Вилучення коренів: способи, приклади, рішення. Перехід від коренів до ступенів і назад, приклади, рішення Як вирішувати приклади зі ступенями та корінням

Настав час розібрати способи вилучення коренів. Вони базуються на властивостях коренів, зокрема, на рівність, яка справедлива для будь-якого невід'ємного числа b.

Нижче по черзі розглянемо основні способи вилучення коренів.

Почнемо з найпростішого випадку – із вилучення коренів із натуральних чисел із використанням таблиці квадратів, таблиці кубів тощо.

Якщо ж таблиці квадратів, кубів тощо. немає під руками, то логічно скористатися способом вилучення кореня, який має на увазі розкладання підкореного числа на прості множники.

Окремо варто зупинитися на те, що можливо для коріння з непарними показниками.

Нарешті розглянемо спосіб, що дозволяє послідовно знаходити розряди значення кореня.

Приступимо.

Використання таблиці квадратів, таблиці кубів тощо.

У найпростіших випадках добувати коріння дозволяють таблиці квадратів, кубів і т.д. Що ж є ці таблиці?

Таблиця квадратів цілих чисел від 0 до 99 включно (вона показана нижче) і двох зон. Перша зона таблиці розташовується на сірому фоні, вона за допомогою вибору певного рядка і стовпця дозволяє скласти число від 0 до 99 . Наприклад виберемо рядок 8 десятків і стовпець 3 одиниці, цим зафіксували число 83 . Друга зона займає частину таблиці, що залишилася. Кожна її комірка знаходиться на перетині певного рядка та певного стовпця, і містить квадрат відповідного числа від 0 до 99 . На перетині вибраного нами рядка 8 десятків і стовпця 3 одиниці знаходиться осередок з числом 6889 , яке є квадратом числа 83 .


Таблиці кубів, таблиці четвертих ступенів чисел від 0 до 99 тощо аналогічні таблиці квадратів, лише вони у другій зоні містять куби, четверті ступеня тощо. відповідних чисел.

Таблиці квадратів, кубів, четвертих ступенів тощо. дозволяють витягувати квадратне коріння, кубічне коріння, коріння четвертого ступеня і т.д. відповідно з чисел, що у цих таблицях. Пояснимо принцип їх застосування під час вилучення коренів.

Припустимо, нам потрібно витягти корінь n-ого ступеня з числа a, при цьому число a міститься в таблиці n-их ступенів. По цій таблиці знаходимо число b таке, що a = b n. Тоді , Отже, число b буде шуканим коренем n-го ступеня.

Як приклад покажемо, як з допомогою таблиці кубів витягується кубічний корінь з 19683 . Знаходимо число 19683 в таблиці кубів, з неї знаходимо, що це число є кубом числа 27 , отже, .


Зрозуміло, що таблиці n -их ступенів дуже зручні при витягуванні коріння. Однак їх часто не виявляється під руками, а їх складання потребує певного часу. Більше того, часто доводиться витягувати коріння з чисел, які не містяться у відповідних таблицях. У цих випадках доводиться вдаватися до інших методів коріння.

Розкладання підкореного числа на прості множники

Досить зручним способом, що дозволяє провести вилучення кореня з натурального числа (якщо звичайно корінь витягується), є розкладання підкореного числа на прості множники. Його суть полягає в наступному: після його досить легко подати у вигляді ступеня з потрібним показником, що дозволяє отримати значення кореня. Пояснимо цей момент.

Нехай з натурального числа a витягується корінь n-го ступеня, і його значення дорівнює b. І тут правильна рівність a=b n . Число b як будь-яке натуральне число можна представити у вигляді добутку всіх своїх простих множників p 1 , p 2 , …, p m у вигляді p 1 2 · ... · p m) n . Так як розкладання числа на прості множники єдино, то розкладання підкореного числа a на прості множники буде мати вигляд (p 1 p 2 pm) n , що дає можливість обчислити значення кореня як .

Зауважимо, що й розкладання на прості множники підкореного числа a може бути представлено як (p 1 ·p 2 ·…·p m) n , то корінь n -ой ступеня з такого числа a націло не витягується.

Розберемося з цим під час вирішення прикладів.

приклад.

Вийміть квадратний корінь із 144 .

Рішення.

Якщо звернутися до таблиці квадратів, даної в попередньому пункті, то видно, що 144=12 2 , звідки зрозуміло, що квадратний корінь зі 144 дорівнює 12 .

Але у світлі даного пункту нас цікавить, як витягується корінь за допомогою розкладання підкореного числа 144 на прості множники. Розберемо цей спосіб розв'язання.

Розкладемо 144 на прості множники:

Тобто, 144 = 2 · 2 · 2 · 2 · 3 · 3 . На підставі отриманого розкладання можна провести такі перетворення: 144 = 2 · 2 · 2 · 2 · 3 · 3 = (2 · 2) 2 · 3 2 = (2 · 2 · 3) 2 = 12 2. Отже, .

Використовуючи властивості ступеня і коріння , рішення можна було оформити і трохи інакше: .

Відповідь:

Для закріплення матеріалу розглянемо рішення ще двох прикладів.

приклад.

Обчисліть значення кореня.

Рішення.

Розкладання на прості множники підкореного числа 243 має вигляд 243 = 35. Таким чином, .

Відповідь:

приклад.

Чи є значення кореня цілим числом?

Рішення.

Щоб відповісти на це питання, розкладемо підкорене число на прості множники і подивимося, чи представимо воно у вигляді куба цілого числа.

Маємо 285 768 = 2 3 · 3 6 · 7 2 . Отримане розкладання не представляється як куба цілого числа, оскільки ступінь простого множника 7 не кратна трьом. Отже, кубічний корінь з числа 285768 не витягується націло.

Відповідь:

Ні.

Вилучення коренів із дробових чисел

Настав час розібратися, як витягується корінь із дробового числа. Нехай дробове підкорене число записане як p/q . Відповідно до властивості кореня з частки справедлива наступна рівність. З цієї рівності випливає правило вилучення кореня з дробу: корінь із дробу дорівнює частці від поділу кореня з чисельника на корінь із знаменника.

Розберемо приклад вилучення кореня з дробу.

