.....Bu nedir????

Tamam haklısın, bu tür türevleri nasıl bulacağımızı henüz bilmiyoruz. Burada çeşitli fonksiyon türlerinin bir kombinasyonu var. Onlarla çalışmak için birkaç kural daha öğrenmeniz gerekir:

Üs ve doğal logaritma.

Matematikte herhangi bir değer için türevi aynı zamanda fonksiyonun kendi değerine eşit olan bir fonksiyon vardır. Buna "üs" denir ve üstel bir fonksiyondur

Bu fonksiyonun temeli bir sabittir; sonsuzdur ondalık yani irrasyonel bir sayı (gibi). Buna “Euler numarası” denir, bu yüzden bir harfle gösterilir.

Yani kural:

Hatırlanması çok kolay.

Neyse fazla uzağa gitmeyelim hemen bakalım ters fonksiyon. Üstel fonksiyonun tersi hangi fonksiyondur? Logaritma:

Bizim durumumuzda taban sayıdır:

Böyle bir logaritma (yani tabanlı bir logaritma) "doğal" olarak adlandırılır ve bunun için özel bir gösterim kullanırız: onun yerine yazarız.

Neye eşittir? Elbette.

Doğal logaritmanın türevi de çok basittir:

Örnekler:

  1. Fonksiyonun türevini bulun.
  2. Fonksiyonun türevi nedir?

Cevaplar: Katılımcı ve doğal logaritma- fonksiyonlar türev açısından benzersiz derecede basittir. Başka herhangi bir tabana sahip üstel ve logaritmik fonksiyonların farklı bir türevi olacaktır ve bunu daha sonra analiz edeceğiz. hadi kuralları gözden geçirelim farklılaşma.

Farklılaşma kuralları

Neyin kuralları? Tekrar yeni dönem, Tekrar?!...

Farklılaşma türevi bulma işlemidir.

Hepsi bu. Bu sürece tek kelimeyle başka ne diyebilirsiniz? Türev değil... Matematikçiler diferansiyele bir fonksiyonun aynı artışı adını verirler. Bu terim Latince diferansiyelden gelir - farklılık. Burada.

Tüm bu kuralları türetirken iki işlevi kullanacağız, örneğin ve. Ayrıca artışları için formüllere de ihtiyacımız olacak:

Toplamda 5 kural bulunmaktadır.

Sabit türev işaretinden çıkarılır.

Eğer - bazı sabit sayı(sabit), o zaman.

Açıkçası, bu kural aynı zamanda şu fark için de işe yarar: .

Hadi kanıtlayalım. Bırakın ya da daha basit.

Örnekler.

Fonksiyonların türevlerini bulun:

  1. bir noktada;
  2. bir noktada;
  3. bir noktada;
  4. noktada.

Çözümler:

  1. (türev her noktada aynıdır, çünkü bu doğrusal fonksiyon, Unutma?);

Ürünün türevi

Burada her şey benzer: yeni bir fonksiyon tanıtalım ve onun artışını bulalım:

Türev:

Örnekler:

  1. Fonksiyonların türevlerini bulun ve;
  2. Fonksiyonun bir noktadaki türevini bulun.

Çözümler:

Üstel bir fonksiyonun türevi

Artık bilginiz, yalnızca üstel sayıları değil, herhangi bir üstel fonksiyonun türevini nasıl bulacağınızı öğrenmek için yeterlidir (bunun ne olduğunu henüz unuttunuz mu?).

Peki bazı sayılar nerede?

Fonksiyonun türevini zaten biliyoruz, o yüzden fonksiyonumuzu yeni bir temele taşımaya çalışalım:

Bunun için kullanacağız basit kural: . Daha sonra:

İşe yaradı. Şimdi türevi bulmaya çalışın ve bu fonksiyonun karmaşık olduğunu unutmayın.

İşe yaradı mı?

İşte, kendinizi kontrol edin:

Formülün üssün türevine çok benzediği ortaya çıktı: olduğu gibi aynı kalıyor, yalnızca bir sayı olan ancak değişken olmayan bir faktör ortaya çıktı.

Örnekler:
Fonksiyonların türevlerini bulun:

Cevaplar:

Bu sadece hesap makinesi olmadan hesaplanamayan, yani artık yazılamayan bir sayıdır. basit biçimde. Bu nedenle cevapta bu formda bırakıyoruz.

Logaritmik bir fonksiyonun türevi

Burada da durum benzer: Doğal logaritmanın türevini zaten biliyorsunuz:

Bu nedenle, farklı bir tabana sahip keyfi bir logaritma bulmak için, örneğin:

Bu logaritmayı tabana indirmemiz gerekiyor. Logaritmanın tabanını nasıl değiştirirsiniz? Umarım bu formülü hatırlarsınız:

Ancak şimdi onun yerine şunu yazacağız:

Payda basitçe bir sabittir (değişkeni olmayan sabit bir sayı). Türev çok basit bir şekilde elde edilir:

Üstel türevleri ve logaritmik fonksiyonlar Birleşik Devlet Sınavında neredeyse hiç görünmezler, ancak onları bilmekten zarar gelmez.

