Çevrimiçi çizgilerle sınırlanmış düz bir şeklin kütlesini bulun. Çizgilerle sınırlanmış bir şeklin alanını hesaplayın

Ayrıştırmayla ilgili önceki bölümde geometrik anlamı belirli integral alanı hesaplamak için bir dizi formül aldık kavisli yamuk:

Yandex.RTB R-A-339285-1

[ a ; aralığında sürekli ve negatif olmayan bir fonksiyon için S (G) = ∫ a b f (x) d x y = f (x) B ] ,

[ a ; aralığında sürekli ve pozitif olmayan bir fonksiyon için S (G) = - ∫ a b f (x) d x y = f (x) B ] .

Bu formüller aşağıdaki hususların çözümü için geçerlidir: basit görevler. Gerçekte çoğu zaman daha karmaşık rakamlarla çalışmak zorunda kalacağız. Bu bağlamda, bu bölümü, açık biçimdeki işlevlerle sınırlı olan rakamların alanını hesaplamak için algoritmaların analizine ayıracağız; y = f(x) veya x = g(y) gibi.

Teorem

y = f 1 (x) ve y = f 2 (x) fonksiyonlarının [ a ; b ] ve f 1 (x) ≤ f 2 (x), [ a ; B ] . Daha sonra G şeklinin alanını hesaplama formülü, çizgilerle sınırlı x = a, x = b, y = f 1 (x) ve y = f 2 (x), S (G) = ∫ a b f 2 (x) - f 1 (x) d x biçimine sahip olacaktır.

Benzer bir formül, y = c, y = d, x = g 1 (y) ve x = g 2 (y) çizgileriyle sınırlanan bir şeklin alanı için geçerli olacaktır: S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Kanıt

Formülün geçerli olacağı üç duruma bakalım.

İlk durumda, alanın toplamsallığı özelliği dikkate alındığında, orijinal G şeklinin ve eğrisel yamuk G1'in alanlarının toplamı G2 şeklinin alanına eşittir. Bu şu anlama geliyor

Bu nedenle, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Son geçişi belirli integralin üçüncü özelliğini kullanarak yapabiliriz.

İkinci durumda eşitlik doğrudur: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Grafik gösterimi şöyle görünecektir:

Her iki fonksiyon da pozitif değilse şunu elde ederiz: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx . Grafik gösterimi şöyle görünecektir:

Düşünmeye devam edelim genel durum y = f 1 (x) ve y = f 2 (x) O x ekseniyle kesiştiğinde.

Kesişme noktalarını x i, i = 1, 2, olarak gösteririz. . . , n - 1 . Bu noktalar [a; b ] n parçaya x i - 1; x ben, ben = 1, 2, . . . , n, burada α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Buradan,

S (G) = ∑ ben = 1 n S (G ben) = ∑ ben = 1 n ∫ x ben x ben f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Son geçişi belirli integralin beşinci özelliğini kullanarak yapabiliriz.

Genel durumu grafik üzerinde gösterelim.

S (G) = ∫ a b f 2 (x) - f 1 (x) d x formülü kanıtlanmış sayılabilir.

Şimdi y = f (x) ve x = g (y) doğrularıyla sınırlanan şekillerin alanlarının hesaplanmasına ilişkin örnekleri analiz etmeye geçelim.

Örneklerden herhangi birini incelemeye bir grafik oluşturarak başlayacağız. Resim temsil etmemize izin verecek karmaşık figürler daha fazlası nasıl birleştirilir basit rakamlar. Üzerinde grafik ve şekil oluşturmak sizin için zorsa, temel temel fonksiyonlar, fonksiyonların grafiklerinin geometrik dönüşümü ve bir fonksiyonu incelerken grafiklerin oluşturulması ile ilgili bölümü inceleyebilirsiniz.

Örnek 1

Şeklin y = - x 2 + 6 x - 5 parabolü ve y = - 1 3 x - 1 2, x = 1, x = 4 düz çizgileriyle sınırlı olan alanını belirlemek gerekir.

Çözüm

Grafiğin üzerindeki çizgileri çizelim Kartezyen sistem koordinatlar

Segmentte [ 1 ; 4 ] y = - x 2 + 6 x - 5 parabolünün grafiği y = - 1 3 x - 1 2 düz çizgisinin üzerinde yer alır. Bu bağlamda, cevabı elde etmek için daha önce elde edilen formülün yanı sıra Newton-Leibniz formülünü kullanarak belirli integrali hesaplama yöntemini kullanıyoruz:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Cevap: S(G) = 13

Daha karmaşık bir örneğe bakalım.

Örnek 2

Şeklin y = x + 2, y = x, x = 7 çizgileriyle sınırlı olan alanını hesaplamak gerekir.

Çözüm

İÇİNDE bu durumda x eksenine paralel tek bir düz çizgimiz var. Bu x = 7'dir. Bu da entegrasyonun ikinci sınırını kendimiz bulmamızı gerektiriyor.

Bir grafik oluşturalım ve problem ifadesinde verilen çizgileri çizelim.

Grafiği gözümüzün önünde tutarak, entegrasyonun alt sınırının, y = x düz çizgisi ile y = x + 2 yarı parabolünün grafiğinin kesişme noktasının apsisi olacağını kolayca belirleyebiliriz. Apsis'i bulmak için eşitlikleri kullanırız:

y = x + 2 Ö DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ Ö DZ x 2 = 1 - 9 2 = - 1 ∉ Ö DZ

Kesişme noktasının apsisinin x = 2 olduğu ortaya çıkıyor.

Şu gerçeğe dikkatinizi çekiyoruz: genel örnekçizimde y = x + 2, y = x doğruları (2; 2) noktasında kesiştiğinden bu tür detaylı hesaplamalar gereksiz görünebilir. Bunu buraya getirdik detaylı çözüm sadece daha fazlası olduğu için zor vakalarçözüm bu kadar açık olmayabilir. Bu, doğruların kesişim koordinatlarını analitik olarak hesaplamanın her zaman daha iyi olduğu anlamına gelir.

[ 2 ; 7] y = x fonksiyonunun grafiği, y = x + 2 fonksiyonunun grafiğinin üzerinde yer alır. Alanı hesaplamak için formülü uygulayalım:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Cevap: S(G) = 59 6

Örnek 3

y = 1 x ve y = - x 2 + 4 x - 2 fonksiyonlarının grafikleriyle sınırlı olan şeklin alanını hesaplamak gerekir.

