Бути рівний косинус. Правила знаходження тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу

Одним із розділів математики, з якими школярі справляються з найбільшими труднощами, є тригонометрія. Не дивно: щоб вільно оволодіти цією областю знань, потрібна наявність просторового мислення, вміння знаходити синуси, косинуси, тангенси, котангенси за формулами, спрощувати висловлювання, вміти застосовувати у обчисленнях число пі. Крім цього, потрібно вміти застосовувати тригонометрію за доказом теорем, а це вимагає або розвиненої математичної пам'яті, або вміння виводити непрості логічні ланцюжки.

Витоки тригонометрії

Знайомство з цією наукою слід розпочати з визначення синуса, косинуса і тангенса кута, проте спочатку необхідно розібратися, чим займається тригонометрія.

Історично головним об'єктом дослідження цього розділу математичної наукибули прямокутні трикутники. Наявність кута в 90 градусів дає можливість здійснювати різні операції, що дозволяють по двох сторонах і одному куті або по двох кутах і одній стороні визначати значення всіх параметрів фігури, що розглядається. У минулому люди помітили цю закономірність і стали активно нею користуватися при будівництві будівель, навігації, астрономії і навіть у мистецтві.

Початковий етап

Спочатку люди міркували про взаємини кутів і сторін винятково з прикладу прямокутних трикутників. Потім були відкриті особливі формули, що дозволили розширити межі вживання в повсякденному життіцього розділу математики.

Вивчення тригонометрії у школі сьогодні починається з прямокутних трикутників, після чого отримані знання використовуються учнями у фізиці та вирішенні абстрактних тригонометричних рівнянь, робота з якими починається у старших класах.

Сферична тригонометрія

Пізніше, коли наука вийшла на наступний рівень розвитку, формули із синусом, косінусом, тангенсом, котангенсом стали використовуватися у сферичній геометрії, де діють інші правила, а сума кутів у трикутнику завжди більша за 180 градусів. Цей розділне вивчається у школі, проте знати про його існування необхідно як мінімум тому, що земна поверхня, Та й поверхня будь-якої іншої планети, є опуклою, а значить, будь-яка розмітка поверхні буде в тривимірному просторі"дугоподібної".

Візьміть глобус та нитку. Прикладіть нитку до двох будь-яких точок на глобусі, щоб вона виявилася натягнутою. Зверніть увагу - вона набула форми дуги. З такими формами і має справу сферична геометрія, що застосовується в геодезії, астрономії та інших теоретичних та прикладних сферах.

Прямокутний трикутник

Дещо дізнавшись про способи застосування тригонометрії, повернемося до базової тригонометрії, щоб надалі розібратися, що таке синус, косинус, тангенс, які розрахунки можна з їх допомогою виконувати і які формули при цьому використовувати.

Насамперед необхідно усвідомити поняття, які стосуються прямокутного трикутника. По-перше, гіпотенуза - це сторона, що лежить навпроти кута 90 градусів. Вона є найдовшою. Ми пам'ятаємо, що з теореми Піфагора її чисельне значеннядорівнює кореню із суми квадратів двох інших сторін.

Наприклад, якщо дві сторони дорівнюють 3 і 4 сантиметрам відповідно, довжина гіпотенузи становитиме 5 сантиметрів. До речі, про це знали ще давні єгиптяни близько чотирьох із половиною тисяч років тому.

Дві сторони, що залишилися, які утворюють прямий кут, звуться катетами. Крім того, треба пам'ятати, що сума кутів у трикутнику в прямокутної системикоординат дорівнює 180 градусів.

Визначення

Нарешті, твердо розуміючи геометричну основу, можна звернутися до визначення синуса, косинуса та тангенсу кута.

Синусом кута називається відношення протилежного катета(Тобто сторони, що розташовується навпроти потрібного кута) до гіпотенузи. Косинусом кута називається відношення прилеглого катетадо гіпотенузи.

Запам'ятайте, що ні синус, ні косинус не може бути більше одиниці! Чому? Тому що гіпотенуза - це за умовчанням найдовша Яким би довгим не був катет, він буде коротшим за гіпотенузу, а значить, їх відношення завжди буде менше одиниці. Таким чином, якщо у вас у відповіді до завдання вийшов синус або косинус зі значенням більшим, ніж 1, шукайте помилку в розрахунках або міркуваннях. Ця відповідь однозначно невірна.

Нарешті, тангенсом кута називається ставлення протилежної сторонидо прилеглої. Той самий результат дасть поділ синуса на косинус. Подивіться: відповідно до формули ми ділимо довжину сторони на гіпотенузу, після чого ділимо на довжину другої сторони та множимо на гіпотенузу. Таким чином, ми отримуємо те саме співвідношення, що і у визначенні тангенса.

Котангенс, відповідно, є відношенням прилеглої до кута сторони до протилежної. Той самий результат ми отримаємо, розділивши одиницю на тангенс.

Отже, ми розглянули визначення, що таке синус, косинус, тангенс та котангенс, і можемо зайнятися формулами.

Найпростіші формули

У тригонометрії не обійтися без формул – як знайти синус, косинус, тангенс, котангенс без них? Адже саме це потрібно при вирішенні завдань.

Перша формула, яку необхідно знати, починаючи вивчати тригонометрію, свідчить, що сума квадратів синуса і косинуса кута дорівнює одиниці. Ця формулає прямим наслідком теореми Піфагора, проте дозволяє заощадити час, якщо потрібно дізнатися про величину кута, а не сторони.

Багато учнів що неспроможні запам'ятати другу формулу, також дуже популярну під час вирішення шкільних завдань: сума одиниці та квадрата тангенсу кута дорівнює одиниці, поділеній на квадрат косинуса кута. Придивіться: адже це те саме твердження, що й у першій формулі, тільки обидві сторони тотожності були поділені на квадрат косинуса. Виходить, проста математична операція робить тригонометричну формулуабсолютно невпізнанною. Пам'ятайте: знаючи, що таке синус, косинус, тангенс та котангенс, правила перетворення та кілька базових формулви будь-якої миті зможете самі вивести необхідні більше складні формулина папері.

Формули подвійного кута та складання аргументів

Ще дві формули, які потрібно вивчити, пов'язані зі значеннями синуса та косинуса при сумі та різниці кутів. Вони представлені нижче. Зверніть увагу, що в першому випадку обидва рази перемножується синус та косинус, а в другому складається попарний твір синуса та косинуса.

Також є формули, пов'язані з аргументами у вигляді подвійного кута. Вони повністю виводяться з попередніх - як тренування спробуйте отримати їх самостійно, прийнявши кут альфа рівним куту бета.

Нарешті, зверніть увагу, що формули подвійного кута можна перетворити так, щоб знизити рівень синуса, косинуса, тангенса альфа.