Karmaşık bir fonksiyonun türevi.

"Karmaşık fonksiyon" nedir? Hayır, bu bir logaritma değil, arktanjant da değil. Bu fonksiyonların anlaşılması zor olabilir (gerçi logaritmayı zor buluyorsanız, "Logaritmalar" konusunu okuyun ve sorun yaşamazsınız), ancak matematiksel açıdan "karmaşık" kelimesi "zor" anlamına gelmez.

Küçük bir taşıma bandı hayal edin: iki kişi oturuyor ve bazı nesnelerle bazı eylemler yapıyor. Örneğin, ilki bir çikolatayı bir ambalaj kağıdına sarar, ikincisi ise onu bir kurdele ile bağlar. Sonuç, kompozit bir nesnedir: bir kurdele ile sarılmış ve bağlanmış bir çikolata çubuğu. Çikolata yemek için yapmanız gerekenler ters eylemler ters sırada.

Benzer bir matematiksel işlem hattı oluşturalım: önce bir sayının kosinüsünü bulacağız, sonra da elde edilen sayının karesini alacağız. Yani bize bir sayı veriliyor (çikolata), ben onun kosinüsünü buluyorum (paketleyici) ve sonra elde ettiğimin karesini alıyorsunuz (bunu bir kurdele ile bağlıyorsunuz). Ne oldu? İşlev. Bu, karmaşık bir fonksiyonun bir örneğidir: değerini bulmak için, ilk eylemi doğrudan değişkenle gerçekleştirdiğimizde ve ardından ilk eylemin sonucuyla ikinci bir eylemi gerçekleştirdiğimizde.

Aynı adımları ters sırada da kolaylıkla yapabiliriz: önce bunun karesini alırsınız, sonra da ortaya çıkan sayının kosinüsünü ararım: . Sonucun neredeyse her zaman farklı olacağını tahmin etmek kolaydır. Önemli Özellik Karmaşık işlevler: Eylemlerin sırası değiştiğinde işlev de değişir.

Başka bir deyişle, karmaşık bir fonksiyon, argümanı başka bir fonksiyon olan bir fonksiyondur: .

İlk örnek için, .

İkinci örnek: (aynı şey). .

En son yaptığımız eylem çağrılacak "harici" işlev ve buna göre ilk gerçekleştirilen eylem "dahili" işlev(bunlar resmi olmayan isimlerdir, bunları yalnızca materyali basit bir dille açıklamak için kullanıyorum).

Hangi fonksiyonun harici ve hangisinin dahili olduğunu kendiniz belirlemeye çalışın:

Cevaplar:İç ve dış fonksiyonları ayırmak değişkenleri değiştirmeye çok benzer: örneğin bir fonksiyonda

  1. İlk önce hangi eylemi gerçekleştireceğiz? İlk önce sinüsü hesaplayalım ve ancak o zaman küpünü alalım. Bu, bunun dahili bir fonksiyon olduğu, ancak harici bir fonksiyon olduğu anlamına gelir.
    Ve asıl işlev bunların bileşimidir: .
  2. Dahili: ; harici: .
    Muayene: .
  3. Dahili: ; harici: .
    Muayene: .
  4. Dahili: ; harici: .
    Muayene: .
  5. Dahili: ; harici: .
    Muayene: .

Değişkenleri değiştirip bir fonksiyon elde ediyoruz.

Şimdi çikolatamızı çıkarıp türevini arayacağız. Prosedür her zaman tersidir: önce dış fonksiyonun türevini ararız, sonra sonucu türevle çarparız. dahili fonksiyon. Orijinal örnekle ilgili olarak şöyle görünür:

Başka bir örnek:

O halde nihayet resmi kuralı formüle edelim:

Karmaşık bir fonksiyonun türevini bulma algoritması:

Basit görünüyor, değil mi?

Örneklerle kontrol edelim:

Çözümler:

1) Dahili: ;

Harici: ;

2) Dahili: ;

(Şimdilik kesmeye çalışmayın! Kosinüsün altından hiçbir şey çıkmaz, hatırladınız mı?)

3) Dahili: ;

Harici: ;

Bunun üç seviyeli karmaşık bir fonksiyon olduğu hemen anlaşılıyor: Sonuçta, bu zaten başlı başına karmaşık bir fonksiyon ve biz de ondan kökü çıkarıyoruz, yani üçüncü eylemi gerçekleştiriyoruz (çikolatayı bir kaseye koyuyoruz). sarıcı ve evrak çantasında bir kurdele ile). Ancak korkmanıza gerek yok: Bu işlevi yine de her zamanki gibi aynı sırayla "paketinden çıkaracağız": sondan itibaren.

Yani, önce kökü, sonra kosinüsü ve ancak o zaman parantez içindeki ifadeyi farklılaştırıyoruz. Daha sonra hepsini çarpıyoruz.