Çözüm

Doğruları grafik üzerinde işaretleyelim.

Entegrasyonun sınırlarını tanımlayalım. Bunu yapmak için 1 x ve - x 2 + 4 x - 2 ifadelerini eşitleyerek doğruların kesişme noktalarının koordinatlarını belirliyoruz. X'in sıfır olmaması koşuluyla, 1 x = - x 2 + 4 x - 2 eşitliği, tamsayı katsayılı üçüncü derece denklem - x 3 + 4 x 2 - 2 x - 1 = 0'a eşdeğer olur. Bu tür denklemlerin çözümüne yönelik algoritmaya ilişkin hafızanızı tazelemek için “Kübik denklemlerin çözülmesi” bölümüne bakabiliriz.

Bu denklemin kökü x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0'dır.

- x 3 + 4 x 2 - 2 x - 1 ifadesini binom x - 1'e bölerek şunu elde ederiz: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Kalan kökleri x 2 - 3 x - 1 = 0 denkleminden bulabiliriz:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

x ∈ 1 aralığını bulduk; 3 + 13 2, burada G rakamı mavi çizginin üstünde ve kırmızı çizginin altındadır. Bu, şeklin alanını belirlememize yardımcı olur:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Cevap: S (G) = 7 + 13 3 - ln 3 + 13 2

Örnek 4

Şeklin y = x 3, y = - log 2 x + 1 eğrileri ve apsis ekseni ile sınırlanan alanını hesaplamak gerekir.

Çözüm

Grafikteki tüm doğruları çizelim. y = - log 2 x + 1 fonksiyonunun grafiğini, x eksenine göre simetrik olarak konumlandırıp bir birim yukarı hareket ettirirsek, y = log 2 x grafiğinden elde edebiliriz. X ekseninin denklemi y = 0'dır.

Doğruların kesişme noktalarını işaretleyelim.

Şekilden görüldüğü gibi y = x 3 ve y = 0 fonksiyonlarının grafikleri (0; 0) noktasında kesişmektedir. Bunun nedeni x = 0'ın tek olmasıdır. gerçek kök denklem x3 = 0.

Denklemin tek kökü x = 2'dir - log 2 x + 1 = 0, dolayısıyla y = - log 2 x + 1 ve y = 0 fonksiyonlarının grafikleri (2; 0) noktasında kesişir.

x = 1 denklemin tek köküdür x 3 = - log 2 x + 1 . Bu bakımdan y = x 3 ve y = - log 2 x + 1 fonksiyonlarının grafikleri (1; 1) noktasında kesişmektedir. Son ifade açık olmayabilir, ancak x 3 = - log 2 x + 1 denkleminin birden fazla kökü olamaz, çünkü y = x 3 fonksiyonu tam olarak artan bir fonksiyondur ve y = - log 2 x + 1 fonksiyonu ise kesin olarak azalıyor.

Diğer çözüm birkaç seçeneği içerir.

Seçenek #1

G şeklini, x ekseninin üzerinde yer alan iki eğrisel yamuğun toplamı olarak düşünebiliriz; bunlardan ilki aşağıda yer almaktadır. orta hat x ∈ 0 segmentinde; 1 ve ikincisi x ∈ 1 segmentindeki kırmızı çizginin altındadır; 2. Bu, alanın S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x'e eşit olacağı anlamına gelir.

Seçenek No.2

Şekil G, iki şeklin farkı olarak temsil edilebilir; bunlardan ilki, x ekseninin üzerinde ve x ∈ 0 parçası üzerindeki mavi çizginin altında yer alır; 2 ve ikincisi x ∈ 1 segmentindeki kırmızı ve mavi çizgiler arasında; 2. Bu, alanı şu şekilde bulmamızı sağlar:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

Bu durumda alanı bulmak için S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y formundaki bir formülü kullanmanız gerekecektir. Aslında şekli sınırlayan çizgiler y argümanının fonksiyonları olarak temsil edilebilir.

y = x 3 ve - log 2 x + 1 denklemlerini x'e göre çözelim:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Gerekli alanı elde ediyoruz:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Cevap: S (G) = 1 ln 2 - 1 4

Örnek 5

Şeklin y = x, y = 2 3 x - 3, y = - 1 2 x + 4 çizgileriyle sınırlanan alanını hesaplamak gerekir.

Çözüm

Grafiğe kırmızı çizgiyle bir çizgi çizeceğiz, fonksiyon tarafından verilen y = x. y = - 1 2 x + 4 çizgisini mavi, y = 2 3 x - 3 çizgisini siyah çiziyoruz.

Kesişme noktalarını işaretleyelim.

y = x ve y = - 1 2 x + 4 fonksiyonlarının grafiklerinin kesişme noktalarını bulalım:

x = - 1 2 x + 4 Ö DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 Kontrol edin: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 değil Denklemin çözümü x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 denklemin çözümüdür ⇒ (4; 2) kesişme noktası i y = x ve y = - 1 2 x + 4

y = x ve y = 2 3 x - 3 fonksiyonlarının grafiklerinin kesişim noktasını bulalım:

x = 2 3 x - 3 Ö DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Kontrol edin: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 denklemin çözümüdür ⇒ (9 ; 3) nokta a s y = x ve y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Denklemin çözümü yok

y = - 1 2 x + 4 ve y = 2 3 x - 3 doğrularının kesişme noktasını bulalım:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) kesişme noktası y = - 1 2 x + 4 ve y = 2 3 x - 3

Yöntem No.1

İstenilen şeklin alanını tek tek şekillerin alanlarının toplamı olarak hayal edelim.

O zaman şeklin alanı:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Yöntem No.2

Orijinal şeklin alanı diğer iki rakamın toplamı olarak gösterilebilir.

Daha sonra çizginin denklemini x'e göre çözeriz ve ancak bundan sonra şeklin alanını hesaplamak için formülü uygularız.

y = x ⇒ x = y 2 kırmızı çizgi y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 siyah çizgi y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s ben n ben a l ben n e

Yani alan:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = = 7 4 + 23 12 = 11 3

Gördüğünüz gibi değerler aynı.