приклад.

Чому дорівнює квадратний корінь зі звичайного дробу 25/169?

Рішення.

За таблицею квадратів знаходимо, що квадратний корінь із чисельника вихідного дробу дорівнює 5 , а квадратний корінь із знаменника дорівнює 13 . Тоді . На цьому витяг кореня зі звичайного дробу 25/169 завершено.

Відповідь:

Корінь із десяткового дробу чи змішаного числа витягується після заміни підкорених чисел звичайними дробами.

приклад.

Вийміть кубічний корінь із десяткового дробу 474,552.

Рішення.

Представимо вихідний десятковий дріб у вигляді звичайного дробу: 474,552 = 474552/1000. Тоді . Залишилося витягти кубічні корені, що знаходяться в чисельнику і знаменнику отриманого дробу. Так як 474 552=2·2·2·3·3·3·13·13·13=(2 · 3 · 13) 3 = 78 3 і 1 000 = 10 3 то і . Залишилося лише завершити обчислення .

Відповідь:

.

Вилучення кореня з негативного числа

Окремо варто зупинитися на добуванні коріння з негативних чисел. При вивченні коренів сказали, що коли показник кореня є непарним числом, то під знаком кореня може бути негативне число. Таким записам ми надали наступного змісту: для негативного числа −a та непарного показника кореня 2·n−1 справедливо . Ця рівність дає правило вилучення коренів непарного ступеня з негативних чисел: щоб витягти корінь із негативного числа потрібно витягти корінь із протилежного йому позитивного числа, і перед отриманим результатом поставити знак мінус.

Розглянемо рішення прикладу.

приклад.

Знайдіть значення кореня.

Рішення.

Перетворимо вихідний вираз, щоб під знаком кореня виявилося позитивне число: . Тепер змішане число замінимо звичайним дробом: . Застосовуємо правило вилучення кореня зі звичайного дробу: . Залишилося обчислити коріння в чисельнику та знаменнику отриманого дробу: .

Наведемо короткий запис рішення: .

Відповідь:

.

Поразрядне знаходження значення кореня

У загальному випадку під коренем знаходиться число, яке за допомогою розібраних вище прийомів не вдається подати у вигляді n-ого ступеня якогось числа. Але при цьому буває необхідність знати значення цього кореня, хоча б з точністю до певного знака. У цьому випадку для отримання кореня можна скористатися алгоритмом, який дозволяє послідовно отримати достатню кількість значень розрядів шуканого числа.

На першому етапі даного алгоритму необхідно з'ясувати, який старший розряд значення кореня. Для цього послідовно зводяться в ступінь n числа 0, 10, 100, ... до того моменту, коли буде отримано число, що перевищує підкорене число. Тоді число, яке ми зводили на ступінь n на попередньому етапі, вкаже відповідний старший розряд.

Наприклад розглянемо цей крок алгоритму під час вилучення квадратного кореня з п'яти. Беремо числа 0, 10, 100, … і зводимо їх у квадрат, доки отримаємо число, що перевищує 5 . Маємо 02 = 0<5 , 10 2 =100>5 , Отже, старшим розрядом буде розряд одиниць. Значення цього розряду, а також молодших, буде знайдено на наступних кроках алгоритму вилучення кореня.

Всі наступні кроки алгоритму мають на меті послідовне уточнення значення кореня за рахунок того, що знаходяться значення наступних розрядів шуканого значення кореня, починаючи зі старшого та просуваючись до молодших. Наприклад, значення кореня першому кроці виходить 2 , другому – 2,2 , третьому – 2,23 , тощо 2,236067977… . Опишемо, як відбувається знаходження значень розрядів.

Знаходження розрядів проводиться з допомогою перебору їх можливих значень 0, 1, 2, …, 9 . При цьому паралельно обчислюються n -і ступені відповідних чисел, і вони порівнюються з підкореним числом. Якщо на якомусь етапі значення ступеня перевершить підкорене число, то значення розряду, що відповідає попередньому значенню, вважається знайденим, і здійснюється перехід до наступного кроку алгоритму вилучення кореня, якщо цього не відбувається, то значення цього розряду дорівнює 9 .

Пояснимо ці моменти на тому ж прикладі вилучення квадратного кореня з п'яти.

Спочатку знаходимо значення розряду одиниць. Перебиратимемо значення 0, 1, 2, …, 9 , обчислюючи відповідно 0 2 , 1 2 , …, 9 2 доти, доки отримаємо значення, більше підкореного числа 5 . Всі ці обчислення зручно подавати у вигляді таблиці:

Так значення розряду одиниць дорівнює 2 (оскільки 2 2<5 , а 2 3 >5). Переходимо до знаходження значення розряду десятих. При цьому будемо зводити в квадрат числа 2,0, 2,1, 2,2, …, 2,9, порівнюючи отримані значення з підкореним числом 5:

Оскільки 2,2 2<5 , а 2,3 2 >5 , то значення розряду десятих дорівнює 2 . Можна перейти до знаходження значення розряду сотих:

Так знайдено таке значення кореня з п'яти, воно дорівнює 2,23. І так можна продовжувати далі знаходити значення: 2,236, 2,2360, 2,23606, 2,236067, … .

Для закріплення матеріалу розберемо витяг кореня з точністю до сотих за допомогою розглянутого алгоритму.

Спочатку визначаємо старший розряд. Для цього зводимо до куба числа 0, 10, 100 і т.д. доки отримаємо число, що перевищує 2 151,186 . Маємо 03 = 0<2 151,186 , 10 3 =1 000<2151,186 , 100 3 =1 000 000>2 151,186 таким чином, старшим розрядом є розряд десятків.

Визначимо його значення.

Оскільки 10 3<2 151,186 , а 20 3 >2 151,186 то значення розряду десятків дорівнює 1 . Переходимо до одиниць.

Отже, значення розряду одиниць дорівнює 2 . Переходимо до десяти.

Оскільки навіть 12,9 3 менше підкореного числа 2 151,186 , то значення розряду десятих дорівнює 9 . Залишилося виконати останній крок алгоритму, він нам дасть значення кореня з необхідною точністю.

На цьому етапі знайдено значення кореня з точністю до сотих: .

