Раціональне рівняння знаменник якого є ціле число. "вирішення дробових раціональних рівнянь"


Продовжуємо розмову про вирішення рівнянь. У цій статті ми докладно зупинимося на раціональних рівнянняхта принципи рішення раціональних рівняньз однією змінною. Спочатку розберемося, рівняння якого виду називаються раціональними, дамо визначення цілих раціональних та дробових раціональних рівнянь, наведемо приклади. Далі отримаємо алгоритми розв'язання раціональних рівнянь і, звичайно ж, розглянемо рішення характерних прикладівзі всіма необхідними поясненнями.

Навігація на сторінці.

Відштовхуючись від озвучених визначень, наведемо кілька прикладів раціональних рівнянь. Наприклад, x = 1, 2 · x-12 · x 2 · y · z 3 = 0, - це все раціональні рівняння.

З наведених прикладів видно, що раціональні рівняння, як, втім, і рівняння інших видів, можуть бути як з однією змінною, так і з двома, трьома і т.д. змінними. У наступних пунктахми говоритимемо про розв'язання раціональних рівнянь із однією змінною. Розв'язання рівнянь із двома зміннимита їх більшим числомзаслуговують на окрему увагу.

Крім поділу раціональних рівнянь за кількістю невідомих змінних, їх поділяють на цілі та дробові. Дамо відповідні визначення.

Визначення.

Раціональне рівняння називають цілимякщо і ліва, і права його частини є цілими раціональними висловлюваннями.

Визначення.

Якщо хоча б одна з частин раціонального рівняння є дрібним виразом, то таке рівняння називається дробово раціональним(або дрібним раціональним).

Зрозуміло, що цілі рівняння не містять поділу на змінну, а дробові раціональні рівняння обов'язково містять поділ на змінну (або змінну в знаменнику). Так 3 x 2 = 0 і (x+y)·(3·x 2 −1)+x=−y+0,5– це цілі раціональні рівняння, обидві частини є цілими висловлюваннями. А і x: (5 · x 3 + y 2) = 3: (x-1): 5 - приклади дробових раціональних рівнянь.

Завершуючи цей пункт, звернемо увагу, що відомі до цього моменту лінійні рівняння і квадратні рівняння є цілими раціональними рівняннями.

Вирішення цілих рівнянь

Одним із основних підходів до вирішення цілих рівнянь є їх зведення до рівносильних алгебраїчним рівнянням. Це можна зробити завжди, виконавши наступні рівносильні перетворення рівняння:

В результаті виходить алгебраїчне рівняння, Яке рівносильне вихідному цілому рівнянню. Так у самих простих випадкахрозв'язання цілих рівнянь зводяться до розв'язання лінійних або квадратних рівнянь, а в загальному випадку- До вирішення рівня алгебри ступеня n . Для наочності розберемо рішення прикладу.

приклад.

Знайдіть коріння цілого рівняння 3·(x+1)·(x−3)=x·(2·x−1)−3.

Рішення.

Зведемо розв'язання цього цілого рівняння до рішення рівносильного йому рівняння алгебри. Для цього, по-перше, перенесемо вираз із правої частини до лівої, в результаті приходимо до рівняння 3·(x+1)·(x−3)−x·(2·x−1)+3=0. І, по-друге, перетворимо вираз, що утворився в лівій частині, в багаточлен стандартного вигляду, виконавши необхідні: 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6. Таким чином, розв'язок вихідного цілого рівняння зводиться до розв'язання квадратного рівняння x 2 −5·x−6=0 .

Обчислюємо його дискримінант D=(−5) 2 −4·1·(−6)=25+24=49, він позитивний, отже, рівняння має два дійсні корені, які знаходимо за формулою коренів квадратного рівняння :

Для повної впевненості виконаємо перевірку знайденого коріння рівняння. Спочатку перевіряємо корінь 6 , підставляємо його замість змінної x вихідне ціле рівняння: 3·(6+1)·(6−3)=6·(2·6−1)−3, Що те саме, 63 = 63 . Це вірне числова рівністьОтже, x=6 дійсно є коренем рівняння. Тепер перевіряємо корінь −1, маємо 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3, Звідки, 0 = 0 . При x=−1 вихідне рівняння також звернулося до правильної числову рівність, отже, x=−1 теж є коренем рівняння.

Відповідь:

6 , −1 .

Тут ще слід зауважити, що з уявленням цілого рівняння у вигляді рівняння алгебри пов'язаний термін «ступінь цілого рівняння». Дамо відповідне визначення:

Визначення.

ступенем цілого рівнянняназивають ступінь рівносильного йому рівняння алгебри.

Згідно з цим визначенням, ціле рівняння з попереднього прикладу має другий ступінь.

На цьому можна було б закінчити з вирішенням цілих раціональних рівнянь, якби жодне але…. Як відомо, рішення рівнянь алгебри вище другої пов'язане зі значними складнощами, а для рівнянь ступеня вище четвертого взагалі не існує загальних формулкоріння. Тому для вирішення цілих рівнянь третьої, четвертої та більше високих ступенівчасто доводиться вдаватися до інших методів розв'язання.

У таких випадках іноді рятує підхід до вирішення цілих раціональних рівнянь, заснований на методі розкладання на множники. При цьому дотримуються наступного алгоритму:

  • спочатку домагаються, щоб у правій частині рівняння був нуль, для цього переносять вираз із правої частини цілого рівняння до лівої;
  • потім, отриманий вираз у лівій частині представляють у вигляді добутку кількох множників, що дозволяє перейти до сукупності кількох простіших рівнянь.

Наведений алгоритм розв'язання цілого рівняння через розкладання на множники потребує детального роз'яснення з прикладу.

приклад.

Розв'яжіть ціле рівняння (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Рішення.

Спочатку як зазвичай переносимо вираз із правої частини до лівої частини рівняння, не забувши змінити знак, отримуємо (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Тут досить очевидно, що не доцільно перетворювати ліву частину отриманого рівняння в багаточлен стандартного виду, так як це дасть рівняння алгебри четвертого ступеня виду x 4 −12·x 3 +32·x 2 −16·x−13=0, Рішення якого складно.