Cevap: S(G) = 11 3

Sonuçlar

Bir şeklin verilen çizgilerle sınırlı alanını bulmak için düzlem üzerinde çizgiler çizmemiz, kesişme noktalarını bulmamız ve alanı bulmak için formülü uygulamamız gerekir. İÇİNDE bu bölüm Sorunların en yaygın çeşitlerine baktık.

Metinde bir hata fark ederseniz, lütfen onu vurgulayın ve Ctrl+Enter tuşlarına basın.

Uygulamalara geçelim integral hesabı. Bu derste tipik ve en yaygın görevi analiz edeceğiz. alan hesaplamaları düz şekil belirli bir integral kullanarak. Sonunda her şey anlam arayışı V yüksek matematik- onu bulabilirler mi? Asla bilemezsin. Onu hayata yaklaştırmalıyız yazlık arsa temel fonksiyonlar ve belirli bir integral kullanarak alanını bulma.

Malzemeye başarılı bir şekilde hakim olmak için şunları yapmalısınız:

1) Anlayın belirsiz integral en azından ortalama düzeyde. Bu nedenle aptallar önce dersi okumalı Olumsuz.

2) Newton-Leibniz formülünü uygulayabilir ve belirli integrali hesaplayabilir. Sıcak ayarla dostane ilişkiler belirli integralleri sayfada bulabilirsiniz Belirli integral. Çözüm örnekleri. "Belirli bir integral kullanarak alanı hesaplama" görevi her zaman bir çizim oluşturmayı içerir, Bu yüzden güncel sorunÇizim konusundaki bilginiz ve becerileriniz de orada olacak. En azından düz bir çizgi, parabol ve hiperbol oluşturabilmeniz gerekir.

Kavisli bir yamukla başlayalım. Kavisli bir yamuk, bazı fonksiyonların grafiğiyle sınırlanan düz bir şekildir. sen = F(X), eksen ÖKÜZ ve çizgiler X = A; X = B.

Eğrisel bir yamuğun alanı sayısal olarak belirli bir integrale eşittir

Herhangi bir belirli integralin (var olan) çok iyi bir geometrik anlamı vardır. sınıfta Belirli integral. Çözüm örnekleri Belirli bir integralin bir sayı olduğunu söylemiştik. Şimdi bir şeyi daha belirtmenin zamanı geldi faydalı gerçek. Geometri açısından belirli integral ALAN'dır. Yani, belirli integral (varsa) geometrik olarak belirli bir şeklin alanına karşılık gelir. Belirli integrali düşünün

İntegrand

düzlemde bir eğri tanımlar (istenirse çizilebilir) ve belirli integralin kendisi sayısal olarak alana eşit karşılık gelen kavisli yamuk.



Örnek 1

, , , .

Bu tipik bir atama ifadesidir. Kararda en önemli nokta çizimin yapımıdır.. Ayrıca çizimin yapılması gerekir SAĞ.

Bir çizim oluştururken aşağıdaki sırayı öneririm: Başta tüm düz çizgileri (varsa) oluşturmak daha iyidir ve yalnızca Daha sonra– paraboller, hiperboller, diğer fonksiyonların grafikleri. Nokta nokta inşaat tekniği şurada bulunabilir: referans materyali Grafikler ve Özellikler temel işlevler . Orada ayrıca dersimiz için çok yararlı materyaller bulabilirsiniz - nasıl hızlı bir şekilde parabol oluşturulacağı.

Bu problemde çözüm şu şekilde görünebilir.

Çizimi yapalım (denklemin sen= 0 ekseni belirtir ÖKÜZ):

Kavisli bir yamuğu gölgelemeyeceğiz, burada hangi alan olduğu belli; hakkında konuşuyoruz. Çözüm şu şekilde devam ediyor:

[-2; 1] fonksiyon grafiği sen = X 2+2 konumlu eksenin üstündeÖKÜZ, Bu yüzden:

Cevap: .

Belirli integrali hesaplamada ve Newton-Leibniz formülünü uygulamada zorluk çekenler

,

derse bakın Belirli integral. Çözüm örnekleri. Görev tamamlandıktan sonra çizime bakıp cevabın gerçek olup olmadığını anlamak her zaman faydalıdır. Bu durumda, çizimdeki hücre sayısını "gözle" sayarız - yaklaşık 9 tane olacak, doğru gibi görünüyor. Diyelim ki cevabı alırsak, tamamen açıktır: 20 birim kareler, o zaman bir yerde bir hata yapıldığı açıktır - 20 hücre açıkça söz konusu rakama uymuyor, en fazla bir düzine. Cevap olumsuzsa, görev de yanlış çözülmüştür.

Örnek 2

Çizgilerle sınırlanmış bir şeklin alanını hesaplayın xy = 4, X = 2, X= 4 ve eksen ÖKÜZ.

Bu bir örnektir bağımsız karar. Eksiksiz çözüm ve dersin sonunda cevap.

Kavisli yamuk bulunursa ne yapmalı aksın altındaÖKÜZ?

Örnek 3

Çizgilerle sınırlanmış bir şeklin alanını hesaplayın sen = eski, X= 1 ve koordinat eksenleri.

Çözüm: Bir çizim yapalım:

Kavisli bir yamuk ise tamamen eksenin altında yer alır ÖKÜZ ise alanı aşağıdaki formül kullanılarak bulunabilir:

Bu durumda:

.

Dikkat! İki tür görev karıştırılmamalıdır:

1) Sizden herhangi bir geometrik anlamı olmayan basit bir integrali çözmeniz istenirse bu negatif olabilir.

2) Belirli bir integral kullanarak bir şeklin alanını bulmanız istenirse alan her zaman pozitiftir! Az önce tartışılan formülde eksi görünmesinin nedeni budur.

Uygulamada, çoğu zaman şekil hem üst hem de alt yarı düzlemde bulunur ve bu nedenle en basit okul problemlerinden daha anlamlı örneklere geçiyoruz.

Örnek 4

Çizgilerle sınırlanmış bir düzlem şeklinin alanını bulun sen = 2XX 2 , sen = -X.