Теореми

Двома основними теоремами в базовій тригонометрії є теорема синусів та теорема косінусів. За допомогою цих теорем ви легко зможете зрозуміти, як знайти синус, косинус і тангенс, а отже, і площу фігури, і величину кожної сторони тощо.

Теорема синусів стверджує, що в результаті розподілу довжини кожної зі сторін трикутника на величину протилежного кута ми отримаємо однакове число. Більше того, це число дорівнюватиме двом радіусам описаного кола, тобто кола, що містить всі точки даного трикутника.

Теорема косінусів узагальнює теорему Піфагора, проеціруя її будь-які трикутники. Виявляється, із суми квадратів двох сторін відняти їх добуток, помножений на подвійний косинус суміжного їм кута - отримане значення виявиться рівним квадрату третьої сторони. Таким чином, теорема Піфагора виявляється окремим випадком теореми косінусів.

Помилки з неуважності

Навіть знаючи, що таке синус, косинус і тангенс, легко зробити помилку через неуважність або помилки в найпростіших розрахунках. Щоб уникнути таких помилок, ознайомимося з найпопулярнішими з них.

По-перше, не слід перетворювати звичайні дроби на десяткові до отримання остаточного результату - можна й відповідь залишити у вигляді звичайного дробу, якщо умові не обумовлено зворотне. Таке перетворення не можна назвати помилкою, проте слід пам'ятати, що на кожному етапі завдання можуть з'явитися нові корені, які за задумом автора повинні скоротитися. У цьому випадку ви дарма витратите час на зайві математичні операції. Особливо це актуально для таких значень, як корінь із трьох або з двох, адже вони зустрічаються в завданнях на кожному кроці. Те саме стосується заокруглень «некрасивих» чисел.

Далі, зверніть увагу, що до будь-якого трикутника застосовна теорема косінусів, але не теорема Піфагора! Якщо ви помилково забудете відняти подвійний твір сторін, помножений на косинус кута між ними, ви не тільки отримаєте абсолютно невірний результат, але й продемонструєте повне нерозуміння предмета. Це гірше, ніж помилка через неуважність.

По-третє, не плутайте значення для кутів 30 і 60 градусів для синусів, косінусів, тангенсів, котангенсів. Запам'ятайте ці значення, адже синус 30 градусів дорівнює косінусу 60, і навпаки. Їх легко переплутати, внаслідок чого ви неминуче отримаєте хибний результат.

Застосування

Багато учнів не поспішають братися до вивчення тригонометрії, оскільки розуміють її прикладного сенсу. Що таке синус, косинус, тангенс для інженера чи астронома? Це поняття, завдяки яким можна обчислити відстань до далеких зірокпередбачити падіння метеорита, відправити дослідний зонд на іншу планету. Без них не можна збудувати будинок, спроектувати автомобіль, розрахувати навантаження на поверхню або траєкторію руху предмета. І це тільки самі очевидні приклади! Адже тригонометрія у тому чи іншому вигляді використовується всюди, починаючи від музики та закінчуючи медициною.

На закінчення

Отже, ви синус, косинус, тангенс. Ви можете використовувати їх у розрахунках та успішно вирішувати шкільні завдання.

Вся суть тригонометрії зводиться до того, що за відомими параметрами трикутника потрібно вирахувати невідомі. Усього цих параметрів шість: довжини трьохсторін та величини трьох кутів. Вся різниця в завданнях полягає в тому, що даються різні вхідні дані.

Як знайти синус, косинус, тангенс, виходячи з відомих довжин катетів або гіпотенузи, ви тепер знаєте. Оскільки ці терміни позначають не що інше, як відношення, а відношення - це дріб, головною метою тригонометричного завданнястає знаходження коренів нормального рівняння або системи рівнянь. І тут вам допоможе звична шкільна математика.

Тригонометрія - розділ математичної науки, в якому вивчаються тригонометричні функції та їх використання у геометрії. Розвиток тригонометрії почався ще за часів античної Греції. За часів середньовіччя важливий внесоку розвиток цієї науки внесли вчені Близького Сходу та Індії.

Ця стаття присвячена базовим поняттямта визначенням тригонометрії. У ній розглянуто визначення основних тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу. Роз'яснено та проілюстровано їх зміст у контексті геометрії.

Yandex.RTB R-A-339285-1

Спочатку визначення тригонометричних функцій, аргументом яких є кут, виражалися через співвідношення сторін прямокутного трикутника.

Визначення тригонометричних функцій

Синус кута (sin α) - відношення катета, що протилежить цьому куту, до гіпотенузи.

Косинус кута (cos α) – відношення прилеглого катета до гіпотенузи.

Тангенс кута (t g α) - відношення протилежного катета до прилеглого.

Котангенс кута (c t g α) - відношення прилеглого катета до протилежного.

Дані визначення дані для гострого кутапрямокутного трикутника!

Наведемо ілюстрацію.

У трикутнику ABCз прямим кутом С синус кута А дорівнює відношеннюкатета BC до гіпотенузи AB.

Визначення синуса, косинуса, тангенсу та котангенсу дозволяють обчислювати значення цих функцій за відомими довжинами сторін трикутника.

Важливо пам'ятати!

Область значень синуса і косинуса: від -1 до 1. Іншими словами синус і косинус набувають значення від -1 до 1. Область значень тангенсу та котангенсу - вся числова пряма, тобто ці функції можуть набувати будь-яких значень.

Визначення, дані вище, відносяться до гострих кутів. У тригонометрії вводиться поняття кута повороту, величина якого, на відміну від гострого кута, не обмежена рамками від 0 до 90 градусів.

У цьому контексті можна дати визначення синуса, косинуса, тангенсу та котангенсу кута довільної величини. Уявимо одиничне колоіз центром на початку декартової системи координат.

Початкова точка A з координатами (1 , 0) повертається навколо центру одиничного кола на деякий кут і переходить в точку A 1 . Визначення дається через координати точки A 1 (x, y).

Синус (sin) кута повороту

Синус кута повороту - це ордината точки A 1 (x , y). sin α = y

Косинус (cos) кута повороту

Косинус кута повороту α - це абсцис точки A 1 (x, y). cos α = х

Тангенс (tg) кута повороту

Тангенс кута повороту - це відношення ординати точки A 1 (x, y) до її абсцисі. t g α = y x

Котангенс (ctg) кута повороту

Котангенс кута повороту - це відношення абсциси точки A 1 (x, y) до її ординаті. c t g α = x y

Синус та косинус визначені для будь-якого кута повороту. Це логічно, адже абсцису та ординату точки після повороту можна визначити за будь-якого вугілля. Інакше справа з тангенсом і котангенсом. Тангенс не визначено, коли точка після повороту перетворюється на точку з нульовою абсцисою (0 , 1) і (0 , - 1). У таких випадках вираз для тангенсу t g α = y x просто не має сенсу, тому що в ньому є поділ на нуль. Аналогічно ситуація із котангенсом. Відмінністю у тому, що котангенс не визначено у випадках, як у нуль звертається ордината точки.