На закінчення цієї статті хочеться сказати, що є безліч інших способів вилучення коренів. Але для більшості завдань достатньо тих, які ми вивчили вище.

Список літератури.

  • Макарічев Ю.М., Міндюк Н.Г., Нешков К.І., Суворова С.Б. Алгебра: підручник для 8 кл. загальноосвітніх установ.
  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Перетворення виразів з корінням та ступенями часто вимагає виконання переходів від коренів до ступенів і назад. У цій статті ми розберемо, як такі переходи здійснюються, що лежить в їх основі, та в яких моментах найчастіше виникають помилки. Все це забезпечимо характерними прикладами з детальним розбором рішень.

Навігація на сторінці.

Перехід від ступенів з дробовими показниками до коріння

Можливість переходу від ступеня з дрібним показником до кореня диктується самим визначенням ступеня. Нагадаємо, як визначається : ступенем позитивного числа a з дробовим показником m/n , де m – ціле, а n – натуральне число, називають корінь n-ого ступеня з a m , тобто де a>0 , m∈Z , n∈ N. Аналогічно визначається і дробовий ступінь нуля , З тією лише різницею, що в цьому випадку m вже вважається не цілим, а натуральним, щоб не виникало поділу на нуль.

Таким чином, ступінь завжди можна замінити на корінь. Наприклад, можна перейти до , а ступінь можна замінити коренем . І це переходити від висловлювання до кореня годі було, оскільки ступінь спочатку немає сенсу (ступінь негативних чисел не визначено), як і раніше, що корінь має сенс.

Як бачите, у переході від ступенів чисел до коріння немає абсолютно нічого складного. Аналогічно здійснюється перехід до коріння від ступенів з дробовими показниками, в основі яких знаходяться довільні вирази. Зауважимо, що зазначений перехід здійснюється на ОДЗ змінних для вихідного виразу. Наприклад, вираз на всій ОДЗ змінної x для цього виразу можна замінити коренем . А від ступеня перейти до кореня , така заміна має місце для будь-якого набору змінних x , y та z з ОДЗ для вихідного виразу.

Заміна коріння ступенями

Можлива і зворотна заміна, тобто заміна коренів на ступені з дробовими показниками. У її основі також лежить рівність , що у разі використовується справа наліво, тобто, як .

Для позитивних a вказаний перехід очевидний. Наприклад, можна замінити ступенем, а від кореня перейти до ступеня з дробовим показником виду.

А при негативних a рівність немає сенсу, але корінь у своїй може мати сенс. Наприклад, коріння і має сенс, але замінити їх ступенями і не можна. Тож чи можна їх взагалі перетворити на вирази зі ступенями? Можна, якщо провести попередні перетворення, що полягають у переході до коренів з невід'ємними числами під ними, які потім замінити ступенями з дробовими показниками. Покажемо, у чому полягають ці попередні перетворення та як їх провести.

У разі коріння дозволяють виконати такі перетворення: . Оскільки 4 – позитивне число, то останній корінь можна замінити ступенем . А в другому випадку визначення кореня непарного ступеня із негативного числа−a (при цьому a – позитивне), що виражається рівністю , дозволяє корінь замінити виразом , в якому кубічний корінь з двох вже можна замінити ступенем, і воно набуде вигляду .

Залишилося розібрати, як замінюються коріння, під якими знаходяться вирази, на ступені, що містять ці вирази на підставі. Тут не варто поспішати із заміною на , літерою A ми позначили деякий вираз. Наведемо приклад, який пояснює, що це має на увазі. Корінь так і хочеться замінити ступенем, ґрунтуючись на рівності. Але така заміна доречна лише за умови x−3≥0 , а для інших значень змінної x із ОДЗ (що задовольняють умові x−3<0 ) она не подходит, так как формула не имеет смысла для отрицательных a . Если обратить внимание на ОДЗ, то несложно заметить ее сужение при переходе от выражения к выражению , а помните, что мы договорились не прибегать к преобразованиям, сужающим ОДЗ.

Через таке неакуратне застосування формули нерідко виникають помилки при переході від коренів до ступенів. Наприклад, у підручнику дано завдання, подати вираз у вигляді ступеня з раціональним показником, і наведено відповідь, яка викликає питання, оскільки в умові не встановлено обмеження b>0. А в підручнику є перехід від висловлювання швидше за все через наступні перетворення ірраціонального виразу

до виразу. Останній перехід також викликає питання, оскільки звужує ОДЗ.

Виникає закономірне питання: «Як правильно перейти від кореня до ступеня всім значень змінних з ОДЗ»? Така заміна проводиться на базі таких тверджень:


Перш ніж обґрунтувати записані результати, наведемо кілька прикладів їх використання для переходу від коріння до ступенів. Для початку повернемося до виразу. Його треба було заміняти не так, а на (в даному випадку m=2 – ціле парне, n=3 – натуральне). Інший приклад: .

Тепер обіцяне обґрунтування результатів.

Коли m – ціле непарне, а n – натуральне парне, то для будь-якого набору змінних з ОДЗ для вираження значення виразу A позитивно (якщо m<0 ) или неотрицательно (если m>0). Тому, .

Переходимо до другого результату. Нехай m – ціле позитивне непарне, а n – натуральне непарне. Для всіх значень змінних з ОДЗ, для яких значення виразу A невід'ємне, , А для яких негативно,

Аналогічно доводиться наступний результат цілих негативних і непарних m і натуральних непарних n . Для всіх значень змінних з ОДЗ, для яких значення виразу A позитивно, , А для яких негативно,

Зрештою, останній результат. Нехай m – ціле парне, n – будь-яке натуральне. Для всіх значень змінних з ОДЗ, для яких значення виразу A позитивне (якщо m<0 ) или неотрицательно (если m>0 ), . Для яких негативно, . Отже, якщо m – ціле парне, n – будь-яке натуральне, то будь-якого набору значень змінних з ОДЗ висловлювання його можна замінити на .

Список літератури.