Çözüm: Öncelikle bir çizim yapmanız gerekiyor. Alan problemlerinde çizim oluştururken en çok çizgilerin kesişme noktalarıyla ilgileniriz. Parabolün kesişim noktalarını bulalım sen = 2XX 2 ve düz sen = -X. Bu iki şekilde yapılabilir. İlk yöntem analitiktir. Denklemi çözüyoruz:

Bu, entegrasyonun alt sınırının A = 0, üst sınır entegrasyon B= 3. Çizgileri noktadan noktaya oluşturmak genellikle daha karlı ve daha hızlıdır ve entegrasyonun sınırları “kendiliğinden” netleşir. Yine de, analitik yöntemÖrneğin, grafik oldukça büyükse veya ayrıntılı yapı entegrasyon sınırlarını ortaya koymuyorsa (kesirli veya irrasyonel olabilirler) bazen limit bulmanın kullanılması gerekir. Görevimize dönelim: Önce düz bir çizgi, sonra da bir parabol çizmek daha mantıklıdır. Çizimi yapalım:

Noktasal inşa ederken entegrasyonun sınırlarının çoğunlukla “otomatik olarak” belirlendiğini tekrarlayalım.

Ve şimdi çalışma formülü:

Eğer segmentteyse [ A; B] bazı sürekli fonksiyonlar F(X) büyük veya eşit bazı sürekli fonksiyon G(X), o zaman karşılık gelen şeklin alanı aşağıdaki formül kullanılarak bulunabilir:

Burada artık şeklin nerede bulunduğunu - eksenin üstünde veya eksenin altında - düşünmenize gerek yok, ancak Hangi grafiğin DAHA YÜKSEK olduğu önemlidir(başka bir grafiğe göre), ve hangisi ALTTA.

Söz konusu örnekte, segment üzerinde parabolün düz çizginin üzerinde olduğu ve dolayısıyla 2'den itibaren olduğu açıktır. XX 2 çıkarılmalıdır – X.

Tamamlanan çözüm şöyle görünebilir:

İstenilen rakam bir parabol ile sınırlıdır sen = 2XX 2 üstte ve düz sen = -X altında.

2. bölümde XX 2 ≥ -X. İlgili formüle göre:

Cevap: .

Aslında, okul formülü alt yarı düzlemdeki kavisli bir yamuğun alanı için (bkz. örnek No. 3) – özel durum formüller

.

Çünkü eksen ÖKÜZ denklem tarafından verilen sen= 0 ve fonksiyonun grafiği G(X) eksenin altında bulunur ÖKÜZ, O

.

Ve şimdi kendi çözümünüz için birkaç örnek

Örnek 5

Örnek 6

Çizgilerle sınırlanan bir şeklin alanını bulun

Belirli bir integral kullanarak alan hesaplamayı içeren problemleri çözerken bazen komik bir olay olur. Çizim doğru yapılmış, hesaplar doğru ama dikkatsizlikten... Yanlış şeklin alanı bulundu.

Örnek 7

İlk önce bir çizim yapalım:

Alanı bulmamız gereken şekil mavi gölgeli(duruma dikkatlice bakın - rakam ne kadar sınırlıdır!). Ancak pratikte dikkatsizlik nedeniyle genellikle şeklin gölgeli alanını bulmaları gerektiğine karar verirler. yeşil!

Bu örnek aynı zamanda iki belirli integrali kullanarak bir şeklin alanını hesapladığı için de faydalıdır. Gerçekten mi:

1) [-1; 1] eksenin üstünde ÖKÜZ grafik düz sen = X+1;

2) Eksenin üzerindeki bir segmentte ÖKÜZ bir hiperbolün grafiği bulunur sen = (2/X).

Bu nedenle alanların eklenebileceği (ve eklenmesi gerektiği) oldukça açıktır, bu nedenle:

Cevap:

Örnek 8

Çizgilerle sınırlanmış bir şeklin alanını hesaplayın

Denklemleri “okul” formunda sunalım

ve noktadan noktaya çizim yapın:

Üst sınırımızın “iyi” olduğu çizimden açıkça görülüyor: B = 1.

Peki alt sınır nedir? Bunun bir tam sayı olmadığı açık, ama nedir?

Belki, A=(-1/3)? Ancak çizimin mükemmel bir doğrulukla yapıldığının garantisi nerede? A=(-1/4). Grafiği yanlış oluşturursak ne olur?

Bu gibi durumlarda harcamanız gerekir ekstra zaman ve entegrasyonun sınırlarını analitik olarak netleştirin.

Grafiklerin kesişim noktalarını bulalım

Bunu yapmak için denklemi çözüyoruz:

.

Buradan, A=(-1/3).

Diğer çözüm önemsizdir. Önemli olan, oyuncu değişikliği ve işaretlerde kafanızın karışmamasıdır. Buradaki hesaplamalar en basit değil. Segmentte

, ,

uygun formüle göre:

Cevap:

Dersi sonuçlandırmak için iki zor göreve daha bakalım.

Örnek 9

Çizgilerle sınırlanmış bir şeklin alanını hesaplayın

Çözüm: Şekillendirelim bu rakamçizim üzerinde.

Nokta nokta çizim çizmek için bilmeniz gerekenler dış görünüş sinüzoidler. Genel olarak, bazı sinüs değerlerinin yanı sıra tüm temel fonksiyonların grafiklerini bilmek faydalıdır. Değerler tablosunda bulunabilirler trigonometrik fonksiyonlar . Bazı durumlarda (örneğin, bu durumda), grafiklerin ve entegrasyon sınırlarının temelde doğru bir şekilde görüntülenmesi gereken şematik bir çizim oluşturmak mümkündür.

Burada entegrasyon sınırlarıyla ilgili hiçbir sorun yok; bunlar doğrudan şu durumdan kaynaklanıyor:

– “x” sıfırdan “pi”ye değişir. Bir karar daha verelim:

Bir segment üzerinde bir fonksiyonun grafiği sen= günah 3 X eksenin üstünde bulunur ÖKÜZ, Bu yüzden:

(1) Derste sinüs ve kosinüslerin tek kuvvetlere nasıl entegre edildiğini görebilirsiniz. Trigonometrik fonksiyonların integralleri. Bir sinüsü sıkıştırıyoruz.

(2) Formdaki ana trigonometrik özdeşliği kullanıyoruz

(3) Değişkeni değiştirelim T=çünkü X, o zaman: eksenin üzerinde bulunur, bu nedenle:

.