Важливо пам'ятати!

Синус та косинус визначені для будь-яких кутів α.

Тангенс визначений для всіх кутів, крім α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс визначений для всіх кутів, крім α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При вирішенні практичних прикладівне кажуть "синус кута повороту α". Слова "кут повороту" просто опускають, маючи на увазі, що з контексту і так зрозуміло, про що йдеться.

Числа

Як бути з визначенням синуса, косинуса, тангенсу та котангенсу числа, а не кута повороту?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом і котангенсом числа tназивається число, яке відповідно дорівнює синусу, косинусу, тангенсу та котангенсу в tрадіан.

Наприклад, синус числа 10 π дорівнює синусукута повороту величиною 10 π рад.

Існує й інший підхід до визначення синуса, косинуса, тангенсу та котангенсу числа. Розглянемо його докладніше.

Будь-якому дійсному числу tставиться у відповідність точка на одиничному колі з центром на початку прямокутної декартової системи координат. Синус, косинус, тангенс та котангенс визначаються через координати цієї точки.

Початкова точка на колі - точка A з координатами (1, 0).

Позитивного числа t

Негативному числу tвідповідає точка, в яку перейде початкова точка, якщо рухатиметься по колу проти годинникової стрілки та пройде шлях t.

Тепер, коли зв'язок числа та точки на колі встановлено, переходимо до визначення синуса, косинуса, тангенсу та котангенсу.

Синус (sin) числа t

Синус числа t- ордината точки одиничного кола, що відповідає числу t. sin t = y

Косинус (cos) числа t

Косинус числа t- абсцису точки одиничного кола, що відповідає числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t- відношення ординати до абсцису точки одиничного кола, що відповідає числу t. t g t = y x = sin t cos t

Останні визначення знаходяться у відповідності та не суперечать визначенню, даному на початку цього пункту. Крапка на колі, відповідна числу tзбігається з точкою, в яку переходить початкова точка після повороту на кут tрадіан.

Тригонометричні функції кутового та числового аргументу

Кожному значенню кута α відповідає певне значеннясинуса та косинуса цього кута. Також, як усім кутам α, відмінним від α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) відповідає певне значення тангенсу. Котангенс, як сказано вище, визначений для всіх α, крім α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можна сказати, що sin α, cos α, t g α, c t g α - це функції кута альфа, або функції кутового аргументу.

Аналогічно можна говорити про синус, косинус, тангенс і котангенс, як про функції числового аргументу. Кожному дійсному числу tвідповідає певне значення синуса чи косинуса числа t. Усім числам, відмінним від π 2 + π · k, k ∈ Z відповідає значення тангенсу. Котангенс, аналогічно, визначено всім чисел, крім π · k , k ∈ Z.

Основні функції тригонометрії

Синус, косинус, тангенс та котангенс - основні тригонометричні функції.

З контексту зазвичай зрозуміло, з яким аргументом тригонометричної функції (кутовий аргумент або числовий аргумент) Ми маємо справу.

Повернемося до даних на самому початку визначенням та кутку альфа, що лежить у межах від 0 до 90 градусів. Тригонометричні визначеннясинуса, косинуса, тангенсу та котангенсу повністю узгоджуються з геометричними визначеннями, даними за допомогою співвідношень сторін прямокутного трикутника Покажемо це.

Візьмемо одиничне коло з центром у прямокутній декартовій системікоординат. Повернемо початкову точку A(1,0) на кут величиною до 90 градусів і проведемо з отриманої точки A1(x, y) перпендикуляр до осі абсцис. В отриманому прямокутному трикутнику кут A 1 O H дорівнює кутуповороту α довжина катета O H дорівнює абсцисі точки A 1 (x , y) . Довжина катета, що протилежить куту, дорівнює ординаті точки A 1 (x , y), а довжина гіпотенузи дорівнює одиниці, оскільки вона є радіусом одиничного кола.

Відповідно до визначення з геометрії, синус кута α дорівнює відношенню протилежного катета до гіпотенузи.

sin α = A 1 H O A 1 = y 1 = y

Значить, визначення синуса гострого кута в прямокутному трикутнику через співвідношення сторін еквівалентно визначенню синуса кута повороту α при альфа лежить в межах від 0 до 90 градусів.

Аналогічно відповідність визначень можна показати для косинуса, тангенсу та котангенсу.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Якщо побудувати одиничне коло з центром на початку координат, і задати довільне значенняаргументу x 0і відрахувати від осі Oxкут x 0, то цьому кутку на одиничному колі відповідає деяка точка A(Рис. 1) а її проекцією на вісь Охбуде точка М. Довжина відрізка ОМдорівнює абсолютної величиниабсциси крапки A. Даному значеннюаргументу x 0зіставлено значення функції y= cos x 0 як абсциси точки А. Відповідно точка У(x 0 ;у 0) належить графіку функції у= cos х(Рис. 2). Якщо точка Азнаходиться праворуч від осі Оу, токосинус буде позитивним, якщо ж лівіше – негативний. Але в будь-якому випадку крапка Ане може залишити коло. Тому косинус лежить у межах від -1 до 1:

-1 = cos x = 1.

Додатковий поворот на будь-який кут. p, повертає точку Aте саме місце. Тому функція у = cos xp:

cos ( x+ 2p) = cos x.

Якщо взяти два значення аргументу, рівні за абсолютною величиною, але протилежні за знаком, xі – x, знайти на колі відповідні точки A xі А -x. Як бачимо на рис. 3 їхньою проекцією на вісь Охє одна й та сама точка М. Тому

cos (– x) = cos ( x),

тобто. косинус - парна функція, f(–x) = f(x).

Отже, можна досліджувати властивості функції y= cos хна відрізку , а потім врахувати її парність та періодичність.

При х= 0 точка Алежить на осі Ох, її абсцис дорівнює 1, а тому cos 0 = 1. Зі збільшенням хкрапка Апересувається по колу вгору і вліво, її проекція, природно, тільки вліво, і за х = p/2 косинус стає рівним 0. Точка Aв цей момент піднімається на максимальну висоту, а потім продовжує рухатися вліво, але вже знижуючись. Її абсциса все зменшується, поки не досягне найменшого значення, рівного –1 при х= p. Таким чином, на відрізку функція у= cos хмонотонно зменшується від 1 до –1 (рис. 4, 5).

З парності косинуса слід, що у відрізку [– p, 0] функція монотонно зростає від -1 до 1, приймаючи нульове значення при х =p/2. Якщо взяти кілька періодів, вийде хвилеподібна крива (рис. 6).