Bu gibi durumlarda eylemlerin numaralandırılması uygundur. Yani, bildiklerimizi hayal edelim. Bu ifadenin değerini hesaplamak için işlemleri hangi sırayla gerçekleştireceğiz? Bir örneğe bakalım:

Eylem ne kadar geç gerçekleştirilirse, karşılık gelen işlev o kadar "harici" olacaktır. Eylem sırası öncekiyle aynıdır:

Burada yuvalama genellikle 4 seviyelidir. Eylem sırasını belirleyelim.

1. Radikal ifade. .

2. Kök. .

3. Sinüs. .

4. Kare. .

5. Hepsini bir araya getirmek:

TÜREV. ANA ŞEYLER HAKKINDA KISACA

Bir fonksiyonun türevi- argümanın sonsuz küçük bir artışı için fonksiyonun artışının argümanın artışına oranı:

Temel türevler:

Farklılaşma kuralları:

Sabit türev işaretinden çıkarılır:

Toplamın türevi:

Ürünün türevi:

Bölümün türevi:

Karmaşık bir fonksiyonun türevi:

Karmaşık bir fonksiyonun türevini bulma algoritması:

  1. “İç” fonksiyonu tanımlayıp türevini buluyoruz.
  2. “Harici” fonksiyonu tanımlayıp türevini buluyoruz.
  3. Birinci ve ikinci noktaların sonuçlarını çarpıyoruz.

Karmaşık bir fonksiyonun türevi formülünü kullanarak türevlerin hesaplanmasına ilişkin örnekler verilmiştir.

Burada türevlerin hesaplanmasına ilişkin örnekler veriyoruz. aşağıdaki işlevler:
; ; ; ; .

Bir fonksiyon karmaşık bir fonksiyon olarak temsil edilebiliyorsa aşağıdaki form:
,
daha sonra türevi aşağıdaki formülle belirlenir:
.
Aşağıdaki örneklerde bu formülü şu şekilde yazacağız:
.
Nerede .
Burada türev işaretinin altında bulunan indisler veya , türevin alındığı değişkenleri belirtir.

Genellikle türev tablolarında x değişkeninden fonksiyonların türevleri verilir.

Ancak x formal bir parametredir. X değişkeni başka bir değişkenle değiştirilebilir. Bu nedenle, bir fonksiyonu bir değişkenden ayırırken, türevler tablosunda x değişkenini u değişkenine değiştiririz.

Basit örnekler

Örnek 1
.

Karmaşık bir fonksiyonun türevini bulun

Çözüm Haydi yazalım verilen fonksiyon
.
eşdeğer formda:
;
.

Türev tablosunda şunları buluyoruz:
.
Karmaşık bir fonksiyonun türevinin formülüne göre elimizde:

Burada .

Cevap

Örnek 2
.

Karmaşık bir fonksiyonun türevini bulun

Türevi bulun
.


.
Karmaşık bir fonksiyonun türevinin formülüne göre elimizde:

Burada .

Sabit 5'i türev işaretinden ve bulduğumuz türev tablosundan alıyoruz:

Örnek 3
.

Karmaşık bir fonksiyonun türevini bulun

Türevi bulun -1 Bir sabit çıkarıyoruz
;
Türevin işareti için ve türev tablosundan şunu buluruz:
.

Türev tablosundan şunları buluyoruz:
.
Karmaşık bir fonksiyonun türevinin formülüne göre elimizde:

Burada .

Karmaşık bir fonksiyonun türevi için formülü uyguluyoruz:

Daha karmaşık örnekler Daha fazla karmaşık örnekler karmaşık bir fonksiyonun türevini alma kuralını birkaç kez uygularız. Bu durumda türevi sondan hesaplıyoruz. Yani, fonksiyonu bileşen parçalarına ayırırız ve en basit parçaların türevlerini kullanarak buluruz. türev tablosu . Biz de kullanıyoruz toplamların farklılaştırılması kuralları

, ürünler ve kesirler. Daha sonra yerine koymalar yapıp karmaşık bir fonksiyonun türevinin formülünü uyguluyoruz.

Örnek 3
.

Karmaşık bir fonksiyonun türevini bulun

Örnek 4 En çok vurgulayalım basit kısım



.
formülünü bulun ve türevini bulun. .
.

Burada notasyonu kullandık
.

Elde edilen sonuçları kullanarak orijinal fonksiyonun bir sonraki kısmının türevini buluyoruz. Toplamın türevini almak için kuralı uyguluyoruz:

.
Karmaşık bir fonksiyonun türevinin formülüne göre elimizde:

Burada .

Bir kez daha karmaşık fonksiyonların türev alma kuralını uyguluyoruz.

Örnek 5
.

Karmaşık bir fonksiyonun türevini bulun

Fonksiyonun türevini bulun

Formülün en basit kısmını seçip türev tablosundan türevini bulalım. .
.
Karmaşık fonksiyonların türev alma kuralını uyguluyoruz.
.