.

Not: Küpteki tanjantın integralinin nasıl alındığına dikkat edin; burada ana integralin bir sonucu kullanılmıştır; trigonometrik özdeşlik

.

Görev No. 3. Bir çizim yapın ve çizgilerle sınırlanan şeklin alanını hesaplayın

İntegralin çözüme uygulanması uygulamalı problemler

Alan hesaplaması

Sürekli negatif olmayan bir fonksiyonun belirli integrali f(x) sayısal olarak eşittir y = f(x) eğrisi, O x ekseni ve x = a ve x = b düz çizgileriyle sınırlanan eğrisel bir yamuğun alanı. Buna göre alan formülü şu şekilde yazılır:

Düzlem figürlerin alanlarının hesaplanmasına ilişkin bazı örneklere bakalım.

Görev No. 1. y = x 2 +1, y = 0, x = 0, x = 2 çizgileriyle sınırlanan alanı hesaplayın.

Çözüm. Alanı hesaplamamız gereken bir şekil oluşturalım.

y = x 2 + 1, dalları yukarıya doğru yönlendirilen ve parabolün O y eksenine göre bir birim yukarıya doğru kaydırıldığı bir paraboldür (Şekil 1).

Şekil 1. y = x 2 + 1 fonksiyonunun grafiği

Görev No. 2. y = x 2 – 1, y = 0 doğrularının sınırladığı alanı 0 ila 1 aralığında hesaplayın.


Çözüm. Bu fonksiyonun grafiği yukarıya doğru uzanan dallardan oluşan bir paraboldür ve parabol O y eksenine göre bir birim aşağı doğru kaydırılmıştır (Şekil 2).

Şekil 2. y = x 2 – 1 fonksiyonunun grafiği


Görev No. 3. Bir çizim yapın ve çizgilerle sınırlanan şeklin alanını hesaplayın

y = 8 + 2x – x 2 ve y = 2x – 4.

Çözüm. Bu iki çizgiden ilki, x2'nin katsayısı negatif olduğundan dalları aşağı doğru yönlendirilmiş bir paraboldür, ikinci çizgi ise her iki koordinat eksenini kesen düz bir çizgidir.

Bir parabol oluşturmak için tepe noktasının koordinatlarını buluruz: y'=2 – 2x; 2 – 2x = 0, x = 1 – tepe noktasının apsisi; y(1) = 8 + 2∙1 – 1 2 = 9 ordinatı, N(1;9) tepe noktasıdır.

Şimdi denklem sistemini çözerek parabol ile doğrunun kesişme noktalarını bulalım:

Sol tarafları eşit olan bir denklemin sağ taraflarını eşitleme.

8 + 2x – x 2 = 2x – 4 veya x 2 – 12 = 0 elde ederiz, dolayısıyla .

Yani noktalar bir parabol ile bir doğrunun kesişme noktalarıdır (Şekil 1).


Şekil 3 y = 8 + 2x – x 2 ve y = 2x – 4 fonksiyonlarının grafikleri

y = 2x – 4 şeklinde bir doğru çizelim. Koordinat eksenleri üzerindeki (0;-4), (2;0) noktalarından geçer.

Bir parabol oluşturmak için 0x ekseniyle kesişme noktalarını, yani 8 + 2x – x 2 = 0 veya x 2 – 2x – 8 = 0 denkleminin köklerini de kullanabilirsiniz. Vieta teoremini kullanarak bunu yapmak kolaydır. köklerini bulmak için: x 1 = 2, x 2 = 4.

Şekil 3, bu çizgilerle sınırlandırılmış bir şekli (M 1 N M 2 parabolik segmenti) göstermektedir.

Sorunun ikinci kısmı bu şeklin alanını bulmaktır. Alanı aşağıdaki formüle göre belirli bir integral kullanılarak bulunabilir: .

ile ilgili olarak bu durum integralini elde ederiz:

2 Dönen cismin hacminin hesaplanması

y = f(x) eğrisinin Ox ekseni etrafında döndürülmesiyle elde edilen cismin hacmi aşağıdaki formülle hesaplanır:

O y ekseni etrafında dönerken formül şöyle görünür:

Görev No.4. x = 0 x = 3 düz çizgileri ve y = eğrisi ile sınırlanan kavisli bir yamuğun O x ekseni etrafında dönmesinden elde edilen cismin hacmini belirleyin.

Çözüm. Bir resim çizelim (Şekil 4).

Şekil 4. y = fonksiyonunun grafiği

Gerekli hacim


Görev No.5. y = x 2 eğrisi ve y = 0 ve y = 4 düz çizgileriyle sınırlanan eğri bir yamuğun O y ekseni etrafında dönmesinden elde edilen cismin hacmini hesaplayın.

Çözüm. Sahibiz:

Soruları gözden geçirin

Aslında bir şeklin alanını bulmak için belirsiz ve belirli integral hakkında bu kadar bilgi sahibi olmanıza gerek yok. "Belirli bir integral kullanarak alanı hesaplama" görevi her zaman bir çizim oluşturmayı içerir yani bilginiz ve çizim becerileriniz çok daha acil bir konu olacaktır. Bu bağlamda, temel temel fonksiyonların grafiklerine ilişkin hafızanızı tazelemek ve en azından bir düz çizgi ve bir hiperbol oluşturabilmek faydalıdır.

Eğri bir yamuk, bir eksenle, düz çizgilerle ve bu aralıkta işareti değişmeyen bir doğru parçası üzerinde sürekli olan bir fonksiyonun grafiğiyle sınırlanmış düz bir şekildir. Bu rakamın bulunmasına izin verin daha düşük değil x ekseni:

Daha sonra eğrisel bir yamuğun alanı sayısal olarak belirli bir integrale eşittir. Herhangi bir belirli integralin (var olan) çok iyi bir geometrik anlamı vardır.

Geometri açısından belirli integral ALAN'dır.

Yani, belirli bir integral (varsa) geometrik olarak belirli bir şeklin alanına karşılık gelir. Örneğin belirli integrali düşünün. İntegral, eksenin üzerinde bulunan düzlemde bir eğri tanımlar (dileyenler çizim yapabilir) ve belirli integralin kendisi sayısal olarak karşılık gelen eğrisel yamuğun alanına eşittir.