  1. Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  2. Алгебрата початку математичного аналізу. 11 клас: навч. для загальноосвіт. установ: базовий та профіль. рівні/[Ю. М. Колягін, М. В. Ткачова, Н. Є. Федорова, М. І. Шабунін]; за ред. А. Б. Жижченко. - М.: Просвітництво, 2009. - 336 с.: Іл. - ISBN 979-5-09-016551-8.

Для отримання кореня в Excel і зведення числа в ступінь використовуються вбудовані функції та математичні оператори. Розглянемо на прикладах.

Приклади функції КОРІНЬ в Excel

Вбудована функція КОРІНЬ повертає позитивне значення квадратного кореня. У меню "Функції" вона знаходиться в категорії "Математичні".

Синтаксис функції: = КОРІНЬ (число).

Єдиний і обов'язковий аргумент є позитивним числом, для якого функція обчислює квадратний корінь. Якщо аргумент має негативне значення, Excel поверне помилку #ЧИСЛО!

Як аргумент можна вказувати конкретне значення чи посилання комірку з числовим значенням.

Розглянемо приклади.

Функція відновила квадратний корінь числа 36. Аргумент – певне значення.

Функція ABS повертає абсолютне значення числа –36. Її використання дозволило уникнути помилки під час вилучення квадратного кореня з негативного числа.

Функція витягла квадратний корінь від суми 13 значення комірки C1.



Функція зведення в ступінь у Excel

Синтаксис функції: = СТУПЕНЬ (значення; число). Обидва аргументи є обов'язковими.

Значення – будь-яке дійсне числове значення. Число - показник ступеня, в який потрібно звести задане значення.

Розглянемо приклади.

У комірці C2 – результат зведення числа 10 квадрат.

Функція повернула число 100, зведене до ¾.

Зведення до ступеня за допомогою оператора

Для зведення числа до ступеня в Excel можна скористатися математичним оператором «^». Для введення натиснути Shift + 6 (з англійською розкладкою клавіатури).

Щоб Excel сприймав інформацію, що вводиться як формулу, спочатку ставиться знак «=». Далі водиться цифра, яку треба звести до ступеня. А після значка "^" - значення ступеня.

Замість будь-якого значення даної математичної формули можна використовувати посилання клітинки з цифрами.

Це зручно, якщо потрібно звести безліч значень.

Скопіювавши формулу весь стовпець, швидко отримали результати зведення чисел в стовпці A в третій ступінь.

Вилучення коренів n-го ступеня

КОРІНЬ – це функція квадратного кореня Excel. А як видобувати корінь 3-го, 4-го та іншого ступенів?

Згадаймо один із математичних законів: щоб отримати корінь n-го ступеня, необхідно звести число до ступеня 1/n.

Наприклад, щоб отримати кубічний корінь, зводимо число в ступінь 1/3.

Скористайтеся формулою для отримання коренів різних ступенів в Excel.

Формула повернула значення кубічного кореня з числа 21. Для зведення в дрібний ступінь використовували оператор «^».

Вітаю: сьогодні ми розбиратимемо коріння — одну з найбільш мозкових тем 8-го класу.:)

Багато хто плутається в корінні не тому, що воно складне (чого там складного — пара визначень і ще пара властивостей), а тому що в більшості шкільних підручників коріння визначається через такі нетрі, що розібратися в цій писанині можуть хіба самі автори підручників. Та й то лише з пляшкою гарного віскі.

Тому зараз я дам найправильніше і найписьменніше визначення кореня - єдине, яке вам справді слід запам'ятати. А вже потім поясню: навіщо все це потрібно і як застосовувати на практиці.

Але спочатку запам'ятайте один важливий момент, про який багато укладачів підручників чомусь «забувають»:

Коріння буває парного ступеня (наш улюблений $\sqrt(a)$, а також всякі $\sqrt(a)$ і навіть $\sqrt(a)$) і непарного ступеня (будь-які $\sqrt(a)$, $\ sqrt(a)$ і т.д.). І визначення кореня непарного ступеня дещо відрізняється від парного.

Ось у цьому гребінці «дещо відрізняється» приховано, напевно, 95% всіх помилок і непорозуміння, пов'язаного з корінням. Тому давайте раз і назавжди розберемося з термінологією:

Визначення. Корінь парного ступеня nз $a$ - це будь-яке невід'ємнечисло $b$ таке, що $((b)^(n))=a$. А корінь непарного ступеня з того ж числа $a$ - це взагалі будь-яке число $b$, для якого виконується та сама рівність: $((b)^(n))=a$.

У будь-якому випадку корінь позначається так:

\(a)\]

Число $n$ у такому записі називається показником кореня, а число $a$ - підкореним виразом. Зокрема, при $n=2$ отримаємо наш «улюблений» квадратний корінь (до речі, це корінь парного ступеня), а за $n=3$ — кубічний (ступінь непарний), який теж часто зустрічається в завданнях та рівняннях.

приклади. Класичні приклади квадратного коріння:

\[\begin(align) & \sqrt(4)=2; \ \ \ \ sqrt (81) = 9; \ & \ sqrt (256) = 16. \\ \end(align)\]

До речі, $ sqrt (0) = 0 $, а $ sqrt (1) = 1 $. Це цілком логічно, оскільки $((0)^(2))=0$ і $((1)^(2))=1$.

Кубічні коріння теж часто зустрічаються — не треба їх боятися:

\[\begin(align) & \sqrt(27)=3; \\ \sqrt(-64)=-4; \ & \ sqrt (343) = 7. \\ \end(align)\]

Ну, і парочка «екзотичних прикладів»:

\[\begin(align) & \sqrt(81)=3; \\ \sqrt(-32)=-2. \\ \end(align)\]

Якщо ви не зрозуміли, у чому різниця між парним та непарним ступенем — перечитайте визначення ще раз. Це дуже важливо!

А ми тим часом розглянемо одну неприємну особливість коренів, через яку нам потрібно було вводити роздільне визначення для парних і непарних показників.

Навіщо взагалі потрібне коріння?

Прочитавши визначення, багато учнів запитають: Що курили математики, коли це вигадували? І справді: навіщо взагалі потрібне все це коріння?