З іншого боку, очевидно, що в лівій частині отриманого рівняння можна x 2 -10 x 13, тим самим представивши її у вигляді твору. Маємо (x 2 −10·x+13)·(x 2 −2·x−1)=0. Отримане рівняння рівносильне вихідному цілому рівнянню, та її, своєю чергою, можна замінити сукупністю двох квадратних рівнянь x 2 −10·x+13=0 і x 2 −2·x−1=0 . Знаходження їх коріння по відомим формуламкоренів через дискримінант не складно, коріння рівні . Вони є шуканим корінням вихідного рівняння.

Відповідь:

Для вирішення цілих раціональних рівнянь також буває корисним метод введення нової змінної. У деяких випадках він дозволяє переходити до рівнянь, ступінь яких нижчий, ніж рівень вихідного цілого рівняння.

приклад.

Знайдіть дійсне коріння раціонального рівняння (x 2 +3 · x +1) 2 +10 = -2 · (x 2 +3 · x-4).

Рішення.

Зведення даного цілого раціонального рівняння до рівня алгебри є, м'яко кажучи, не дуже гарною ідеєю, тому що в цьому випадку ми прийдемо до необхідності вирішення рівняння четвертого ступеня, що не має раціонального коріння. Тому доведеться пошукати інший спосіб рішення.

Тут нескладно помітити, що можна ввести нову змінну y, і замінити нею вираз x 2 +3 x. Така заміна призводить нас до цілого рівняння (y+1) 2 +10=−2·(y−4) , яке після перенесення виразу −2·(y−4) у ліву частину і подальшого перетворення виразу, що утворився там, зводиться до квадратного рівняння y 2 +4 · y +3 = 0 . Коріння цього рівняння y=−1 та y=−3 легко знаходяться, наприклад, їх можна підібрати, ґрунтуючись на теоремі, зворотній теоремі Вієта.

Тепер переходимо до другої частини методу введення нової змінної, тобто проведення зворотної заміни. Виконавши зворотну заміну, отримуємо два рівняння x 2 +3 x = -1 і x 2 +3 x = -3 , які можна переписати як x 2 +3 x +1 = 0 і x 2 +3 x +3 =0. За формулою коренів квадратного рівняння знаходимо коріння першого рівняння. А друге квадратне рівнянняне має дійсних коренів, так як його дискримінант негативний (D=3 2 −4·3=9−12=−3 ).

Відповідь:

Взагалі, коли ми маємо справу з цілими рівняннями високих ступенів, завжди треба бути готовим до пошуку нестандартного методуабо штучного прийомудля їх вирішення.

Розв'язання дробово раціональних рівнянь

Спочатку корисно розібратися, як розв'язувати дробово раціональні рівняння виду , де p(x) і q(x) – цілі раціональні висловлювання. А далі ми покажемо, як звести рішення решти дробово раціональних рівнянь до розв'язання рівнянь зазначеного виду.

В основі одного з підходів до вирішення рівняння лежить таке твердження: числовий дріб u/v , де v - відмінне від нуля число (інакше ми зіткнемося з , яке не визначено), дорівнює нулю тоді і тільки тоді, коли її чисельник дорівнює нулю, Тобто тоді і тільки тоді, коли u = 0 . В силу цього твердження рішення рівняння зводиться до виконання двох умов p(x)=0 і q(x)≠0 .

Цьому висновку відповідає наступний алгоритм розв'язання дробово раціонального рівняння. Щоб вирішити дробове раціональне рівняння виду, треба

  • вирішити ціле раціональне рівняння p (x) = 0;
  • та перевірити, чи виконується для кожного знайденого кореня умова q(x)≠0 , при цьому
    • якщо виконується, цей корінь є коренем вихідного рівняння;
    • якщо не виконується, то цей корінь – сторонній, тобто не є коренем вихідного рівняння.

Розберемо приклад застосування озвученого алгоритму під час вирішення дробового раціонального рівняння.

приклад.

Знайдіть коріння рівняння.

Рішення.

Це дробово раціональне рівняння, причому виду , де p (x) = 3 · x-2, q (x) = 5 · x 2 -2 = 0 .

Відповідно до алгоритму розв'язання дробово раціональних рівнянь цього виду, нам спочатку треба розв'язати рівняння 3·x−2=0 . Це лінійне рівняння, Коренем якого є x = 2/3.

Залишилося виконати перевірку для цього кореня, тобто перевірити, чи він задовольняє умові 5·x 2 −2≠0 . Підставляємо у вираз 5 x 2 −2 замість x число 2/3, отримуємо. Умова виконана, тому x=2/3 є коренем вихідного рівняння.

Відповідь:

2/3 .

До розв'язання дробового раціонального рівняння можна підходити з трохи іншої позиції. Це рівняння рівносильне цілому рівнянню p(x)=0 на змінній x вихідного рівняння. Тобто, можна дотримуватись такого алгоритму розв'язання дробово-раціонального рівняння :

  • розв'язати рівняння p(x)=0;
  • знайти ОДЗ змінної x;
  • взяти коріння, що належать області допустимих значень, - Вони є шуканим корінням вихідного дробового раціонального рівняння.

Наприклад вирішимо дробове раціональне рівняння з цього алгоритму.

приклад.

Розв'яжіть рівняння.

Рішення.

По-перше, розв'язуємо квадратне рівняння x 2 −2·x−11=0 . Його коріння можна обчислити, використовуючи формулу коренів для парного другого коефіцієнта. D 1 =(−1) 2 −1·(−11)=12, та .

По-друге, знаходимо ОДЗ змінної x для вихідного рівняння. Її становлять усі числа, для яких x 2 +3·x≠0 , що те саме x·(x+3)≠0 , звідки x≠0 , x≠−3 .

Залишається перевірити, чи входять знайдене на першому кроці коріння в ОДЗ. Очевидно, що так. Отже, вихідне дробово раціональне рівняння має два корені.

Відповідь:

Зазначимо, що такий підхід вигідніший за перший, якщо легко знаходиться ОДЗ, і особливо вигідний, якщо ще при цьому коріння рівняння p(x)=0 ірраціональне, наприклад, або раціональне, але з досить великим чисельником і/або знаменником, наприклад, 127/1101 та −31/59 . Це з тим, що у разі перевірка умови q(x)≠0 вимагатиме значних обчислювальних зусиль, і простіше виключити сторонні коріння по ОДЗ.

В інших випадках при вирішенні рівняння , особливо коли коріння рівняння p (x) = 0 цілі, вигідніше використовувати перший з наведених алгоритмів. Тобто, доцільно відразу знаходити коріння цілого рівняння p(x)=0, після чого перевіряти, чи виконується для них умова q(x)≠0, а не знаходити ОДЗ, після чого вирішувати рівняння p(x)=0 на цій ОДЗ . Це з тим, що у разі зробити перевірку зазвичай простіше, ніж знайти ОДЗ.

Розглянемо рішення двох прикладів для ілюстрації обумовлених нюансів.

приклад.

Знайдіть коріння рівняння.

Рішення.

Спочатку знайдемо коріння цілого рівняння (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0, складеного з використанням чисельника дробу Ліва частина цього рівняння – твір, а права – нуль, тому, згідно з методом розв'язання рівнянь через розкладання на множники, це рівняння рівносильне сукупності чотирьох рівнянь 2·x−1=0 , x−6=0 , x 2 −5·x+ 14=0, x+1=0. Три з цих рівнянь лінійні і одне квадратне, їх ми вміємо вирішувати. З першого рівняння знаходимо x = 1/2, з другого - x = 6, з третього - x = 7, x = -2, з четвертого - x = -1.

Знайденим корінням досить легко виконати їх перевірку на предмет того, чи не звертається при них в нуль знаменник дробу, що знаходиться в лівій частині вихідного рівняння, а визначити ОДЗ, навпаки, не так просто, так як для цього доведеться вирішувати рівняння алгебри п'ятого ступеня. Тому, відмовимося від знаходження ОДЗна користь перевірки коріння. Для цього по черзі підставляємо їх замість змінної x у вираз x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112, що виходять після підстановки, і порівнюємо їх з нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким чином, 1/2 , 6 і −2 є корінням вихідного дробового раціонального рівняння, а 7 і −1 – сторонні корені.

Відповідь:

1/2 , 6 , −2 .

приклад.

Знайдіть коріння дробового раціонального рівняння.

Рішення.

Спочатку знайдемо коріння рівняння (5·x 2 −7·x−1)·(x−2)=0. Це рівняння рівносильне сукупності двох рівнянь: квадратного 5 x 2 −7 x 1 = 0 і лінійного x 2 = 0 . За формулою коренів квадратного рівняння знаходимо два корені, та якщо з другого рівняння маємо x=2 .

Перевіряти, чи не звертається в нуль знаменник при знайдених значеннях x досить неприємно. А визначити область допустимих значень змінної x у вихідному рівнянні досить легко. Тому діятимемо через ОДЗ.

У нашому випадку ОДЗ змінної x вихідного дробово раціонального рівняння становлять усі числа, крім тих, для яких виконується умова x 2 +5 x-14 = 0 . Корінням цього квадратного рівняння є x=−7 і x=2 , звідки робимо висновок про ОДЗ: її становлять такі x , що .

Залишається перевірити, чи належать знайдене коріння і x=2 області допустимих значень. Коріння - належать, тому, є корінням вихідного рівняння, а x=2 – не належить, тому, це сторонній корінь.

Відповідь:

Ще корисним буде окремо зупинитися у випадках, як у дробовому раціональному рівнянні виду в чисельнику перебуває число, тобто, коли p(x) представлено якимось числом. При цьому

  • якщо це число відмінно від нуля, то рівняння не має коріння, тому що дріб дорівнює нулю тоді і тільки тоді, коли її чисельник дорівнює нулю;
  • якщо це число нуль, корінням рівняння є будь-яке число з ОДЗ.

приклад.

Рішення.

Так як в чисельнику дробу, що знаходиться в лівій частині рівняння, відмінне від нуля число, то при яких x значення цього дробу не може дорівнювати нулю. Отже, це рівняння не має коріння.

Відповідь:

немає коріння.

приклад.

Розв'яжіть рівняння.

Рішення.

У чисельнику дробу, що знаходиться в лівій частині даного дробового раціонального рівняння, знаходиться нуль, тому значення цього дробу дорівнює нулю для будь-якого x, при якому вона має сенс. Іншими словами, рішенням цього рівняння є будь-яке значення x з ОДЗ цієї змінної.

Залишилося визначити цю область припустимих значень. Вона включає всі такі значення x , при яких x 4 +5 x 3 ≠0 . Розв'язаннями рівняння x 4 +5·x 3 =0 є 0 і −5 , оскільки це рівняння рівносильне рівнянню x 3 ·(x+5)=0 , а воно у свою чергу рівносильне сукупності двох рівнянь x 3 =0 і x +5=0 , звідки і видно це коріння. Отже, областю допустимих значень є будь-які x , крім x=0 і x=−5 .

Таким чином, дробово раціональне рівняння має безліч рішень, якими є будь-які числа, крім нуля і мінус п'яти.

Відповідь:

Нарешті, настав час поговорити про розв'язання дробових раціональних рівнянь довільного вигляду. Їх можна записати як r(x)=s(x) , де r(x) і s(x) – раціональні вирази, причому хоча б один із них дробовий. Забігаючи вперед, скажемо, що їхнє рішення зводиться до вирішення рівнянь вже знайомого нам виду.

Відомо, що перенесення доданку з однієї частини рівняння до іншої з протилежним знаком призводить до рівносильного рівняння, тому рівняння r(x)=s(x) рівносильне рівняння r(x)−s(x)=0 .

Також ми знаємо, що можна будь-яку, тотожно рівну цьому виразу. Таким чином, раціональний вираз у лівій частині рівняння r(x)−s(x)=0 ми завжди можемо перетворити на тотожно рівний раціональний дріб виду .

Так ми від вихідного дробового раціонального рівняння r(x)=s(x) переходимо до рівняння , яке рішення, як з'ясували вище, зводиться до розв'язання рівняння p(x)=0 .

Але тут обов'язково треба враховувати той факт, що при заміні r(x)−s(x)=0 на , і далі на p(x)=0 може відбутися розширення області допустимих значень змінної x .

Отже, вихідне рівняння r(x)=s(x) і рівняння p(x)=0 , до якого ми прийшли, можуть виявитися нерівносильними, і, вирішивши рівняння p(x)=0 ми можемо отримати коріння, яке буде стороннім корінням вихідного рівняння r(x)=s(x) . Виявити і не включати у відповідь сторонні корені можна, або виконавши перевірку, або перевіривши їх належність ОДЗ вихідного рівняння.

Узагальним цю інформацію в алгоритм розв'язання дробового раціонального рівняння r(x)=s(x). Щоб розв'язати дробове раціональне рівняння r(x)=s(x) треба

  • Отримати праворуч нуль за допомогою перенесення виразу з правої частини з протилежним знаком.
  • Виконати дії з дробами та багаточленами в лівій частині рівняння, тим самим перетворивши її на раціональний дріб виду .
  • Розв'язати рівняння p(x)=0.
  • Виявити та виключити сторонні корені, що робиться за допомогою їх підстановки у вихідне рівняння або за допомогою перевірки їх належності ОДЗ вихідного рівняння.

Для більшої наочності покажемо весь ланцюжок розв'язання дробових раціональних рівнянь:
.

Давайте розглянемо рішення кількох прикладів із докладним поясненням ходу рішення, щоб прояснити наведений блок інформації.

приклад.

Розв'яжіть дробове раціональне рівняння.

Рішення.

Діятимемо відповідно до щойно отриманого алгоритму рішення. І спочатку перенесемо доданки з правої частини рівняння до лівої, в результаті переходимо до рівняння .

На другому кроці нам потрібно перетворити дробовий раціональний вираз у лівій частині отриманого рівняння до виду дробу. Для цього виконуємо приведення раціональних дробівдо спільному знаменникуі спрощуємо отриманий вираз: . Так ми приходимо до рівняння.

на наступному етапінам потрібно розв'язати рівняння −2·x−1=0 . Знаходимо x=−1/2.

Залишається перевірити, чи не є знайдене число −1/2 стороннім коренем вихідного рівняння. Для цього можна зробити перевірку або знайти ОДЗ змінною вихідного рівняння x. Продемонструємо обидва підходи.

Почнемо із перевірки. Підставляємо вихідне рівняння замість змінної x число −1/2 , отримуємо , що те саме, −1=−1 . Підстановка дає правильну числову рівність, тому x=−1/2 є коренем вихідного рівняння.

Тепер покажемо, як останній пункт алгоритму виконується через ОДЗ. Областю допустимих значень вихідного рівняння є безліч всіх чисел, крім −1 та 0 (при x=−1 та x=0 перетворюються на нуль знаменники дробів). Знайдений на попередньому кроці корінь x=−1/2 належить ОДЗ, отже, x=−1/2 є коренем вихідного рівняння.

Відповідь:

−1/2 .

Розглянемо ще приклад.

приклад.

Знайдіть коріння рівняння.

Рішення.

Нам потрібно розв'язати дрібно раціональне рівняння, пройдемо всі кроки алгоритму.

По-перше, переносимо доданок з правої частини до лівої, отримуємо .

По-друге, перетворимо вираз, що утворився в лівій частині: . В результаті приходимо до рівняння x = 0.

Його корінь очевидний – це нуль.

На четвертому етапі залишається з'ясувати, чи не є знайдений корінь стороннім для початкового раціонального рівняння. При його підстановці у вихідне рівняння виходить вираз. Вочевидь, воно немає сенсу, оскільки містить розподіл на нуль. Звідки укладаємо, що 0 є стороннім коренем. Отже, вихідне рівняння немає коріння.

7, що призводить до рівняння. Звідси можна зробити висновок, що вираз у знаменнику лівої частини повинен бути рівний з правої частини, тобто, . Тепер віднімаємо з обох частин трійки: . За аналогією, звідки, і далі.

Перевірка показує, що обидва знайдені корені є корінням вихідного дробового раціонального рівняння.

Відповідь:

Список літератури.

  • Алгебра:навч. для 8 кл. загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2008. – 271 с. : іл. - ISBN 978-5-09-019243-9.
  • Мордковіч А. Г.Алгебра. 8 клас. У 2 год. Ч. 1. Підручник для учнів загальноосвітніх установ/ А. Г. Мордкович. - 11-те вид., стер. – М.: Мнемозіна, 2009. – 215 с.: іл. ISBN 978-5-346-01155-2.
  • Алгебра: 9 клас: навч. для загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2009. – 271 с. : іл. - ISBN 978-5-09-021134-5.

Презентація та урок на тему: "Раціональні рівняння. Алгоритм та приклади вирішення раціональних рівнянь"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 8 класу
Посібник до підручника Макарічева Ю.М. Посібник до підручника Мордковича О.Г.

Знайомство з ірраціональними рівняннями

Діти, ми навчилися вирішувати квадратні рівняння. Але математика лише ними не обмежується. Сьогодні ми навчимося вирішувати раціональні рівняння. Поняття раціональних рівнянь багато в чому схоже на поняття раціональних чисел. Тільки крім чисел тепер у нас введено деяку змінну $х$. І таким чином ми отримуємо вираз, в якому присутні операції додавання, віднімання, множення, поділу та зведення в цілий ступінь.

Нехай $r(x)$ – це раціональний вираз. Такий вираз може являти собою простий багаточлен від змінної $х$ або відношення багаточленів (вводиться операція поділу, як для раціональних чисел).
Рівняння $ r (x) = 0 $ називається раціональним рівнянням.
Будь-яке рівняння виду $p(x)=q(x)$, де $p(x)$ і $q(x)$ – раціональні вирази, також буде раціональним рівнянням.

Розглянемо приклади розв'язання раціональних рівнянь.

приклад 1.
Розв'язати рівняння: $\frac(5x-3)(x-3)=\frac(2x-3)(x)$.

Рішення.
Перенесемо всі вирази в ліву частину: $ frac (5x-3) (x-3) - frac (2x-3) (x) = 0 $.
Якби у лівій частині рівняння були представлені звичайні числа, то ми б привели два дроби до спільного знаменника.
Давайте так і зробимо: $\frac((5x-3)*x)((x-3)*x)-\frac((2x-3)*(x-3))((x-3)*x )=\frac(5x^2-3x-(2x^2-6x-3x+9))((x-3)*x)=\frac(3x^2+6x-9)((x-3) *x)=\frac(3(x^2+2x-3))((x-3)*x)$.
Отримали рівняння: $\frac(3(x^2+2x-3))((x-3)*x)=0$.

Дроб дорівнює нулю, тоді і тільки тоді, коли чисельник дробу дорівнює нулю, а знаменник відмінний від нуля. Тоді окремо прирівняємо чисельник до нуля і знайдемо коріння чисельника.
$3(x^2+2x-3)=0$ або $x^2+2x-3=0$.
$x_(1,2)=frac(-2±sqrt(4-4*(-3)))(2)=frac(-2±4)(2)=1;-3$.
Тепер перевіримо знаменник дробу: $(x-3)*x≠0$.
Добуток двох чисел дорівнює нулю, коли хоча б одне з цих чисел дорівнює нулю. Тоді: $x≠0$ або $x-3≠0$.
$x≠0$ або $x≠3$.
Коріння, отримані в чисельнику та знаменнику, не збігаються. Значить у відповідь записуємо обидва корені чисельника.
Відповідь: $ х = 1 $ або $ х = -3 $.

Якщо раптом, один з коренів чисельника збігся з коренем знаменника, його слід виключити. Таке коріння називається стороннім!

Алгоритм розв'язання раціональних рівнянь:

1. Всі вирази, що містяться в рівнянні, перенести до лівий біквід знаку одно.
2. Перетворити цю частину рівняння до алгебраїчного дробу: $ \ frac (p (x)) (q (x)) = 0 $.
3. Прирівняти отриманий чисельник до нуля, тобто розв'язати рівняння $ p (x) = 0 $.
4. Прирівняти знаменник до нуля та вирішити отримане рівняння. Якщо коріння знаменника збіглося з корінням чисельника, їх слід виключити з відповіді.

приклад 2.
Розв'яжіть рівняння: $\frac(3x)(x-1)+\frac(4)(x+1)=\frac(6)(x^2-1)$.

Рішення.
Вирішимо згідно з пунктами алгоритму.
1. $\frac(3x)(x-1)+\frac(4)(x+1)-\frac(6)(x^2-1)=0$.
2. $\frac(3x)(x-1)+\frac(4)(x+1)-\frac(6)(x^2-1)=\frac(3x)(x-1)+\ frac(4)(x+1)-\frac(6)((x-1)(x+1))= \frac(3x(x+1)+4(x-1)-6)((x -1)(x+1))=$ $=\frac(3x^2+3x+4x-4-6)((x-1)(x+1))=\frac(3x^2+7x- 10)((x-1)(x+1))$.
$\frac(3x^2+7x-10)((x-1)(x+1))=0$.
3. Прирівняємо чисельник до нуля: $3x^2+7x-10=0$.
$x_(1,2)=\frac(-7±\sqrt(49-4*3*(-10)))(6)=\frac(-7±13)(6)=-3\frac( 1) (3); 1 $.
4. Прирівняємо знаменник до нуля:
$(x-1)(x+1)=0$.
$x=1$ та $x=-1$.
Один із коренів $х=1$ збігся з коренем із чисельника, тоді ми його у відповідь не записуємо.
Відповідь: $ х = -1 $.

Вирішувати раціональні рівняння зручно за допомогою методу заміни змінних. Давайте продемонструємо це.

приклад 3.
Вирішити рівняння: $ x ^ 4 + 12x ^ 2-64 = 0 $.

Рішення.
Введемо заміну: $ t = x ^ 2 $.
Тоді наше рівняння набуде вигляду:
$t^2+12t-64=0$ - звичайне квадратне рівняння.
$t_(1,2)=\frac(-12±\sqrt(12^2-4*(-64)))(2)=\frac(-12±20)(2)=-16; 4 $.
Введемо зворотну заміну: $ x ^ 2 = 4 $ або $ x ^ 2 = -16 $.
Корінням першого рівняння є пара чисел $х=±2$. Друге – не має коріння.
Відповідь: $ х = ± 2 $.

приклад 4.
Розв'язати рівняння: $x^2+x+1=\frac(15)(x^2+x+3)$.
Рішення.
Введемо нову змінну: $ t = x ^ 2 + x + 1 $.
Тоді рівняння набуде вигляду: $t=\frac(15)(t+2)$.
Далі діятимемо за алгоритмом.
1. $t-\frac(15)(t+2)=0$.
2. $\frac(t^2+2t-15)(t+2)=0$.
3. $ t 2 +2 t-15 = 0 $.
$t_(1,2)=\frac(-2±\sqrt(4-4*(-15)))(2)=\frac(-2±\sqrt(64))(2)=\frac( -2±8)(2)=-5; 3 $.
4. $t≠-2$ - коріння не співпадає.
Введемо зворотну заміну.
$x^2+x+1=-5$.
$x^2+x+1=3$.
Вирішимо кожне рівняння окремо:
$x^2+x+6=0$.
$x_(1,2)=\frac(-1±\sqrt(1-4*(-6)))(2)=\frac(-1±\sqrt(-23))(2)$ - ні коріння.
І друге рівняння: $ x ^ 2 + x-2 = 0 $.
Корінням даного рівняннябудуть числа $х=-2$ та $х=1$.
Відповідь: $ х = -2 $ і $ х = 1 $.

Приклад 5.
Розв'язати рівняння: $x^2+\frac(1)(x^2) +x+\frac(1)(x)=4$.

Рішення.
Введемо заміну: $ t = x + \ frac (1) (x) $.
Тоді:
$t^2=x^2+2+\frac(1)(x^2)$ або $x^2+\frac(1)(x^2)=t^2-2$.
Здобули рівняння: $t^2-2+t=4$.
$ t 2 + t-6 = 0 $.
Корінням даного рівняння є пара:
$ t = -3 $ і $ t = 2 $.
Введемо зворотну заміну:
$x+\frac(1)(x)=-3$.
$ x + \ frac (1) (x) = 2 $.
Вирішимо окремо.
$x+\frac(1)(x)+3=0$.
$\frac(x^2+3x+1)(x)=0$.
$x_(1,2)=frac(-3±sqrt(9-4))(2)=frac(-3±sqrt(5))(2)$.
Розв'яжемо друге рівняння:
$ x + \ frac (1) (x) -2 = 0 $.
$\frac(x^2-2x+1)(x)=0$.
$\frac((x-1)^2)(x)=0$.
Коренем цього рівняння є число $ х = 1 $.
Відповідь: $x=\frac(-3±\sqrt(5))(2)$, $x=1$.

Завдання для самостійного вирішення

Розв'язати рівняння:

1. $\frac(3x+2)(x)=\frac(2x+3)(x+2)$.

2. $\frac(5x)(x+2)-\frac(20)(x^2+2x)=\frac(4)(x)$.
3. $x^4-7x^2-18=0$.
4. $2x^2+x+2=\frac(8)(2x^2+x+4)$.
5. $(x+2)(x+3)(x+4)(x+5)=3$.

У цій статті я покажу вам алгоритми розв'язання семи типів раціональних рівнянь, які за допомогою заміни змінних зводяться до квадратних. У більшості випадків перетворення, які призводять до заміни, дуже нетривіальні, і самостійно про них здогадатися досить важко.

Для кожного типу рівнянь я поясню, як у ньому робити заміну змінною, а потім у відповідному відеоуроці покажу детальне рішення.

У вас є можливість продовжити розв'язання рівнянь самостійно, а потім звірити своє рішення із відеоуроком.

Тож почнемо.

1 . (x-1)(x-7)(x-4)(x+2)=40

Зауважимо, що у лівій частині рівняння стоїть твір чотирьох дужок, а правій - число.

1. Згрупуємо дужки по дві так, щоб сума вільних членів була однаковою.

2. Перемножити їх.

3. Введемо заміну змінної.

У нашому рівнянні згрупуємо першу дужку з третьою, а другу з четвертою, оскільки (-1)+(-4)=(-7)+2:

У цьому місці заміна змінної стає очевидною:

Отримуємо рівняння

Відповідь:

2 .

Рівняння цього типу схоже на попереднє з однією відмінністю: у правій частині рівняння стоїть твір числа на . І вирішується воно зовсім інакше:

1. Групуємо дужки по дві так, щоб добуток вільних членів був однаковим.

2. Перемножуємо кожну пару дужок.

3. З кожного множника виносимо за дужку х.

4. Ділимо обидві частини рівняння на .

5. Вводимо заміну змінної.

У цьому рівнянні згрупуємо першу дужку з четвертою, а другу з третьою, тому що :

Зауважимо, що у кожній дужці коефіцієнт при і вільний член однакові. Винесемо з кожної дужки множник:

Оскільки х=0 перестав бути коренем вихідного рівняння, розділимо обидві частини рівняння на . Отримаємо:

Отримаємо рівняння:

Відповідь:

3 .

Зауважимо, що у знаменниках обох дробів стоять квадратні тричлени, у яких старший коефіцієнт та вільний член однакові. Винесемо, як і в рівнянні другого типу х за дужку. Отримаємо:

Розділимо чисельник та знаменник кожного дробу на х:

Тепер можемо ввести заміну змінної:

Отримаємо рівняння щодо змінної t:

4 .

Зауважимо, що коефіцієнти рівняння симетричні щодо центрального. Таке рівняння називається зворотним .

Щоб його вирішити,

1. Розділимо обидві частини рівняння на (Ми можемо це зробити, тому що х = 0 не є коренем рівняння.) Отримаємо:

2. Згрупуємо доданки таким чином:

3. У кожній групі винесемо за дужку загальний множник:

4. Введемо заміну:

5. Виразимо через t вираз:

Звідси

Отримаємо рівняння щодо t:

Відповідь:

5. Однорідні рівняння.

Рівняння, що мають структуру однорідного, можуть зустрітися при вирішенні показових, логарифмічних та тригонометричних рівняньтому її потрібно вміти розпізнавати.

Однорідні рівняння мають таку структуру:

У цій рівності А, В і С – числа, а квадратиком та кружечком позначені однакові вирази. Тобто у лівій частині однорідного рівняння стоїть сума одночленів, які мають однаковий ступіньданому випадкуступінь одночленів дорівнює 2), і вільний член відсутній.

Для того щоб вирішити однорідне рівняння, розділимо обидві частини на

Увага! При розподілі правої та лівої частини рівняння на вираз, що містить невідоме, можна втратити коріння. Тому необхідно перевірити, чи не є коріння того виразу, на яке ми ділимо обидві частини рівняння, корінням вихідного рівняння.

Ходімо першим шляхом. Отримаємо рівняння:

Тепер ми вводимо заміну змінної:

Спростимо вираз і отримаємо біквадратне рівняннящодо t:

Відповідь:або

7 .

Це рівняння має таку структуру:

Щоб його вирішити, потрібно у лівій частині рівняння виділити повний квадрат.

Щоб виділити повний квдарат, потрібно додати або відняти вдоволений твір. Тоді ми отримаємо квадрат суми різниці. Для успішної заміни змінної це має визначальне значення.

Почнемо зі знаходження подвоєного твору. Саме воно буде ключиком для заміни змінної. У нашому рівнянні подвоєний твір дорівнює

Тепер прикинемо, що нам зручніше мати – квадрат суми чи різниці. Розглянемо, для початку суму виразів:

Чудово! це виразі точно точно подвоєному твору. Тоді, щоб у дужках отримати квадрат суми, потрібно додати і відняти подвійний твір:

Ціле вираз - це математичне вираз, складене з чисел і літерних змінних за допомогою дій складання, віднімання та множення. Також до цілих відносяться вирази, які мають у своєму складі розподіл на якесь число, відмінне від нуля.

Поняття дробового раціонального виразу

Дробне вираз - це математичне вираз, яке крім дій складання, віднімання та множення, виконаних з числами і буквеними змінними, а також поділу на число не рівне нулю, містить також поділ на вирази з буквеними змінними.

Раціональні вирази - це все цілі та дробові вирази. Раціональні рівняння - це рівняння, у яких ліва та праві частини є раціональними виразами. Якщо раціональному рівнянні ліва і права частини будуть цілими виразами, то таке раціональне рівняння називається цілим.

Якщо у раціональному рівнянні ліва або права частини будуть дробовими виразами, таке раціональне рівняння називається дробовим.

Приклади дробових раціональних виразів

1. x-3/x = -6 * x +19

2. (x-4)/(2*x+5) = (x+7)/(x-2)

3. (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5))

Схема розв'язання дробового раціонального рівняння

1. Знайти спільний знаменник усіх дробів, що входять до рівняння.

2. Помножити обидві частини рівняння загальний знаменник.

3. Вирішити отримане ціле рівняння.

4. Здійснити перевірку коренів, і виключити ті з них, які перетворюють на нуль спільний знаменник.

Оскільки ми вирішуємо дробові раціональні рівняння, то знаменниках дробів будуть змінні. Значить, вони будуть і в загальному знаменнику. А в другому пункті алгоритму ми множимо на загальний знаменник, то можуть з'явитися сторонні корені. При яких загальний знаменник дорівнюватиме нулю, а значить і множення на нього буде безглуздим. Тому наприкінці обов'язково робити перевірку отриманого коріння.

Розглянемо приклад:

Розв'язати дробове раціональне рівняння: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

Дотримуватимемося загальної схеми: знайдемо спочатку спільний знаменник всіх дробів Отримаємо x*(x-5).

Помножимо кожен дріб на спільний знаменник і запишемо отримане ціле рівняння.

(x-3) / (x-5) * (x * (x-5)) = x * (x +3);
1/x * (x * (x-5)) = (x-5);
(x+5)/(x*(x-5)) * (x*(x-5)) = (x+5);
x*(x+3) + (x-5) = (x+5);

Спростимо отримане рівняння. Отримаємо:

x^2+3*x + x-5 - x - 5 = 0;
x^2+3*x-10=0;

Здобули просте наведене квадратне рівняння. Вирішуємо його будь-яким з відомих способівотримуємо коріння x=-2 і x=5.

Тепер проводимо перевірку одержаних рішень:

Підставляємо числа -2 та 5 у спільний знаменник. При х=-2 загальний знаменник x*(x-5) не перетворюється на нуль, -2*(-2-5)=14. Значить число -2 буде коренем вихідного дробового раціонального рівняння.

При х = 5 загальний знаменник x * (x-5) стає рівним нулю. Отже, це число не є коренем вихідного раціонального дробового рівняння, так як там буде розподіл на нуль.

\(\bullet\) Раціональне рівняння - це рівняння, представлене у вигляді \[\dfrac(P(x))(Q(x))=0\] де \(P(x), \ Q(x)\) - багаточлени (сума "іксів" у різних ступенях, помножених на різні числа).
Вираз у лівій частині рівняння називається раціональним виразом.
ОДЗ (область допустимих значень) раціонального рівняння - це значення \(x\) , при яких знаменник НЕ звертається в нуль, тобто \(Q(x)\ne 0\) .
\(\bullet\) Наприклад, рівняння \[\dfrac(x+2)(x-3)=0,\qquad \dfrac 2(x^2-1)=3, \qquad x^5-3x=2\]є раціональними рівняннями.
В першому рівнянні ОДЗ- це все \(x\) , такі що \(x\ne 3\) (пишуть \(x\in (-\infty;3)\cup(3;+\infty)\)); у другому рівнянні - це все \(x\) , такі що \(x\ne -1; x\ne 1\) (пишуть \(x\in (-\infty;-1)\cup(-1;1)\cup(1;+\infty)\)); а третьому рівнянні ніяких обмежень на ОДЗ немає, тобто ОДЗ – це все (x) (пишуть (x in mathbb (R))).
\(\bullet\) Теореми: 1) Добуток двох множників дорівнює нулю тоді і тільки тоді, коли один з них дорівнює нулю, а інший при цьому не втрачає сенсу, отже, рівняння \(f(x)\cdot g(x)=0\) рівносильне системі\[\begin(cases) \left[ \begin(gathered)\begin(aligned) &f(x)=0\\ &g(x)=0 \end(aligned) \end(gathered) \right.\\ \ text(ОДЗ рівняння) \end(cases)\] 2) Дроб дорівнює нулю тоді і тільки тоді, коли чисельник дорівнює нулю, а знаменник не дорівнює нулю, отже, рівняння \(\dfrac(f(x))(g(x))=0\) рівносильне системі рівнянь\[\begin(cases) f(x)=0\\ g(x)\ne 0 \end(cases)\]

\(\bullet\) Розглянемо кілька прикладів.
1) Розв'яжіть рівняння \(x+1=\dfrac 2x\) .
Знайдемо ОДЗ цього рівняння – це \(x\ne 0\) (оскільки \(x\) знаходиться у знаменнику). Отже, ОДЗ можна записати так: .Перенесемо всі доданки в одну частину і приведемо до спільного знаменника:

\[\dfrac((x+1)\cdot x)x-\dfrac 2x=0\quad\Leftrightarrow\quad \dfrac(x^2+x-2)x=0\quad\Leftrightarrow\quad \begin( cases) x^2+x-2=0\xxne 0\end(cases)\] Рішенням першого рівняння системи будуть \(x=-2, x=1\). Бачимо, що обидва корені ненульові. Отже, відповідь: \ (x \ in \ (-2; 1 \) \) . 2) Розв'яжіть рівняння \(\left(\dfrac4x - 2\right)\cdot (x^2-x)=0\).
.

\[\begin(cases) \left[ \begin(gathered)\begin(aligned) &\dfrac 4x-2=0\\ &x^2-x=0 \end(aligned) \end(gathered) \right. \\ x\ne 0 \end(cases) \quad \Leftrightarrow \quad \begin(cases) \left[ \begin(gathered)\begin(aligned) &\dfrac 4x=2\\ &x(x-1)= 0 \end(aligned) \end(gathered) \right.\\ x\ne 0 \end(cases) \quad \Leftrightarrow \quad \begin(cases) \left[ \begin(gathered)\begin(aligned) &x =2\\ &x=1\\ &x=0 \end(aligned) \end(gathered) \right.\\ x\ne 0 \end(cases) \quad \Leftrightarrow \quad \left[ \begin(gathered) \begin(aligned) &x=2\\ &x=1 \end(aligned) \end(gathered) \right.\]Дійсно, незважаючи на те, що \(x=0\) - корінь другого множника, якщо підставити \(x=0\) у початкове рівняння, воно не матиме сенсу, т.к. не визначено вираз \(\dfrac 40\).
Таким чином, розв'язком даного рівняння є \(x\in \(1;2\)\) .

3) Розв'яжіть рівняння \[\dfrac(x^2+4x)(4x^2-1)=\dfrac(3-x-x^2)(4x^2-1)\]У нашому рівнянні \(4x^2-1\ne 0\) , звідки \((2x-1)(2x+1)\ne 0\) , тобто \(x\ne -\frac12; \frac12\) .
Перенесемо всі складові в ліву частину і приведемо до спільного знаменника:

\(\dfrac(x^2+4x)(4x^2-1)=\dfrac(3-x-x^2)(4x^2-1) \quad \Leftrightarrow \quad \dfrac(x^2+4x- 3+x+x^2)(4x^2-1)=0\quad \Leftrightarrow \quad \dfrac(2x^2+5x-3)(4x^2-1)=0 \quad \Leftrightarrow\)

\(\Leftrightarrow \quad \begin(cases) 2x^2+5x-3=0\\ 4x^2-1\ne 0 \end(cases) \quad \Leftrightarrow \quad \begin(cases) (2x-1 )(x+3)=0\\ (2x-1)(2x+1)\ne 0 \end(cases) \quad \Leftrightarrow \quad \begin(cases) \left[ \begin(gathered) \begin( aligned) &x=\dfrac12 \\ &x=-3 \end(aligned)\end(gathered) \right.\x\ne\dfrac 12\\x\ne -\dfrac 12 \end(cases) \quad \ Leftrightarrow \quad x=-3\)

Відповідь: \(x\in \(-3\)\) .

Зауваження. Якщо відповідь складається з кінцевого набору чисел, їх можна записувати через точку з комою у фігурних дужках, як показано в попередніх прикладах.

Завдання, у яких потрібно вирішити раціональні рівняння, в ЄДІ з математики зустрічаються щороку, тому під час підготовки до проходження атестаційного випробування випускникам неодмінно варто самостійно повторити теорію на цю тему. Вміти справлятися з такими завданнями обов'язково мають випускники, які здають як базовий, так і профільний рівеньіспиту. Засвоївши теорію і розібравшись з практичними вправамина тему «Раціональні рівняння», учні зможуть вирішувати завдання з будь-якою кількістю дій та розраховувати на отримання конкурентних балів за підсумками здачі ЄДІ.

Як підготуватися до іспиту разом із освітнім порталом «Школкове»?

Іноді знайти джерело, в якому повноцінно представлено базову теорію для вирішення математичних завдань, Виявляється досить складно. Підручника може просто не опинитися під рукою. А знайти необхідні формулиіноді буває досить складно навіть у Інтернеті.

Освітній портал «Школкове» позбавить вас необхідності пошуку потрібного матеріалута допоможе якісного підготуватися до проходження атестаційного випробування.

Всю необхідну теоріюна тему «Раціональні рівняння» наші фахівці підготували та виклали максимально доступній формі. Вивчивши подану інформацію, учні зможуть заповнити прогалини у знаннях.

Для успішної підготовкидо ЄДІ випускникамнеобхідно не тільки освіжити в пам'яті базовий теоретичний матеріална тему «Раціональні рівняння», але попрактикуватися у виконанні завдань на конкретні приклади. Велика добірка завдань представлена ​​розділ «Каталог».

Для кожної вправи на сайті наші спеціалісти прописали алгоритм рішення та вказали правильну відповідь. Учні можуть практикуватися у вирішенні завдань різного ступеняскладності залежно від рівня підготовки. Перелік завдань у відповідному розділі постійно доповнюється та оновлюється.

Вивчити теоретичний матеріал і відточити навички розв'язання задач на тему «Раціональні рівняння», подібних до тих, які включені до тести ЄДІ, можна в режимі он-лайн. У разі потреби будь-яке з поданих завдань можна додати до розділу «Вибране». Ще раз повторивши базову теоріюна тему «Раціональні рівняння», старшокласник зможе надалі повернутися до завдання, щоб обговорити хід її вирішення з викладачем на уроці алгебри.