Örnek 1

Bu tipik bir atama ifadesidir. İlk ve en önemli ançözümler - çizim inşaatı. Ayrıca çizimin yapılması gerekir SAĞ.

Bir çizim oluştururken aşağıdaki sırayı öneririm: Başta tüm düz çizgileri (varsa) oluşturmak daha iyidir ve yalnızca Daha sonra- paraboller, hiperboller, diğer fonksiyonların grafikleri. Fonksiyonların grafiklerini oluşturmak daha karlı noktadan noktaya.

Bu problemde çözüm şu şekilde görünebilir.
Çizimi çizelim (denklemin ekseni tanımladığını unutmayın):


Segment üzerinde fonksiyonun grafiği bulunur eksenin üstünde, Bu yüzden:

Cevap:

Görev tamamlandıktan sonra çizime bakıp cevabın gerçek olup olmadığını anlamak her zaman faydalıdır. Bu durumda, çizimdeki hücre sayısını "gözle" sayıyoruz - yaklaşık 9 olacak, doğru gibi görünüyor. Diyelim ki 20 birim kare cevabını alırsak, bir yerde bir hata yapıldığı açıktır - 20 hücrenin söz konusu rakama, en fazla bir düzine sığmadığı açıktır. Cevap olumsuzsa, görev de yanlış çözülmüştür.

Örnek 3

Çizgilerle ve koordinat eksenleriyle sınırlanan şeklin alanını hesaplayın.

Çözüm: Bir çizim yapalım:


Kavisli bir yamuk bulunuyorsa aksın altında(veya en azından daha yüksek değil verilen eksen), o zaman alanı aşağıdaki formül kullanılarak bulunabilir:


Bu durumda:

Dikkat! İki tür görev karıştırılmamalıdır:

1) Sizden herhangi bir geometrik anlamı olmayan basit bir integrali çözmeniz istenirse bu negatif olabilir.

2) Belirli bir integral kullanarak bir şeklin alanını bulmanız istenirse alan her zaman pozitiftir! Az önce tartışılan formülde eksi görünmesinin nedeni budur.

Uygulamada, çoğu zaman şekil hem üst hem de alt yarı düzlemde bulunur ve bu nedenle en basit okul problemlerinden daha anlamlı örneklere geçiyoruz.

Örnek 4

Çizgilerle sınırlanan bir düzlem şeklinin alanını bulun.

Çözüm: Öncelikle çizimi tamamlamanız gerekiyor. Genel olarak konuşursak, alan problemlerinde çizim oluştururken en çok çizgilerin kesişme noktalarıyla ilgileniriz. Parabol ile düz çizginin kesişme noktalarını bulalım. Bu iki şekilde yapılabilir. İlk yöntem analitiktir. Denklemi çözüyoruz:

Bu, entegrasyonun alt sınırı, entegrasyonun üst sınırı olduğu anlamına gelir.

Mümkünse bu yöntemi kullanmamak daha iyidir..

Nokta nokta çizgi çizmek çok daha karlı ve hızlı oluyor ve entegrasyonun sınırları “kendiliğinden” ortaya çıkıyor. Bununla birlikte, örneğin grafik yeterince büyükse veya ayrıntılı yapı entegrasyon sınırlarını ortaya çıkarmıyorsa (kesirli veya irrasyonel olabilirler) bazen limit bulmanın analitik yönteminin kullanılması gerekir. Ve biz de böyle bir örneği ele alacağız.

Görevimize dönelim: Önce düz bir çizgi, sonra da bir parabol çizmek daha mantıklıdır. Çizimi yapalım:

Ve şimdi çalışma formülü: Segment üzerinde sürekli bir fonksiyon varsa büyük veya eşit bazı sürekli fonksiyonlar, ardından şeklin alanı, programlarla sınırlı Verilen fonksiyonlar ve düz çizgiler , aşağıdaki formül kullanılarak bulunabilir:

Burada artık şeklin nerede bulunduğunu düşünmenize gerek yok - eksenin üstünde veya eksenin altında ve kabaca konuşursak, Hangi grafiğin DAHA YÜKSEK olduğu önemlidir(başka bir grafiğe göre), ve hangisi ALTTA.

Söz konusu örnekte, parabolün segment üzerinde düz çizginin üzerinde yer aldığı ve bu nedenle çıkarmanın gerekli olduğu açıktır.

Tamamlanan çözüm şöyle görünebilir:

İstenilen şekil üstte bir parabol ve altta düz bir çizgi ile sınırlıdır.
İlgili formüle göre segmentte:

Cevap:

Örnek 4

, , , çizgileriyle sınırlanan şeklin alanını hesaplayın.

Çözüm: Öncelikle bir çizim yapalım:

Alanı bulmamız gereken şekil mavi gölgeli(duruma dikkatlice bakın - rakam ne kadar sınırlıdır!). Ancak pratikte, dikkatsizlik nedeniyle sıklıkla bir şeklin yeşil gölgeli alanını bulmanızı gerektiren bir "aksaklık" meydana gelir!

Bu örnek aynı zamanda bir şeklin alanını iki belirli integral kullanarak hesaplaması açısından da faydalıdır.

Gerçekten:

1) Eksenin üstündeki parçada düz bir çizgi grafiği vardır;

2) Eksenin üstündeki parçada bir hiperbol grafiği vardır.

Bu nedenle alanların eklenebileceği (ve eklenmesi gerektiği) oldukça açıktır, bu nedenle:

Belirli integral. Bir şeklin alanı nasıl hesaplanır

İntegral hesabının uygulamalarını ele almaya devam edelim. Bu derste tipik ve en yaygın görevi analiz edeceğiz. – bir düzlem şeklinin alanını hesaplamak için belirli bir integralin nasıl kullanılacağı. Son olarak, yüksek matematikte anlam arayanlar, onu bulsunlar. Asla bilemezsin. Gerçek hayatta, temel fonksiyonları kullanarak bir yazlık arsaya yaklaşmanız ve belirli bir integral kullanarak alanını bulmanız gerekecektir.

Malzemeye başarılı bir şekilde hakim olmak için şunları yapmalısınız:

1) Belirsiz integrali en azından orta düzeyde anlayın. Bu nedenle aptallar önce dersi okumalı Olumsuz.