Щоб відповісти на це питання, повернемося на хвилинку до початкових класів. Згадайте: у ті далекі часи, коли дерева були зеленішими, а пельмені смачнішими, основна наша турбота була в тому, щоб правильно множити числа. Ну, щось на кшталт «п'ять на п'ять — двадцять п'ять», ось це все. Але можна множити числа не парами, а трійками, четвірками і взагалі цілими комплектами:

\[\begin(align) & 5\cdot 5=25; \ & 5 \ cdot 5 \ cdot 5 = 125; \ & 5 \ cdot 5 \ cdot 5 \ cdot 5 = 625; \ \ 5 \ cdot 5 \ cdot 5 \ cdot 5 \ cdot 5 = 3125; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625. \end(align)\]

Однак суть не в цьому. Фішка в іншому: математики - люди ліниві, тому їм було в лом записувати множення десяти п'ятірок ось так:

Тому вони вигадали ступеня. Чому б замість довгого рядка не записати кількість множників у вигляді верхнього індексу? Типу такого:

Це дуже зручно! Всі обчислення скорочуються в рази, і можна не витрачати купу аркушів пергаменту блокнотиків на запис якогось 5 183 . Такий запис назвали ступенем числа, у нього знайшли купу властивостей, але щастя виявилося недовгим.

Після грандіозної п'янки, яку організували саме з приводу «відкриття» ступенів, якийсь особливо затятий математик раптом запитав: «А що, якщо нам відомий ступінь числа, але невідомо саме число?» Ось, дійсно, якщо нам відомо, що деяке число $b$, припустимо, в 5-му ступені дає 243, то як нам здогадатися, чому одно число $b$?

Проблема ця виявилася набагато глобальнішою, ніж може здатися на перший погляд. Тому що з'ясувалося, що для більшості готових ступенів таких вихідних чисел немає. Судіть самі:

\[\begin(align) & ((b)^(3))=27Rightarrow b=3cdot 3cdot 3Rightarrow b=3; \ & ((b) ^ (3)) = 64 Rightarrow b = 4 cdot 4 cdot 4 Rightarrow b = 4. \\ \end(align)\]

А що якщо $((b)^(3))=50$? Виходить, що потрібно знайти якесь число, яке тричі помножене саме на себе дасть нам 50. Але що це за число? Воно явно більше 3, оскільки 3 3 = 27< 50. С тем же успехом оно меньше 4, поскольку 4 3 = 64 >50. Тобто. це число лежить десь між трійкою і четвіркою, але чому воно одно - фіг зрозумієш.

Саме для цього математики і придумали коріння $n$-го ступеня. Саме для цього ввели піктограму радикала $\sqrt(*)$. Щоб позначити те саме число $b$, яке в даній мірі дасть нам заздалегідь відому величину

\[\sqrt[n](a)=b\Rightarrow ((b)^(n))=a\]

Не сперечаюся: найчастіше це коріння легко вважається — ми бачили кілька таких прикладів вище. Але все-таки в більшості випадків, якщо ви загадаєте довільне число, а потім спробуєте витягти з нього корінь довільного ступеня, на вас чекає жорстокий облом.

Та що там! Навіть найпростіший і всім знайомий $\sqrt(2)$ не можна уявити у звичному нам вигляді - як ціле число або дрібничка. А якщо ви вб'єте це число в калькулятор, то побачите це:

\[\sqrt(2)=1,414213562...\]

Як бачите, після коми йде нескінченна послідовність цифр, які не підкоряються жодній логіці. Можна, звичайно, округлити це число, щоб швидко порівняти з іншими числами. Наприклад:

\[\sqrt(2)=1,4142...\approx 1,4 \lt 1,5\]

Або ще приклад:

\[\sqrt(3)=1,73205...\approx 1,7 \gt 1,5\]

Але ці округлення, по-перше, досить грубі; а по-друге, працювати з приблизними значеннями теж треба вміти, інакше можна зловити купу неочевидних помилок (до речі, навик порівняння та округлення обов'язково перевіряють на профільному ЄДІ).

Тому в серйозній математиці без коріння не обійтися - вони є такими ж рівноправними представниками багатьох дійсних чисел $\mathbb(R)$, як і давно знайомі нам дроби і цілі числа.

Неможливість уявити корінь як дробу виду $\frac(p)(q)$ означає, що це корінь перестав бути раціональним числом. Такі числа називаються ірраціональними, і їх не можна точно уявити інакше як за допомогою радикала або інших спеціально призначених для цього конструкцій (логарифмів, ступенів, меж тощо). Але про це — іншого разу.

Розглянемо кілька прикладів, де після всіх обчислень ірраціональні числа все ж таки залишаться у відповіді.

\[\begin(align) & \sqrt(2+\sqrt(27))=\sqrt(2+3)=\sqrt(5)\approx 2,236... \\ & \sqrt(\sqrt(-32) ))=\sqrt(-2)\approx -1,2599... \\ \end(align)\]

Природно, на вигляд кореня практично неможливо здогадатися про те, які числа будуть йти після коми. Втім, можна порахувати на калькуляторі, але навіть найдосконаліший калькулятор дат нам лише кілька перших цифр ірраціонального числа. Тому набагато правильніше записати відповіді у вигляді $sqrt(5)$ і $sqrt(-2)$.

Саме для цього їх і вигадали. Щоб зручно записувати відповіді.

Чому потрібні два визначення?

Уважний читач уже напевно помітив, що всі квадратні корені, наведені в прикладах, витягуються з позитивних чисел. Ну, принаймні з нуля. А ось кубічні корені незворушно витягуються абсолютно з будь-якого числа — хоч позитивного, хоч негативного.

Чому так відбувається? Подивіться графік функції $y=((x)^(2))$:

Графік квадратичної функції дає два корені: позитивний та негативний

Спробуємо за допомогою цього графіка порахувати $sqrt (4) $. Для цього на графіку проведено горизонтальну лінію $y=4$ (позначено червоним кольором), яка перетинається з параболою у двох точках:$((x)_(1))=2$ і $((x)_(2)) =-2 $. Це цілком логічно, оскільки

З першим числом все зрозуміло — воно позитивне, тому воно є корінь:

Але що робити тоді з другою точкою? Типу у четвірки відразу два корені? Адже якщо звести до квадрата число −2, ми теж отримаємо 4. Чому б тоді не записати $\sqrt(4)=-2$? І чому вчителі дивляться на такі записи так, ніби хочуть вас зжерти?:)

У тому й біда, що якщо не накладати жодних додаткових умов, то квадратного коріння у четвірки буде два — позитивне і негативне. І в будь-якого позитивного числа їх також буде два. А ось у негативних чисел коріння взагалі не буде — це видно все за тим же графіком, оскільки парабола ніде не опускається нижче за осю y, тобто. не набуває негативних значень.

Подібна проблема виникає у всіх коренів з парним показником:

  1. Строго кажучи, коріння з парним показником $n$ у кожного позитивного числа буде відразу дві штуки;
  2. З негативних чисел корінь із парним $n$ взагалі не витягується.

Саме тому у визначенні кореня парного ступеня $n$ спеціально обговорюється, що відповідь має бути невід'ємною кількістю. Так ми позбавляємося неоднозначності.

Зате для непарних $n$ такої проблеми немає. Щоб переконатися в цьому, погляньмо на графік функції $y=((x)^(3))$:

Кубічна парабола набуває будь-яких значень, тому кубічний корінь витягується з будь-якого числа.

З цього графіка можна зробити два висновки:

  1. Гілки кубічної параболи, на відміну від звичайної, йдуть на нескінченність в обидві сторони - і вгору, і вниз. Тому на якій би висоті ми не проводили горизонтальну пряму, ця пряма обов'язково перетнеться з нашим графіком. Отже, кубічний корінь можна отримати завжди, абсолютно з будь-якого числа;
  2. Крім того, таке перетин завжди буде єдиним, тому не потрібно думати, яке число вважати «правильним» коренем, а на яке забити. Саме тому визначення коренів для непарного ступеня простіше, ніж для парної (відсутня вимога невід'ємності).

Жаль, що ці прості речі не пояснюють у більшості підручників. Натомість нам починають ширяти мозок усілякими арифметичними корінням та їх властивостями.

Так, я не сперечаюся: що таке арифметичний корінь теж треба знати. І я докладно розповім про це в окремому уроці. Сьогодні ми теж поговоримо про нього, оскільки без нього всі роздуми про коріння $n$-ї кратності були б неповними.

Але спочатку треба чітко засвоїти те визначення, яке я дав вище. Інакше через велику кількість термінів у голові почнеться така каша, що в результаті взагалі нічого не зрозумієте.

А всього й потрібно зрозуміти різницю між парними та непарними показниками. Тому ще раз зберемо все, що дійсно потрібно знати про коріння:

  1. Корінь парної міри існує лише з невід'ємного числа і сам є невід'ємним числом. Для негативних чисел такий корінь невизначений.
  2. А ось корінь непарного ступеня існує з будь-якого числа і може бути будь-яким числом: для позитивних чисел він позитивний, а для негативних — як натякає кеп, негативний.

Хіба це складно? Ні, не складно. Зрозуміло? Та взагалі очевидно! Тому зараз ми трохи потренуємось із обчисленнями.

Основні властивості та обмеження

Коріння має багато дивних властивостей і обмежень — про це буде окремий урок. Тому зараз ми розглянемо лише найважливішу «фішку», яка стосується лише коріння з парним показником. Запишемо цю властивість у вигляді формули:

\[\sqrt(((x)^(2n)))=\left| x \right|\]

Іншими словами, якщо звести число на парний ступінь, а потім з цього витягти корінь того ж ступеня, ми отримаємо не вихідне число, яке модуль . Це проста теорема, яка легко доводиться (досить окремо розглянути невід'ємні $x$, а потім окремо негативні). Про неї постійно товкмачать вчителі, її дають у кожному шкільному підручнику. Але як тільки справа доходить до вирішення ірраціональних рівнянь (тобто рівнянь, що містять знак радикала), учні дружно забувають цю формулу.

Щоб детально розібратися в питанні, давайте на хвилину забудемо всі формули і спробуємо порахувати два числа напролом:

\[\sqrt(((3)^(4)))=?\quad \sqrt(((\left(-3 \right))^(4)))=?\]

Це дуже звичайні приклади. Перший приклад вирішить більшість людей, а ось на другому багато хто залипає. Щоб без проблем вирішити будь-яку подібну хрень, завжди враховуйте порядок дій:

  1. Спочатку число зводиться у четвертий ступінь. Ну, це нескладно. Вийде нове число, яке навіть у таблиці множення можна знайти;
  2. І ось вже з цього нового числа необхідно витягти корінь четвертого ступеня. Тобто. ніякого «скорочення» коріння та ступенів не відбувається — це послідовні дії.

Розберемося з першим виразом: $ \ sqrt (((3) ^ (4))) $. Очевидно, що спочатку треба порахувати вираз, що стоїть під коренем:

\[((3)^(4))=3\cdot 3\cdot 3\cdot 3=81\]

Потім витягаємо корінь четвертого ступеня з числа 81:

Тепер зробимо те саме з другим виразом. Спочатку зводимо число −3 у четверту міру, навіщо потрібно помножити його саме він 4 разу:

\[((\left(-3 \right))^(4))=\left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)\cdot \ left(-3 \right)=81\]

Отримали позитивне число, оскільки загальна кількість мінусів у творі — 4 штуки, і всі вони взаємно знищиться (адже мінус на мінус дає плюс). Далі знову витягаємо корінь:

У принципі, цей рядок можна було не писати, оскільки і їжу зрозуміло, що відповідь вийде одна й та сама. Тобто. парний корінь з тієї ж парної міри «спалює» мінуси, і в цьому сенсі результат не відрізняється від звичайного модуля:

\[\begin(align) & \sqrt(((3)^(4)))=\left| 3 \right|=3; \\ & \sqrt(((\left(-3 \right))^(4)))=\left| -3 \right|=3. \\ \end(align)\]

Ці обчислення добре узгоджуються з визначенням кореня парного ступеня: результат завжди негативний, та й під знаком радикала теж завжди стоїть невід'ємне число. В іншому випадку корінь не визначений.