Отже, функція y= cos xнабуває нульових значень у точках х= p/2 + kp, де k –будь-яке ціле число. Максимуми, рівні 1, досягаються в точках х= 2kp, тобто. з кроком 2 p, а мінімуми, рівні –1, у точках х= p + 2kp.

Функція y = sin x.

На одиничному колі кутку x 0 відповідає точка А(рис. 7), а її проекцією на вісь Оубуде точка N.Знавчання функції у 0 = sin x 0визначається як ордината точки А. Крапка У(кут x 0 ,у 0) належить графіку функції y= sin x(Рис. 8). Зрозуміло, що функція y = sin xперіодична, її період дорівнює 2 p:

sin ( x+ 2p) = sin ( x).

Для двох значень аргументу, хі – , проекції відповідних їм точок А xі А -xна вісь Оурозташовані симетрично щодо точки Про. Тому

sin (– x) = -sin ( x),

тобто. синус – функція непарна, f(– x) = -f ( x) (Мал. 9).

Якщо точку Aповернути щодо точки Прона кут p/2 проти годинникової стрілки (іншими словами, якщо кут хзбільшити на p/2), то її ордината в новому становищі дорівнюватиме абсцисі в старому. Отже,

sin ( x+ p/2) = cos x.

Інакше, синус – це косинус, що «запізнився» на p/2, оскільки будь-яке значення косинуса «повториться» у синусі, коли аргумент зросте на p/2. І щоб побудувати графік синуса, достатньо зрушити графік косинуса на p/2 праворуч (рис. 10). Надзвичайно важлива властивістьсинуса виражається рівністю

Геометричний зміст рівності видно з рис. 11. Тут х –це половина дуги АВ, а sin х –половина відповідної хорди. Очевидно, що зі зближенням точок Аі УДовжина хорди дедалі точніше наближається до довжини дуги. З того ж малюнку нескладно отримати нерівність

|sin x| x|, вірне за будь-якого х.

Формулу (*) математики називають чудовою межею. З неї, зокрема, випливає, що sin х» хпри малих х.

Функції у= tg х, у= ctg х. Дві інші тригонометричні функції - тангенс і котангенс найпростіше визначити як відносини вже відомих нам синуса та косинуса:

Як синус та косинус, тангенс та котангенс – функції періодичні, але їх періоди рівні p, тобто. вони вдвічі менше, ніж у синуса та косинуса. Причина цього зрозуміла: якщо синус і косинус обоє змінять знаки, їх відношення не зміниться.

Оскільки в знаменнику тангенсу знаходиться косинус, то тангенс не визначений у тих точках, де косинус дорівнює 0, коли х= p/2 + kp. В усіх інших точках він монотонно зростає. Прямі х= p/2 + kpдля тангенсу є вертикальними асимптотами. У точках kpтангенс та кутовий коефіцієнтстановлять 0 та 1 відповідно (рис. 12).

Котангенс не визначено там, де синус дорівнює 0 (коли х = kp). В інших точках він монотонно зменшується, а прямі х = kp його вертикальні асимптоти. У точках х = p/2 + kpкотангенс звертається до 0, а кутовий коефіцієнт у цих точках дорівнює –1 (рис. 13).

Парність та періодичність.

Функція називається парною, якщо f(–x) = f(x). Функції косинус та секанс – парні, а синус, тангенс, котангенс та косеканс – функції непарні:

sin (–α) = – sin α tg (-α) = - tg α
cos (-α) = cos α ctg (-α) = - ctg α
sec (–α) = sec α cosec (-α) = - cosec α

Властивості парності випливають із симетричності точок P a і Р- a (рис. 14) щодо осі х. За такої симетрії ордината точки змінює знак (( х;у) переходить у ( х; -У)). Усі функції – періодичні, синус, косинус, секанс та косеканс мають період 2 p, а тангенс та котангенс – p:

sin (α + 2 ) = sin α cos (α + 2 ) = cos α
tg (α + ) = tg α ctg (α + ) = ctg α
sec (α + 2 ) = sec α cosec (α+2 ) = cosec α

Періодичність синуса та косинуса випливає з того, що всі точки P a + 2 kp, де k= 0, ±1, ±2,…, збігаються, а періодичність тангенсу та котангенсу – з того, що точки P a + kpпо черзі потрапляють у дві діаметрально протилежні точкикола, що дають ту саму точку на осі тангенсів.

Основні властивості тригонометричних функцій можуть бути зведені до таблиці:

Функція Область визначення Безліч значень Парність Ділянки монотонності ( k= 0, ± 1, ± 2, ...)
sin x -Ґ x Ґ [–1, +1] непарна зростає при xПро ((4 k – 1) p /2, (4k + 1) p/2), зменшується при xПро ((4 k + 1) p /2, (4k + 3) p/2)
cos x -Ґ x Ґ [–1, +1] парна Зростає за xО ((2 k – 1) p, 2kp), зменшується при xПро (2 kp, (2k + 1) p)
tg x xp/2 + p k (–Ґ , +Ґ ) непарна зростає при xО ((2 k – 1) p /2, (2k + 1) p /2)
ctg x xp k (–Ґ , +Ґ ) непарна спадає при xПро ( kp, (k + 1) p)
sec x xp/2 + p k (–Ґ , –1] І [+1, +Ґ ) парна Зростає за xПро (2 kp, (2k + 1) p), зменшується при xО ((2 k- 1) p , 2 kp)
cosec x xp k (–Ґ , –1] І [+1, +Ґ ) непарна зростає при xПро ((4 k + 1) p /2, (4k + 3) p/2), зменшується при xПро ((4 k – 1) p /2, (4k + 1) p /2)

Формули наведення.

За цими формулами значення тригонометричної функції аргументу a де p/2 a p можна привести до значення функції аргументу a , де 0 a p /2, як тієї ж, так і додаткової до неї.

Аргумент b - a + a p- a p+ a + a + a 2p- a
sin b cos a cos a sin a -sin a -cos a -cos a -sin a
cos b sin a -sin a -cos a -cos a -sin a sin a cos a

Тому в таблицях тригонометричних функцій даються значення лише для гострих кутів, причому достатньо обмежитися, наприклад, синусом та тангенсом. У таблиці дано лише найбільш уживані формули для синуса та косинуса. З них легко отримати формули для тангенсу та котангенсу. При наведенні функції від аргументу виду kp/2 ± a де k– ціле число, до функції аргументу a :

1) назва функції зберігається, якщо kпарне і змінюється на «додаткове», якщо kнепарне;

2) знак у правій частині збігається зі знаком наведеної функції у точці kp/2 ± a якщо кут a гострий.

Наприклад, при наведенні ctg (a – p/2) переконуємося, що a – p/2 при 0 a p /2 лежить у четвертому квадранті, де котангенс негативний, і, за правилом 1, змінюємо назву функції: ctg (a – p/2) = -tg a.