2) Newton-Leibniz formülünü uygulayabilir ve belirli integrali hesaplayabilir. Sayfadaki belirli integrallerle sıcak, dostane ilişkiler kurabilirsiniz. Belirli integral. Çözüm örnekleri.

Aslında bir şeklin alanını bulmak için belirsiz ve belirli integral hakkında bu kadar bilgi sahibi olmanıza gerek yok. "Belirli bir integral kullanarak alanı hesaplama" görevi her zaman bir çizim oluşturmayı içerir yani bilginiz ve çizim becerileriniz çok daha acil bir konu olacaktır. Bu bağlamda, temel temel fonksiyonların grafiklerine ilişkin hafızanızı tazelemek ve en azından düz bir çizgi, parabol ve hiperbol oluşturabilmek faydalıdır. Bu, kullanılarak yapılabilir (çoğu için gereklidir) metodolojik materyal ve grafiklerin geometrik dönüşümleri üzerine makaleler.

Aslında herkes belirli bir integral kullanarak alan bulma işine okuldan beri aşinadır ve biz de bundan daha ileri gitmeyeceğiz. okul müfredatı. Bu makale hiç mevcut olmayabilir, ancak gerçek şu ki sorun, bir öğrencinin nefret ettiği bir okuldan muzdarip olduğu ve yüksek matematik dersinde şevkle ustalaştığı 100 vakadan 99'unda ortaya çıkıyor.

Bu çalıştayın materyalleri basit, ayrıntılı ve minimum teoriyle sunulmaktadır.

Kavisli bir yamukla başlayalım.

Eğrisel yamuk bir eksenle sınırlanmış düz bir şekil, düz çizgiler ve bu aralıkta işaret değiştirmeyen bir aralıkta sürekli olan bir fonksiyonun grafiğidir. Bu rakamın bulunmasına izin verin daha düşük değil x ekseni:

Daha sonra eğrisel bir yamuğun alanı sayısal olarak belirli bir integrale eşittir. Herhangi bir belirli integralin (var olan) çok iyi bir geometrik anlamı vardır. sınıfta Belirli integral. Çözüm örnekleri Belirli bir integralin bir sayı olduğunu söylemiştim. Şimdi başka bir yararlı gerçeği belirtmenin zamanı geldi. Geometri açısından belirli integral ALAN'dır.

Yani, belirli integral (varsa) geometrik olarak belirli bir şeklin alanına karşılık gelir. Örneğin belirli integrali düşünün. İntegral, eksenin üzerinde bulunan düzlemde bir eğri tanımlar (dileyenler çizim yapabilir) ve belirli integralin kendisi sayısal olarak karşılık gelen eğrisel yamuğun alanına eşittir.

Örnek 1

Bu tipik bir atama ifadesidir. Karardaki ilk ve en önemli nokta çizimin yapımıdır.. Ayrıca çizimin yapılması gerekir SAĞ.

Bir çizim oluştururken aşağıdaki sırayı öneririm: Başta tüm düz çizgileri (varsa) oluşturmak daha iyidir ve yalnızca Daha sonra– paraboller, hiperboller, diğer fonksiyonların grafikleri. Fonksiyonların grafiklerini oluşturmak daha karlı nokta nokta, noktadan noktaya inşaat tekniği referans malzemesinde bulunabilir Temel fonksiyonların grafikleri ve özellikleri. Orada ayrıca dersimiz için çok yararlı materyaller bulabilirsiniz - nasıl hızlı bir şekilde parabol oluşturulacağı.

Bu problemde çözüm şu şekilde görünebilir.
Çizimi çizelim (denklemin ekseni tanımladığını unutmayın):


Kavisli yamuğu gölgelemeyeceğim; burada hangi alandan bahsettiğimiz belli oluyor. Çözüm şu şekilde devam ediyor:

Segment üzerinde fonksiyonun grafiği bulunur eksenin üstünde, Bu yüzden:

Cevap:

Belirli integrali hesaplamada ve Newton-Leibniz formülünü uygulamada zorluk çekenler , derse bakın Belirli integral. Çözüm örnekleri.

Görev tamamlandıktan sonra çizime bakıp cevabın gerçek olup olmadığını anlamak her zaman faydalıdır. Bu durumda, çizimdeki hücre sayısını "gözle" sayarız - yaklaşık 9 tane olacak, doğru gibi görünüyor. Diyelim ki 20 birim kare cevabını alırsak, bir yerde bir hata yapıldığı açıktır - 20 hücrenin söz konusu rakama, en fazla bir düzine sığmadığı açıktır. Cevap olumsuzsa, görev de yanlış çözülmüştür.

Örnek 2

Çizgiler ve eksenlerle sınırlanmış bir şeklin alanını hesaplayın

Bu kendi başınıza çözebileceğiniz bir örnektir. Dersin sonunda tam çözüm ve cevap.

Kavisli yamuk bulunursa ne yapmalı aksın altında mı?

Örnek 3

Çizgilerle ve koordinat eksenleriyle sınırlanan şeklin alanını hesaplayın.

Çözüm: Bir çizim yapalım:

Kavisli bir yamuk bulunuyorsa aksın altında(veya en azından daha yüksek değil verilen eksen), o zaman alanı aşağıdaki formül kullanılarak bulunabilir:
Bu durumda:

Dikkat! İki tür görev karıştırılmamalıdır:

1) Sizden herhangi bir geometrik anlamı olmayan basit bir integrali çözmeniz istenirse bu negatif olabilir.

2) Belirli bir integral kullanarak bir şeklin alanını bulmanız istenirse alan her zaman pozitiftir! Az önce tartışılan formülde eksi görünmesinin nedeni budur.

Uygulamada, çoğu zaman şekil hem üst hem de alt yarı düzlemde bulunur ve bu nedenle en basit okul problemlerinden daha anlamlı örneklere geçiyoruz.

Örnek 4

Çizgilerle sınırlanan bir düzlem şeklinin alanını bulun.

Çözüm: Öncelikle çizimi tamamlamanız gerekiyor. Genel olarak konuşursak, alan problemlerinde çizim oluştururken en çok çizgilerin kesişme noktalarıyla ilgileniriz. Parabol ile düz çizginin kesişme noktalarını bulalım. Bu iki şekilde yapılabilir. İlk yöntem analitiktir. Denklemi çözüyoruz:

Bu, entegrasyonun alt sınırı, entegrasyonun üst sınırı olduğu anlamına gelir.
Mümkünse bu yöntemi kullanmamak daha iyidir..