Зауваження щодо порядку дій

  1. Запис $\sqrt(((a)^(2)))$ означає, що ми спочатку зводимо число $a$ у квадрат, а потім витягуємо з отриманого значення квадратний корінь. Отже, ми можемо бути впевнені, що під знаком кореня завжди сидить невід'ємне число, оскільки $((a)^(2))\ge 0$ у будь-якому випадку;
  2. А ось запис $((\left(\sqrt(a) \right))^(2))$, навпаки, означає, що ми спочатку витягаємо корінь з деякого числа $a$ і лише потім зводимо результат у квадрат. Тому число $a$ в жодному разі не може бути негативним - це обов'язкова вимога, закладена у визначення.

Таким чином, у жодному разі не можна бездумно скорочувати коріння та ступеня, тим самим нібито «спрощуючи» вихідний вираз. Тому що якщо під коренем стоїть негативне число, а його показник є парним, ми отримаємо купу проблем.

Втім, всі ці проблеми є актуальними лише для парних показників.

Винесення мінуса з-під знака кореня

Природно, коріння з непарними показниками теж має свою фішку, якої в принципі не буває у парних. А саме:

\[\sqrt(-a)=-\sqrt(a)\]

Коротше кажучи, можна виносити мінус з-під знаку коріння непарного ступеня. Це дуже корисна властивість, яка дозволяє «викинути» всі мінуси назовні:

\[\begin(align) & \sqrt(-8)=-\sqrt(8)=-2; \\ & \sqrt(-27)\cdot \sqrt(-32)=-\sqrt(27)\cdot \left(-\sqrt(32) \right)= \\ & =\sqrt(27)\cdot \ sqrt (32) = \ \ & = 3 \ cdot 2 = 6. \end(align)\]

Ця проста властивість значно спрощує багато обчислень. Тепер не треба переживати: раптом під коренем затесався негативний вираз, а ступінь у кореня виявився парним? Достатньо лише «викинути» всі мінуси за межі коріння, після чого їх можна буде множити один на одного, ділити і взагалі робити багато підозрілих речей, які у випадку з «класичним» корінням гарантовано приведуть нас до помилки.

І ось тут на сцену виходить ще одне визначення — те саме, з якого в більшості шкіл починають вивчення ірраціональних виразів. І без якого наші міркування були б неповними. Зустрічайте!

Арифметичний корінь

Давайте припустимо на хвилинку, що під знаком кореня можуть бути лише позитивні числа або в крайньому випадку нуль. Заб'ємо на парні/непарні показники, заб'ємо на всі визначення, наведені вище - працюватимемо тільки з невід'ємними числами. Що тоді?

А тоді ми отримаємо арифметичний корінь — він частково перетинається з нашими «стандартними» визначеннями, але все ж таки відрізняється від них.

Визначення. Арифметичним коренем $n$-го ступеня з невід'ємного числа $a$ називається таке невід'ємне число $b$, що $((b)^(n))=a$.

Як бачимо, нас більше не цікавить парність. Натомість її з'явилося нове обмеження: підкорене вираз тепер завжди невід'ємно, та й сам корінь теж негативний.

Щоб краще зрозуміти, чим арифметичний корінь відрізняється від звичайного, погляньте на вже знайомі нам графіки квадратної та кубічної параболи:

Область пошуку арифметичного кореня – невід'ємні числа

Як бачите, відтепер нас цікавлять ті шматки графіків, які розташовані в першій координатній чверті — там, де координати $x$ і $y$ позитивні (або хоча б нуль). Більше не потрібно дивитися на показник, щоб зрозуміти: чи маємо ми право ставити під корінь негативне число чи ні. Тому що негативні числа більше, у принципі, не розглядаються.

Можливо, ви запитаєте: "Ну і навіщо нам таке кастроване визначення?" Або: «Чому не можна обійтися стандартним визначенням, даним вище?»

Що ж, наведу лише одну властивість, через яку нове визначення стає доцільним. Наприклад, правило зведення в ступінь:

\[\sqrt[n](a)=\sqrt(((a)^(k)))\]

Зверніть увагу: ми можемо звести підкорене вираз у будь-який ступінь і одночасно помножити на цей же ступінь показник кореня — і в результаті вийде те саме число! Ось приклади:

\[\begin(align) & \sqrt(5)=\sqrt(((5)^(2)))=\sqrt(25) \\ & \sqrt(2)=\sqrt(((2)^ (4)))=\sqrt(16) \\ \end(align)\]

Ну, і що в цьому такого? Чому ми не могли це зробити раніше? А ось чому. Розглянемо простий вираз: $\sqrt(-2)$ — це цілком нормальне у нашому класичному розумінні, але абсолютно неприпустимо з погляду арифметичного кореня. Спробуємо перетворити його:

$\begin(align) & \sqrt(-2)=-\sqrt(2)=-\sqrt(((2)^(2)))=-\sqrt(4) \lt 0; \\ & \sqrt(-2)=\sqrt(((\left(-2 \right))^(2)))=\sqrt(4) \gt 0. \\ \end(align)$

Як бачите, у першому випадку ми винесли мінус з-під радикала (маємо повне право, тому що показник непарний), а в другому — скористалися зазначеною формулою. Тобто. з погляду математики все зроблено за правилами.

WTF?! Як одне й те число може бути і позитивним, і негативним? Ніяк. Просто формула зведення в ступінь, який чудово працює для позитивних чисел і нуля, починає видавати повну брехню у випадку з негативними числами.

Ось для того, щоб позбутися подібної неоднозначності, і вигадали арифметичні коріння. Їм присвячений окремий великий урок, де ми докладно розглядаємо всі властивості. Отже зараз не будемо на них зупинятися — урок і так вийшов занадто затягнутим.

Алгебраїчне коріння: для тих, хто хоче знати більше

Довго думав: виносити цю тему до окремого параграфу чи ні. Зрештою вирішив залишити тут. Цей матеріал призначений для тих, хто хоче зрозуміти коріння ще краще – вже не на середньому «шкільному» рівні, а на наближеному до олімпіадного.

Так ось: крім «класичного» визначення кореня $n$-го ступеня з числа та пов'язаного з ним поділу на парні та непарні показники є більш «доросле» визначення, яке взагалі не залежить від парності та інших тонкощів. Це називається алгебраїчним коренем.

Визначення. Алгебраїчний корінь $n$-го ступеня з-поміж будь-якого $a$ — це безліч всіх чисел $b$ таких, що $((b)^(n))=a$. Для такого коріння немає усталеного позначення, тому просто поставимо рису зверху:

\[\overline(\sqrt[n](a))=\left\( b\left| b\in \mathbb(R);((b)^(n))=a \right. \right\) \]

Принципова відмінність від стандартного визначення, наведеного на початку уроку, полягає в тому, що корінь алгебри — це не конкретне число, а безліч. Оскільки ми працюємо з дійсними числами, це безліч буває лише трьох типів:

  1. Порожня безліч. Виникає у разі, коли потрібно знайти алгебраїчний корінь парного ступеня негативного числа;
  2. Безліч, що складається з одного-єдиного елемента. Усі коріння непарних ступенів, а також корені парних ступенів з нуля потрапляють до цієї категорії;
  3. Нарешті, безліч може включати два числа - ті самі $((x)_(1))$ і $((x)_(2))=-((x)_(1))$, яке ми бачили на графіку квадратичні функції. Відповідно, такий розклад можливий лише за вилучення кореня парного ступеня з позитивного числа.

Останній випадок заслуговує на докладніший розгляд. Порахуємо кілька прикладів, щоб зрозуміти різницю.

приклад. Обчисліть вирази:

\[\overline(\sqrt(4));\quad \overline(\sqrt(-27));\quad \overline(\sqrt(-16)).\]

Рішення. З першим виразом все просто:

\[\overline(\sqrt(4))=\left\( 2;-2 \right\)\]

Саме два числа входять до складу множини. Тому що кожен із них у квадраті дає четвірку.

\[\overline(\sqrt(-27))=\left\( -3 \right\)\]

Тут бачимо безліч, що складається лише з одного числа. Це цілком логічно, оскільки показник кореня непарний.

Нарешті, останній вираз:

\[\overline(\sqrt(-16))=\varnothing \]

Отримали порожню множину. Тому що немає жодного дійсного числа, яке при зведенні в четвертий (тобто парний!) ступінь дасть нам негативне число −16.

Фінальне зауваження. Зверніть увагу: я не випадково скрізь зазначав, що ми працюємо з дійсними числами. Тому що є ще комплексні числа - там цілком можна порахувати і $ sqrt (-16) $, і багато інших дивних речей.

Однак у сучасному шкільному курсі математики комплексні числа майже зустрічаються. Їх викреслили з більшості підручників, оскільки наші чиновники вважають цю тему «надто складною для розуміння».

На цьому все. У наступному уроці ми розглянемо всі ключові властивості коренів і навчимося, нарешті, спрощувати ірраціональні вирази.

Операції зі ступенями та корінням. Ступінь із негативним ,

нульовим та дробовим показником. Про висловлювання, які не мають сенсу.

Операції зі ступенями.

1. При множенні ступенів з однаковою основою їх показники складаються:

a m · a n = a m + n.

2. При розподілі ступенів з однаковою основою їх показники віднімаються .

3. Ступінь добутку двох або кількох співмножників дорівнює добутку ступенів цих співмножників.

(abc… ) n = a n· b n · c n

4. Ступінь відношення (дробі) дорівнює відношенню ступенів ділимого (числителя) та дільника (знаменника):

(a/b ) n = a n / b n.

5. При зведенні ступеня до ступеня їх показники перемножуються:

(a m ) n = a m n.

Всі наведені вище формули читаються і виконуються в обох напрямках зліва направо і навпаки.

П р і м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операції з корінням. У всіх наведених нижче формулах символ означає арифметичний корінь(підкорене вираз позитивно).

1. Корінь із твору кількох співмножників дорівнює твору коріння з цих співмножників:

2. Корінь із відношення дорівнює відношенню коріння ділимого та дільника:

3. При зведенні кореня до ступеня достатньо звести в цей ступінь підкорене число:

4. Якщо збільшити ступінь кореня в m раз і одночасно звести в m -у ступінь підкорене число, то значення кореня не зміниться:

5. Якщо зменшити ступінь кореня в m раз і одночасно витягти корінь m -ой ступеня з підкореного числа, то значення кореня незміниться:


Розширення поняття ступеня. Досі ми розглядали ступені лише з натуральним показником;але дії зі ступенями та корінням можуть призводити також до негативним, нульовимі дробовимпоказниками. Всі ці показники ступенів потребують додаткового визначення.

Ступінь із негативним показником. Ступінь деякого числа з негативним (цілим) показником визначається як одиниця, поділена на ступінь того ж числа з показником, що дорівнює абсолютній величинінегативного показника:

Тепер формула a m: a n= a m - n може бути використана не тільки приmбільше, ніж n, але і при mменшим, ніж n .

Примірник. a 4 :a 7 = a 4 - 7 = a - 3 .

Якщо ми хочемо, щоб формулаa m : a n= a m - nбула справедлива заm = n, нам потрібне визначення нульового ступеня.

Ступінь із нульовим показником. Ступінь будь-якого ненульового числа з нульовим показником дорівнює 1.

Приміри. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

Ступінь із дробовим показником. Для того, щоб звести дійсне числоа в ступінь m/n , потрібно витягти корінь n – ступеня з m -ой ступеня цього числаа:

Про висловлювання, які не мають сенсу. Є кілька таких виразів.будь-яке число.

Справді, якщо припустити, що це вираз дорівнює деякому числу x, то згідно з визначенням операції поділу маємо: 0 = 0 · x. Але ця рівність має місце при будь-якому числі x, що й потрібно було довести.

Випадок 3.


0 0 - будь-яке число.

Справді,


Розв'язання. Розглянемо три основні випадки:

1) x = 0 це значення не задовольняє даному рівнянню

(Чому?).

2) при x> 0 отримуємо: x/x = 1, тобто. 1 = 1, звідки слід,

що x- Будь-яке число; але беручи до уваги, що в

нашому випадку x> 0 , відповіддю єx > 0 ;

3) при x < 0 получаем: – x/x= 1, тобто . -1 = 1, отже,

І тут немає рішення.

Таким чином, x > 0.