Формули додавання.

Формули кратних кутів.

Ці формули виводяться прямо з формул додавання:

sin 2a = 2 sin a cos a;

cos 2a = cos 2 a - sin 2 a = 2 cos 2 a - 1 = 1 - 2 sin 2 a;

sin 3a = 3 sin a – 4 sin 3 a;

cos 3a = 4 cos 3 a - 3 cos a;

Формулу для cos 3a використовував Франсуа Вієт при вирішенні кубічного рівняння. Він же вперше знайшов вираз для cos n a і sin n a , які пізніше були отримані простим шляхоміз формули Муавра.

Якщо у формулах подвійного аргументузамінити a на a /2, їх можна перетворити на формули половинних кутів:

Формули універсальної підстановки.

Використовуючи ці формули, вираз, що включає різні тригонометричні функції від одного і того ж аргументу, можна переписати як раціональний виразвід однієї функції tg (a /2), це буває корисно при вирішенні деяких рівнянь:

Формули перетворення сум на твори та творів на суми.

До появи комп'ютерів ці формули використовувалися спрощення обчислень. Розрахунки проводилися з допомогою логарифмічних таблиць, і потім – логарифмічної лінійки, т.к. логарифми найкраще пристосовані для множення чисел, тому всі вихідні вирази призводили до вигляду, зручному логарифмування, тобто. до творів, наприклад:

2 sin a sin b = cos ( a – b) - cos ( a + b);

2 cos a cos b= cos ( a – b) + cos ( a + b);

2 sin a cos b= sin ( a – b) + sin ( a + b).

Формули для функцій тангенсу та котангенсу можна отримати з вищенаведених.

Формули зниження ступеня.

З формул кратного аргументу виводяться формули:

sin 2 a = (1 - cos 2a) / 2; cos 2 a = (1 + cos 2a) / 2;
sin 3 a = (3 sin a - sin 3a) / 4; cos 3 a = (3 cos a + cos 3 a)/4.

За допомогою цих формул тригонометричні рівнянняможна приводити до рівнянь нижчих ступенів. Так само можна вивести і формули зниження для більш високих ступенівсинуса та косинуса.

Похідні та інтеграли тригонометричних функцій
(sin x)` = cos x; (cos x)` = -sin x;
(tg x)` = ; (ctg x)` = – ;
т sin x dx= -cos x + C; т cos x dx= sin x + C;
т tg x dx= -ln | cos x| + C; т ctg x dx = ln | sin x| + C;

Кожна тригонометрична функція у кожній точці своєї області визначення безперервна і нескінченно диференційована. Причому і похідні тригонометричних функцій є тригонометричними функціямиа при інтегруванні виходять так само тригонометричні функції або їх логарифми. Інтеграли від раціональних комбінацій тригонометричних функцій є елементарними функціями.

Подання тригонометричних функцій у вигляді статечних рядів та нескінченних творів.

Всі тригонометричні функції допускають розкладання в статечні ряди. При цьому функції sin x b cos xвидаються рядами. що сходяться для всіх значень x:

Ці ряди можна використовувати для отримання наближених виразів sin xта cos xпри малих значеннях x:

за | x| p/2;

за 0 x| p

(B n – числа Бернуллі).

Функції sin xта cos xможуть бути представлені у вигляді нескінченних творів:

Тригонометрична система 1, cos x, sin x, cos 2 x, sin 2 x, ¼, cos nx, sin nx, ¼, утворює на відрізку [– p, p] ортогональну системуфункцій, що дає можливість представлення функцій як тригонометричних рядів.

визначаються як аналітичні продовження відповідних тригонометричних функцій дійсного аргументу комплексну площину. Так, sin zта cos zможуть бути визначені за допомогою рядів для sin xта cos x, якщо замість xпоставити z:

Ці ряди сходяться по всій площині, тому sin zта cos z- Цілі функції.

Тангенс та котангенс визначаються формулами:

Функції tg zта ctg z- Мероморфні функції. Полюси tg zта sec z- Прості (1-го порядку) і знаходяться в точках z = p/2 + p n,полюси ctg zта cosec z– також прості та знаходяться у точках z = p n, n = 0, ±1, ±2,…

Усі формули, справедливі для тригонометричних функцій дійсного аргументу, справедливі й у комплексного. Зокрема,

sin (– z) = -sin z,

cos (– z) = cos z,

tg (- z) = -tg z,

ctg (- z) = -ctg z,

тобто. парність та непарність зберігаються. Зберігаються і формули

sin ( z + 2p) = sin z, (z + 2p) = cos z, (z + p) = tg z, (z + p) = ctg z,

тобто. періодичність також зберігається, причому періоди такі самі, як і для функцій дійсного аргументу.

Тригонометричні функції можуть бути виражені через показову функцію від суто уявного аргументу:

Назад, e izвиражається через cos zі sin zза формулою:

e iz= cos z + i sin z

Ці формули звуться формул Ейлера. Леонард Ейлер вивів їх у 1743 році.

Тригонометричні функції також можна виразити через гіперболічні функції:

z = –i sh iz, cos z = ch iz, z = -i th iz.

де sh, ch та th – гіперболічні синус, косинус та тангенс.

Тригонометричні функції комплексного аргументу z = x + iy, де xі yдійсні числа, можна виразити через тригонометричні та гіперболічні функції дійсних аргументів, наприклад:

sin ( x + iy) = sin x ch y + i cos x sh y;

cos ( x + iy) = cos x ch y + i sin x sh y.

Синус та косинус комплексного аргументу можуть приймати дійсні значення, що перевищують 1 за абсолютною величиною. Наприклад:

Якщо невідомий кут входить у рівняння як аргумент тригонометричних функцій, то рівняння називається тригонометричним. Такі рівняння настільки часто зустрічаються, що їх методи рішення дуже докладно та ретельно розроблені. Здопомогою різних прийоміві формул тригонометричні рівняння зводять до рівнянь виду f(x)= a, де f- Якась із найпростіших тригонометричних функцій: синус, косинус, тангенс або котангенс. Потім виражають аргумент xцієї функції через її відоме значення а.

Оскільки тригонометричні функції періодичні, тому самому аз області значень відповідає нескінченно багато значень аргументу, і рішення рівняння не можна записати у вигляді однієї функції від а. Тому в області визначення кожної з основних тригонометричних функцій виділяють ділянку, на якій вона набуває всіх своїх значень, причому кожне тільки один раз, і знаходять функцію, зворотну їй на цій ділянці. Такі функції позначають, приписуючи приставку АГС (дуга) до назви вихідної функції, і називають зворотними тригонометричними функціями чи просто аркфункціями.

Зворотні тригонометричні функції.

Для sin х, cos х, tg хта ctg хможна визначити зворотні функції. Вони позначаються відповідно arcsin х(читається «арксинус x»), arcos x, arctg xта arcctg x. За визначенням, arcsin хє така кількість у,що

sin у = х.

Аналогічно для інших зворотних тригонометричних функцій. Але таке визначення страждає на деяку неточність.

Якщо відобразити sin х, cos х, tg хта ctg хщодо бісектриси першого та третього квадрантів координатної площини, то функції через їх періодичність стають неоднозначними: тому самому синусу (косинусу, тангенсу, котангенсу) відповідає нескінченна кількістькутів.

Щоб позбутися неоднозначності, з графіка кожної тригонометричної функції виділяється ділянка кривої шириною p, при цьому потрібно, щоб між аргументом та значенням функції дотримувалося взаємно однозначне відповідність. Вибираються ділянки біля початку координат. Для синуса в як «інтервал взаємної однозначності» береться відрізок [– p/2, p/2], на якому синус монотонно зростає від –1 до 1, для косинуса – відрізок , для тангенсу та котангенсу відповідно інтервали (– p/2, p/2) та (0, p). Кожна крива на інтервалі відбивається щодо бісектриси і тепер можна визначити зворотні тригонометричні функції. Наприклад, нехай задано значення аргументу x 0таке, що 0 Ј x 0 Ј 1. Тоді значенням функції y 0 = arcsin x 0 буде єдине значення у 0 , таке, що – p/2 Ј у 0 Ј p/2 та x 0 = sin y 0 .

Таким чином, арксинус – це функція агсsin а, визначена на відрізку [–1, 1] і дорівнює кожному атакому значенню a , – p/2 a p /2, що sin a = а.Її дуже зручно представляти за допомогою одиничного кола (рис. 15). При | а| 1 на колі є дві точки з ординатою a, симетричні щодо осі у.Однією з них відповідає кут a= arcsin а, а інший – кут p – а. Зврахуванням періодичності синуса рішення рівняння sin x= азаписується наступним чином:

х =(–1)n arcsin a + 2p n,

де n= 0, ±1, ±2,...

Також вирішуються інші найпростіші тригонометричні рівняння:

cos x = a, –1 =a= 1;

x =±arcos a + 2p n,

де п= 0, ±1, ±2,... (рис. 16);

tg х = a;

x= arctg a + p n,

де п = 0, ±1, ±2,... (рис. 17);

ctg х= а;

х= arcctg a + p n,

де п = 0, ±1, ±2,... (рис. 18).

Основні властивості зворотних тригонометричних функцій:

arcsin х(Рис. 19): область визначення - відрізок [-1, 1]; область значень – [– p/2, p/2], монотонно зростаюча функція;

arccos х(рис. 20): область визначення - відрізок [-1, 1]; область значень -; монотонно спадаюча функція;

arctg х(Рис. 21): область визначення - всі дійсні числа; область значень – інтервал (– p/2, p/2); монотонно зростаюча функція; прямі у= –p/2 та у = p /2 -горизонтальні асимптоти;


arcctg х(Мал. 22): область визначення - всі дійсні числа; область значень – інтервал (0, p); монотонно спадаюча функція; прямі y= 0 і у = p- Горизонтальні асимптоти.

,

Для будь-кого z = x + iy, де xі y– дійсні числа, що мають місце нерівності

½| e\e ye -y| ≤|sin z|≤½( e y +e-y),

½| e ye -y| ≤|cos z|≤½( e y +e -y),

з яких при y® Ґ витікають асимптотичні формули (рівномірно відносно x)

|sin z| » 1/2 e |y| ,

|cos z| » 1/2 e |y| .

Тригонометричні функції виникли вперше у зв'язку з дослідженнями в астрономії та геометрії. Співвідношення відрізків у трикутнику та кола, що є по суті тригонометричними функціями, зустрічаються вже у 3 ст. до зв. е. у роботах математиків Стародавньої Греції Евкліда , Архімеда , Аполлонія Пергського та інших, проте ці співвідношення були самостійним об'єктом дослідження, отже тригонометричні функції як такі ними не вивчалися. Вони розглядалися спочатку як відрізки і в такій формі застосовувалися Аристархом (кінець 4 – 2-а половина 3 ст. до н. е.), Гіппархом (2 ст. до н. е.), Менелаєм (1 ст. н. е.). ) і Птолемеєм (2 ст н. е.) при вирішенні сферичних трикутників. Птолемей склав першу таблицю хорд для гострих кутів через 30" з точністю до 10 -6. Це була перша таблиця синусів. Як відношення функція sin a зустрічається вже в Аріабхати (кінець 5 ст). Функції tg a і ctg a зустрічаються у аль-Баттані (2-я половина 9 – початок 10 ст.) і Абуль-Вефа (10 ст), який використовує також sec a і cosec a . Аріабхата вже знав формулу (sin 2 a + cos 2 a ) = 1, а також формули sinта cos половинного кута, за допомогою яких побудував таблиці синусів для кутів через 3°45"; виходячи з відомих значеньтригонометричних функцій для найпростіших аргументів Бхаскара (12 ст) дав спосіб побудови таблиць через 1 за допомогою формул додавання. Формули перетворення суми та різниці тригонометричних функцій різних аргументів у твір виводилися Регіомонтаном (15 ст.) та Дж. Непером у зв'язку з винаходом останнім логарифмом (1614). Регіомонтан дав таблицю значень синуса через 1". Розкладання тригонометричних функцій в статечні ряди отримано І. Ньютоном (1669). сучасну формутеорію тригонометричних функцій навів Л. Ейлер (18 ст). Йому належать їх визначення для дійсного та комплексного аргументів, прийнята нині символіка, встановлення зв'язку з показовою функцієюта ортогональності системи синусів та косинусів.

Поняття синуса (), косинуса (), тангенса (), котангенса () нерозривно пов'язані з поняттям кута. Щоб добре розібратися в цих, на перший погляд, складних поняттях(які викликають у багатьох школярів стан жаху), і переконатися, що «не такий страшний чорт, як його малюють», почнемо від початку і розберемося в понятті кута.

Поняття кута: радіан, градус

Давай подивимося малюнку. Вектор "повернувся" щодо точки на певну величину. Так ось мірою цього повороту щодо початкового положення і виступатиме кут.

Що ще необхідно знати про поняття кута? Ну, звичайно ж, одиниці виміру кута!

Кут, як і геометрії, і у тригонометрії, може вимірюватися у градусах і радіанах.

Кутом в (один градус) називають центральний кутв колі, що спирається на кругову дугу, що дорівнює частині кола. Таким чином, все коло складається з «шматочків» кругових дуг, або кут, що описується колом, дорівнює.

Тобто малюнку вище зображений кут, рівний, тобто цей кут спирається на кругову дугу розміром довжини кола.

Кутом у радіан називають центральний кут в колі, що спирається на кругову дугу, довжина якої дорівнює радіусу кола. Ну що, розібрався? Якщо ні, то давай розумітися на малюнку.

Отже, на малюнку зображено кут, рівний радіану, тобто цей кут спирається на кругову дугу, довжина якої дорівнює радіусу кола (довжина дорівнює довжині або радіус дорівнює довжинідуги). Таким чином, довжина дуги обчислюється за такою формулою:

Де – центральний кут у радіанах.

Ну що, можеш, знаючи це, відповісти, скільки радіан містить кут, який описує коло? Так, для цього треба згадати формулу довжини кола. Ось вона:

Ну ось, тепер співвіднесемо ці дві формули і отримаємо, що кут, що описується коло дорівнює. Тобто, співвіднісши величину у градусах та радіанах, отримуємо, що. Відповідно, . Як можна побачити, на відміну «градусів», слово «радіан» опускається, оскільки одиниця виміру зазвичай зрозуміла з контексту.

А скільки радіан складають? Все правильно!

Вловив? Тоді вперед закріплювати:

Виникли проблеми? Тоді дивись відповіді:

Прямокутний трикутник: синус, косинус, тангенс, котангенс кута

Отже, з поняттям кута розібралися. А що ж таке синус, косинус, тангенс, котангенс кута? Давай розбиратись. Для цього нам допоможе прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, що лежить навпроти прямого кута (у прикладі це сторона); катети - це дві сторони, що залишилися і (ті, що прилягають до прямому куту), причому, якщо розглядати катети щодо кута, то катет – це прилеглий катет, а катет – протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику.

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику.

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику.

Котангенс кута- Це ставлення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику.

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Чи не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута. За визначенням, з трикутника: , але ми можемо обчислити косинус кута і з трикутника: . Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника, зображеного нижче малюнку, знайдемо.

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута.

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з рівним радіусом. Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, дане колопобудована у декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положеннярадіус-вектора зафіксовано вздовж позитивного спрямування осі (у нашому прикладі, це радіус).

Кожній точці кола відповідають два числа: координата по осі та координата по осі. А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник. Він прямокутний, оскільки є перпендикуляром до осі.

Чому дорівнює трикутнику? Все правильно. Крім того, нам відомо, що - це радіус одиничного кола, а значить, . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

А чому дорівнює трикутнику? Ну звичайно,! Підставимо значення радіуса в цю формулу та отримаємо:

Так, а можеш сказати, які координати має точка, що належить колу? Ну що, аж ніяк? А якщо збагнути, що й – це просто числа? Який координаті відповідає? Ну, звісно, ​​координати! А якій координаті відповідає? Все правильно, координаті! Таким чином, точка.

А чому тоді рівні? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що, а.

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося у цьому прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник: кут (як прилеглий до кута). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

Ну от, як бачиш, значення синуса кута так само відповідає координаті; значення косинуса кута – координаті; а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове становище радіус-вектора - вздовж позитивного спрямування осі. Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оберт радіус-вектора по колу становить або. А чи можна повернути радіус-вектор на чи на? Ну звісно, ​​можна! У першому випадку, таким чином, радіус-вектор зробить один повний обороті зупиниться у положенні або.

У другому випадку, тобто радіус-вектор зробить три повні обороти і зупиниться в положенні або.

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на або (де - будь-яке ціле число), відповідають одному положенню радіус-вектора.

Нижче на малюнку зображено кут. Це зображення відповідає куту тощо. Цей список можна продовжити до безкінечності. Всі ці кути можна записати загальною формулою або (де – будь-яке ціле число)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку відповідає точка з координатами, отже:

Немає;

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам відповідають точки з координатами, відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

Не існує

Не існує

Не існує

Не існує

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

А ось значення тригонометричних функцій кутів і, наведених нижче в таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута (), а також значення тангенсу кута. Знаючи ці значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілочок, тобто:

Знаючи це можна відновити значення. Чисельник « » буде відповідати, а знаменник « » відповідає. Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту?

Ну, звісно, ​​можна! Давай виведемо загальну формулудля знаходження координат точки.

Ось, наприклад, перед нами таке коло:

Нам дано, що точка – центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, одержаної поворотом точки на градусів.

Як очевидно з малюнка, координаті точки відповідає довжина відрізка. Довжина відрізка відповідає координаті центру кола, тобто дорівнює. Довжину відрізка можна виразити, використовуючи визначення косинуса:

Тоді маємо, що для точки координат.

За тією ж логікою знаходимо значення координати для точки. Таким чином,

Отже, у загальному виглядікоординати точок визначаються за формулами:

Координати центру кола,

Радіус кола,

Кут повороту вектор радіуса.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, так як координати центру дорівнюють нулю, а радіус дорівнює одиниці:

Ну що, спробуємо ці формули на смак, повправляючись у знаходженні крапок на колі?

1. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

2. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

3. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

4. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

5. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

Виникли проблеми у знаходженні координот точки на колі?

Розв'яжи ці п'ять прикладів (або добре розберись у рішенні) і ти навчишся їх знаходити!

1.

Можна зауважити, що. Адже ми знаємо, що відповідає повному обороту початкової точки. Таким чином, шукана точкабуде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

2. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Ми знаємо, що відповідає двом повним оборотам початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

Синус та косинус – це табличні значення. Згадуємо їх значення та отримуємо:

Таким чином, потрібна точка має координати.

3. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Зобразимо приклад на малюнку:

Радіус утворює з віссю кути, рівні та. Знаючи, що табличні значення косинуса та синуса рівні, і визначивши, що косинус тут набуває негативне значення, А синус позитивне, маємо:

Детальніше подібні прикладирозбираються щодо формул приведення тригонометричних функцій у темі .

Таким чином, потрібна точка має координати.

4.

Кут повороту радіуса вектора (за умовою)

Для визначення відповідних знаків синуса та косинуса побудуємо одиничне коло та кут:

Як можна побачити, значення, тобто позитивно, а значення, тобто – негативно. Знаючи табличні значення відповідних тригонометричних функцій, отримуємо, що:

Підставимо отримані значення в нашу формулу і знайдемо координати:

Таким чином, потрібна точка має координати.

5. Для вирішення цього завдання скористаємося формулами у загальному вигляді, де

Координати центру кола (у нашому прикладі,

Радіус кола (за умовою,)

Кут повороту векторного радіуса (за умовою,).

Підставимо всі значення у формулу та отримаємо:

та - табличні значення. Згадуємо та підставляємо їх у формулу:

Таким чином, потрібна точка має координати.

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Синус кута - це відношення протилежного (далекого) катета до гіпотенузи.

Косинус кута – це відношення прилеглого (близького) катета до гіпотенузи.

Тангенс кута - це відношення протилежного (далекого) катета до прилеглого (близького).

Котангенс кута - це відношення прилеглого (близького) катета до протилежного (далекого).

Приклади:

\(\cos(⁡30^°)=\)\(\frac(\sqrt(3))(2)\)
\(\cos⁡\)\(\frac(π)(3)\) \(=\)\(\frac(1)(2)\)
\(\cos⁡2=-0,416…\)

Аргумент та значення

Косинус гострого кута

Косинус гострого кутаможна визначити за допомогою прямокутного трикутника – він дорівнює відношенню прилеглого катета до гіпотенузи.

приклад :

1) Нехай дано кут і потрібно визначити косинус цього кута.


2) Добудуємо на цьому куті будь-який прямокутний трикутник.


3) Вимірявши, необхідні сторони, можемо обчислити косинус.


Косинус числа

Числове коло дозволяє визначити косинус будь-якого числа, але зазвичай знаходять косинус чисел якось пов'язаних з : \(\frac(π)(2)\) , \(\frac(3π)(4)\) , \(-2π\ ).

Наприклад, для числа \(\frac(π)(6)\) - косинус дорівнюватиме \(\frac(\sqrt(3))(2)\) . А для числа \(-\)\(\frac(3π)(4)\) він дорівнюватиме \(-\)\(\frac(\sqrt(2))(2)\) (приблизно \(-0 ,71 \)).


Косинус для інших часто зустрічаються у практиці чисел дивись у .

Значення косинуса завжди лежить у межах від (-1) до (1). При цьому обчислений косинус може бути абсолютно будь-якого кута і числа.

Косинус будь-якого кута

Завдяки числового коламожна визначати косинус як гострого кута, а й тупого, негативного, і навіть більшого, ніж (360°) (повний оборот). Як це робити - простіше один раз побачити, ніж (100) раз почути, тому дивіться картинку.


Тепер пояснення: нехай потрібно визначити косинус кута КОАз градусною міроюв (150 °). Поєднуємо точку Проз центром кола, а бік ОК- З віссю \ (x \). Після цього відкладаємо (150 °) проти годинникової стрілки. Тоді ордината точки Апокаже нам косинус цього кута.

Якщо ж нас цікавить кут із градусним заходом, наприклад, в \(-60°\) (кут КОВ), робимо також, але (60 ° \) відкладаємо за годинниковою стрілкою.


І, нарешті, кут більший (360°) (кут КІС) - все аналогічно тупому, тільки пройшовши за годинниковою стрілкою повний оборот, вирушаємо на друге коло і «добираємо нестачу градусів». Саме в нашому випадку кут (405 °) відкладений як (360 ° + 45 °).


Нескладно здогадатися, що для відкладання кута, наприклад, в \(960°\), треба зробити вже два обороти (\(360°+360°+240°\)), а для кута в \(2640°\) - цілих сім.

Як могли замінити, і косинус числа, і косинус довільного кута визначається практично однаково. Змінюються лише спосіб знаходження точки на колі.

Знаки косинуса по чвертях

За допомогою осі косінусів (тобто осі абсцис, виділеної на малюнку червоним кольором) легко визначити знаки косінусів по числовому (тригонометричному) колу:

Там, де значення на осі від (0) до (1), косинус матиме знак плюс (I і IV чверті - зелена область),
- там, де значення на осі від (0) до (-1), косинус матиме знак мінус (II і III чверті - фіолетова область).


Зв'язок з іншими тригонометричними функціями:

- того ж кута (або числа): основним тригонометричним тотожністю\(\sin^2⁡x+\cos^2⁡x=1\)
- того ж кута (або числа): формулою \(1+tg^2⁡x=\)\(\frac(1)(\cos^2⁡x)\)
- і синусом того ж кута (або числа): формулою \(ctgx=\)\(\frac(\cos(x))(\sin⁡x)\)
Інші найчастіше застосовувані формули дивись.

Розв'язання рівняння \(\cos⁡x=a\)

Рішення рівняння \(\cos⁡x=a\), де \(a\) - число не більше \(1\) і не менше \(-1\) тобто. \(a∈[-1;1]\):

\(\cos ⁡x=a\) \(⇔\) \(x=±\arccos⁡a+2πk, k∈Z\)


Якщо \(a>1\) або \(a<-1\), то решений у уравнения нет.

приклад . Розв'яжіть тригонометричне рівняння \(\cos⁡x=\)\(\frac(1)(2)\).
Рішення:

Розв'яжемо рівняння за допомогою числового кола. Для цього:
1) Побудуємо осі.
2) Побудуємо коло.
3) На осі косінусів (осі \(y\)) відзначимо точку \(\frac(1)(2)\) .
4) Проведемо перпендикуляр до осі косінусів через цю точку.
5) Зазначимо точки перетину перпендикуляра та кола.
6)Підпишемо значення цих точок: \(\frac(π)(3)\) ,\(-\)\(\frac(π)(3)\) .
7) Запишемо всі значення, що відповідають цим точкам за допомогою формули \(x=t+2πk\), \(k∈Z\):
\(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\);


Відповідь: \(x=±\frac(π)(3)+2πk\) \(k∈Z\)

Функція \(y=\cos(x)\)

Якщо відкласти по осі (x) кути в радіанах, а по осі (y) - відповідні цим кутам значення косинуса, ми отримаємо наступний графік:


Графік даної називається і має наступні властивості:

Область визначення – будь-яке значення ікса: \(D(\cos(⁡x))=R\)
- область значень – від \(-1\) до \(1\) включно: \(E(\cos(x))=[-1;1]\)
- парна: \(\cos⁡(-x)=\cos(x)\)
- періодична з періодом \(2π\): \(\cos⁡(x+2π)=\cos(x)\)
- Точки перетину з осями координат:
вісь абсцис: \((\)\(\frac(π)(2)\) \(+πn\),\(;0)\), де \(n ϵ Z\)
вісь ординат: \((0;1)\)
- Проміжки знакостійності:
функція позитивна на інтервалах: \((-\)\(\frac(π)(2)\) \(+2πn;\) \(\frac(π)(2)\) \(+2πn)\), де \(n Z Z)
функція негативна на інтервалах: \((\)\(\frac(π)(2)\) \(+2πn;\)\(\frac(3π)(2)\) \(+2πn)\), де \(n Z Z)
- Проміжки зростання та спадання:
функція зростає на інтервалах: \((π+2πn;2π+2πn)\), де \(n ϵ Z\)
функція зменшується на інтервалах: \((2πn;π+2πn)\), де \(n ϵ Z\)
- максимуми та мінімуми функції:
функція має максимальне значення \(y=1\) у точках \(x=2πn\), де \(n ϵ Z\)
функція має мінімальне значення \(y=-1\) в точках \(x=π+2πn\), де \(n Z Z).