Nokta nokta çizgi çizmek çok daha karlı ve hızlı oluyor ve entegrasyonun sınırları “kendiliğinden” ortaya çıkıyor. Çeşitli grafikler için noktadan noktaya oluşturma tekniği yardımda ayrıntılı olarak tartışılmaktadır. Temel fonksiyonların grafikleri ve özellikleri. Bununla birlikte, örneğin grafik yeterince büyükse veya ayrıntılı yapı entegrasyon sınırlarını ortaya çıkarmıyorsa (kesirli veya irrasyonel olabilirler) bazen limit bulmanın analitik yönteminin kullanılması gerekir. Ve biz de böyle bir örneği ele alacağız.

Görevimize dönelim: Önce düz bir çizgi, sonra da bir parabol çizmek daha mantıklıdır. Çizimi yapalım:

Noktasal inşa ederken entegrasyonun sınırlarının çoğunlukla "otomatik olarak" belirlendiğini tekrar ediyorum.

Ve şimdi çalışma formülü: Segment üzerinde sürekli bir fonksiyon varsa büyük veya eşit bazı sürekli fonksiyonlar varsa, bu fonksiyonların grafikleri ve çizgileri ile sınırlanan şeklin alanı aşağıdaki formül kullanılarak bulunabilir:

Burada artık şeklin nerede bulunduğunu düşünmenize gerek yok - eksenin üstünde veya eksenin altında ve kabaca konuşursak, Hangi grafiğin DAHA YÜKSEK olduğu önemlidir(başka bir grafiğe göre), ve hangisi ALTTA.

Söz konusu örnekte, parabolün segment üzerinde düz çizginin üzerinde yer aldığı ve bu nedenle çıkarmanın gerekli olduğu açıktır.

Tamamlanan çözüm şöyle görünebilir:

İstenilen şekil üstte bir parabol ve altta düz bir çizgi ile sınırlıdır.
İlgili formüle göre segmentte:

Cevap:

Aslında, alt yarı düzlemdeki eğrisel bir yamuğun alanı için okul formülü (bakınız basit örnek No. 3), formülün özel bir halidir . Eksen denklemle belirtildiğinden ve fonksiyonun grafiği bulunduğundan daha yüksek değil eksenler, o zaman

Ve şimdi kendi çözümünüz için birkaç örnek

Örnek 5

Örnek 6

Şeklin çizgilerle sınırlanan alanını bulun.

Belirli bir integral kullanarak alan hesaplamayı içeren problemleri çözerken bazen komik bir olay olur. Çizim doğru yapılmış, hesaplar doğru ama dikkatsizlikten... yanlış şeklin alanı bulundu, bu, mütevazi hizmetkarınızın birkaç kez işleri batırmasının aynısıydı. Burada gerçek durum hayattan:

Örnek 7

, , , çizgileriyle sınırlanan şeklin alanını hesaplayın.

Çözüm: Öncelikle bir çizim yapalım:

...Eh, çizim berbat çıktı ama her şey okunaklı görünüyor.

Alanı bulmamız gereken şekil mavi gölgeli(duruma dikkatlice bakın - rakam ne kadar sınırlıdır!). Ancak pratikte, dikkatsizlik nedeniyle sıklıkla bir şeklin yeşil gölgeli alanını bulmanızı gerektiren bir "aksaklık" meydana gelir!

Bu örnek aynı zamanda bir şeklin alanını iki belirli integral kullanarak hesaplaması açısından da faydalıdır. Gerçekten mi:

1) Eksenin üstündeki parçada düz bir çizgi grafiği vardır;

2) Eksenin üstündeki parçada bir hiperbol grafiği vardır.

Bu nedenle alanların eklenebileceği (ve eklenmesi gerektiği) oldukça açıktır, bu nedenle:

Cevap:

Başka bir anlamlı göreve geçelim.

Örnek 8

Çizgilerle sınırlanan bir şeklin alanını hesaplayın,
Denklemleri “okul” formunda sunalım ve nokta nokta çizim yapalım:

Çizimden üst limitimizin “iyi” olduğu açıkça görülüyor: .
Peki alt sınır nedir? Bunun bir tam sayı olmadığı açık, ama nedir? Belki ? Ancak çizimin mükemmel bir doğrulukla yapıldığının garantisi nerede, pekala ortaya çıkabilir... Veya kök. Grafiği yanlış oluşturursak ne olur?

Böyle durumlarda ek zaman harcamanız ve entegrasyonun sınırlarını analitik olarak netleştirmeniz gerekir.

Düz bir çizgi ile parabolün kesişme noktalarını bulalım.
Bunu yapmak için denklemi çözüyoruz:


,

Gerçekten mi, .

Diğer çözüm önemsizdir, asıl mesele, ikameler ve işaretler konusunda kafanızın karışmamasıdır; buradaki hesaplamalar en basit değildir.

Segmentte karşılık gelen formüle göre:

Cevap:

Dersi bitirmek için iki zor göreve daha bakalım.

Örnek 9

Çizgilerle sınırlanan şeklin alanını hesaplayın , ,

Çözüm: Bu figürü çizimde tasvir edelim.

Lanet olsun, programı imzalamayı unuttum ve üzgünüm, resmi yeniden yapmak istemedim. Çizim günü değil kısacası bugün o gün =)

Nokta nokta inşaat için sinüzoidin görünümünü bilmek gerekir (ve genel olarak bilmek faydalıdır) tüm temel fonksiyonların grafikleri), bazı sinüs değerlerinin yanı sıra, bunlar da bulunabilir. trigonometrik tablo. Bazı durumlarda (bu durumda olduğu gibi), grafiklerin ve entegrasyon sınırlarının temelde doğru bir şekilde gösterilmesi gereken şematik bir çizim oluşturmak mümkündür.

Burada integralin sınırlarıyla ilgili bir sorun yok; bunlar doğrudan "x"in sıfırdan "pi"ye değişmesi koşulundan kaynaklanıyor. Bir karar daha verelim:

Segmentte fonksiyonun grafiği eksenin üzerinde bulunur, bu nedenle: