រៀនលោការីតពីដំបូង។ លក្ខណៈសម្បត្តិលោការីត និងឧទាហរណ៍នៃដំណោះស្រាយរបស់ពួកគេ។

(មកពីភាសាក្រិច λόγος - "ពាក្យ", "ទំនាក់ទំនង" និងἀριθμός - "លេខ") លេខ អាស្រ័យ​លើ (កំណត់ហេតុ α ) ត្រូវបានគេហៅថាលេខបែបនេះ , និង = មួយ គនោះគឺជាកំណត់ត្រា α =និង b=aគឺសមមូល។ លោការីតមានន័យប្រសិនបើ a > 0, a ≠ 1, b > 0 ។

ក្នុង​ន័យ​ផ្សេងទៀត លោការីតលេខ អាស្រ័យ​លើ បង្កើតជានិទស្សន្តដែលចំនួនត្រូវតែលើកឡើង ដើម្បីទទួលបានលេខ (លោការីតមានសម្រាប់តែលេខវិជ្ជមានប៉ុណ្ណោះ)។

ពីរូបមន្តនេះវាដូចខាងក្រោមថាការគណនា x = កំណត់ហេតុ α ស្មើនឹងការដោះស្រាយសមីការ a x = b ។

ឧទាហរណ៍:

កំណត់ហេតុ 2 8 = 3 ព្រោះ 8 = 2 3 ។

ចូរយើងសង្កត់ធ្ងន់ថាការបង្កើតលោការីតដែលបានចង្អុលបង្ហាញធ្វើឱ្យវាអាចកំណត់បានភ្លាមៗ តម្លៃលោការីតនៅពេលដែលលេខនៅក្រោមសញ្ញាលោការីតដើរតួជាថាមពលមួយចំនួននៃមូលដ្ឋាន។ ជាការពិតណាស់ ការបង្កើតលោការីត ធ្វើឱ្យវាអាចបង្ហាញអំពីភាពត្រឹមត្រូវថា ប្រសិនបើ b=a គបន្ទាប់មកលោការីតនៃលេខ អាស្រ័យ​លើ ស្មើ ជាមួយ. វាក៏ច្បាស់ដែរថាប្រធានបទលោការីតមានទំនាក់ទំនងយ៉ាងជិតស្និទ្ធជាមួយប្រធានបទ អំណាចនៃលេខមួយ។.

ការគណនាលោការីតត្រូវបានគេហៅថា លោការីត. លោការីតគឺ ប្រតិបត្តិការគណិតវិទ្យាយកលោការីត។ នៅពេលទទួលយកលោការីត ផលិតផលនៃកត្តាត្រូវបានបំលែងទៅជាផលបូកនៃពាក្យ។

សក្តានុពលគឺជាប្រតិបត្តិការគណិតវិទ្យាបញ្ច្រាសនៃលោការីត។ កំឡុងពេលមានសក្តានុពល មូលដ្ឋានដែលបានផ្តល់ឱ្យត្រូវបានលើកឡើងទៅកម្រិតនៃការបញ្ចេញមតិដែលសក្តានុពលត្រូវបានអនុវត្ត។ ក្នុងករណីនេះផលបូកនៃលក្ខខណ្ឌត្រូវបានបំលែងទៅជាផលិតផលនៃកត្តា។

ជាញឹកញយ លោការីតពិតត្រូវបានប្រើជាមួយគោល ២ (គោលពីរ) លេខអយល័រ អ៊ី ≈ ២.៧១៨ (លោការីតធម្មជាតិ) និង ១០ (ទសភាគ)។

បើក នៅ​ដំណាក់កាល​នេះវាជាការគួរពិចារណា គំរូលោការីតកំណត់ហេតុ ៧ ២ , ln 5, lg0.0001 ។

ហើយធាតុ lg(-3), កំណត់ហេតុ -3 3.2, កំណត់ហេតុ -1 -4.3 មិនសមហេតុផលទេព្រោះនៅក្នុងទីមួយនៃពួកគេលេខអវិជ្ជមានត្រូវបានដាក់នៅក្រោមសញ្ញាលោការីតនៅក្នុងទីពីរ - លេខអវិជ្ជមាននៅក្នុងមូលដ្ឋាននិងទីបី - ទាំងលេខអវិជ្ជមាននៅក្រោមសញ្ញាលោការីតនិងឯកតានៅក្នុងមូលដ្ឋាន។

លក្ខខណ្ឌសម្រាប់កំណត់លោការីត។

វាមានតម្លៃពិចារណាដាច់ដោយឡែកពីលក្ខខណ្ឌ a> 0, a ≠ 1, b> 0. ក្រោមដែលយើងទទួលបាន និយមន័យលោការីត។សូមក្រឡេកមើលមូលហេតុដែលការរឹតបន្តឹងទាំងនេះត្រូវបានយក។ សមភាពនៃទម្រង់ x = log α នឹងជួយយើងក្នុងរឿងនេះ ដែលហៅថា អត្តសញ្ញាណលោការីតមូលដ្ឋាន ដែលធ្វើតាមដោយផ្ទាល់ពីនិយមន័យនៃលោការីតដែលបានផ្តល់ឱ្យខាងលើ។

ចូរយើងទទួលយកលក្ខខណ្ឌ a≠1. ចាប់តាំងពីមួយទៅថាមពលណាមួយគឺស្មើនឹងមួយ សមភាព x=log α អាចមានបានតែនៅពេលដែល b=1ប៉ុន្តែកំណត់ហេតុ 1 1 នឹងជាចំនួនពិតណាមួយ។ ដើម្បីលុបបំបាត់ភាពមិនច្បាស់លាស់នេះយើងយក a≠1.

ចូរយើងបញ្ជាក់ពីភាពចាំបាច់នៃលក្ខខណ្ឌ a>0. នៅ a=0យោងតាមការបង្កើតលោការីតអាចមានបានតែនៅពេលដែល b=0. ហើយតាមនោះ។ កំណត់ហេតុ 0 0អាចជាចំនួនពិតដែលមិនមែនជាសូន្យ ចាប់តាំងពីសូន្យទៅថាមពលដែលមិនមែនជាសូន្យគឺសូន្យ។ ភាពមិនច្បាស់លាស់នេះអាចត្រូវបានលុបចោលដោយលក្ខខណ្ឌ a≠0. ហើយ​នៅពេល​ដែល ក<0 យើងត្រូវតែបដិសេធការវិភាគនៃតម្លៃសមហេតុផល និងអសមហេតុផលនៃលោការីត ចាប់តាំងពីសញ្ញាបត្រដែលមាននិទស្សន្តសមហេតុសមផល និងអសមហេតុផលត្រូវបានកំណត់សម្រាប់តែមូលដ្ឋានមិនអវិជ្ជមានប៉ុណ្ណោះ។ វាគឺសម្រាប់ហេតុផលនេះដែលលក្ខខណ្ឌត្រូវបានចែង a>0.

និង លក្ខខណ្ឌចុងក្រោយ b>0កើតចេញពីវិសមភាព a>0ចាប់តាំងពី x=log α និងតម្លៃនៃសញ្ញាបត្រដែលមានមូលដ្ឋានវិជ្ជមាន វិជ្ជមានជានិច្ច។

លក្ខណៈពិសេសនៃលោការីត។

លោការីតលក្ខណៈដោយឡែក លក្ខណៈដែលនាំទៅដល់ការប្រើប្រាស់យ៉ាងទូលំទូលាយរបស់ពួកគេ ដើម្បីជួយសម្រួលដល់ការគណនាយ៉ាងយកចិត្តទុកដាក់។ នៅពេលផ្លាស់ទី "ទៅពិភពលោកនៃលោការីត" គុណត្រូវបានផ្លាស់ប្តូរដោយច្រើនទៀត ងាយស្រួលបត់ការបែងចែកគឺជាការដក ហើយនិទស្សន្ត និងការដកឫសត្រូវបានបំលែងរៀងៗខ្លួនទៅជាគុណ និងចែកដោយនិទស្សន្ត។

ការបង្កើតលោការីត និងតារាងតម្លៃរបស់វា (សម្រាប់ អនុគមន៍ត្រីកោណមាត្រ) ត្រូវបានបោះពុម្ពជាលើកដំបូងនៅឆ្នាំ 1614 ដោយគណិតវិទូជនជាតិស្កុតឡេន John Napier ។ តារាងលោការីត ពង្រីក និងលម្អិតដោយអ្នកវិទ្យាសាស្ត្រផ្សេងទៀត ត្រូវបានគេប្រើយ៉ាងទូលំទូលាយក្នុងការគណនាបែបវិទ្យាសាស្ត្រ និងវិស្វកម្ម ហើយនៅតែមានជាប់ទាក់ទងរហូតដល់ការប្រើប្រាស់ម៉ាស៊ីនគិតលេខអេឡិចត្រូនិក និងកុំព្យូទ័រ។

លោការីតនៃចំនួនមួយ។ អាស្រ័យ​លើ ហៅថានិទស្សន្ត X ដែលអ្នកចាំបាច់ត្រូវសាងសង់ ដើម្បីទទួលបានលេខ

បានផ្តល់ថា
,
,

ពីនិយមន័យលោការីត វាធ្វើតាមនោះ។
, i.e.
- សមភាពនេះគឺជាអត្តសញ្ញាណលោការីតមូលដ្ឋាន។

លោការីតដល់គោល ១០ ត្រូវបានគេហៅថាលោការីតទសភាគ។ ជំនួស​អោយ
សរសេរ
.

លោការីតទៅមូលដ្ឋាន អ៊ី ត្រូវបានគេហៅថាធម្មជាតិនិងត្រូវបានកំណត់
.

លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត។

    លោការីតនៃមួយនៅក្នុងមូលដ្ឋានណាមួយ។ ស្មើនឹងសូន្យ

    លោការីតនៃផលិតផល ស្មើនឹងផលបូកលោការីតនៃកត្តា។

3) លោការីតនៃកូតាគឺស្មើនឹងភាពខុសគ្នានៃលោការីត


កត្តា
ហៅថាម៉ូឌុលនៃការផ្លាស់ប្តូរពីលោការីតទៅមូលដ្ឋាន ទៅលោការីតនៅមូលដ្ឋាន .

ដោយប្រើលក្ខណសម្បត្តិ 2-5 ជាញឹកញាប់អាចកាត់បន្ថយលោការីតនៃកន្សោមស្មុគស្មាញទៅនឹងលទ្ធផលនៃប្រតិបត្តិការនព្វន្ធសាមញ្ញលើលោការីត។

ឧទាហរណ៍,

ការបំប្លែងលោការីតបែបនេះត្រូវបានគេហៅថាលោការីត។ ការបំប្លែងបញ្ច្រាស់ទៅជាលោការីត ត្រូវបានគេហៅថាសក្តានុពល។

ជំពូកទី 2. ធាតុនៃគណិតវិទ្យាខ្ពស់ជាង។

1. ដែនកំណត់

ដែនកំណត់នៃមុខងារ
គឺជាចំនួនកំណត់ A ប្រសិនបើ xx 0 សម្រាប់នីមួយៗដែលបានកំណត់ទុកជាមុន
មានលេខបែបនេះ
នោះភ្លាមៗ
, នោះ។
.

អនុគមន៍​ដែល​មាន​កម្រិត​ខុស​ពី​វា​ដោយ​ចំនួន​មិន​កំណត់៖
, ដែលជាកន្លែងដែល- b.m.v. , i.e.
.

ឧទាហរណ៍។ ពិចារណាមុខងារ
.

ពេលខំប្រឹង
, មុខងារ y ទំនោរទៅសូន្យ៖

១.១. ទ្រឹស្តីបទមូលដ្ឋានអំពីដែនកំណត់។

    ដែនកំណត់ តម្លៃថេរស្មើនឹងតម្លៃថេរនេះ។

.

    ចំនួនទឹកប្រាក់ (ភាពខុសគ្នា) ដែនកំណត់ ចំនួនកំណត់អនុគមន៍គឺស្មើនឹងផលបូក (ភាពខុសគ្នា) នៃដែនកំណត់នៃអនុគមន៍ទាំងនេះ។

    ដែនកំណត់នៃផលិតផលនៃចំនួនកំណត់នៃមុខងារ ស្មើនឹងផលិតផលដែនកំណត់នៃមុខងារទាំងនេះ។

    ដែនកំណត់នៃ quotient នៃអនុគមន៍ពីរគឺស្មើនឹង quotient នៃដែនកំណត់នៃអនុគមន៍ទាំងនេះ ប្រសិនបើដែនកំណត់នៃភាគបែងមិនសូន្យ។

ដែនកំណត់ដ៏អស្ចារ្យ

,
, កន្លែងណា

១.២. កំណត់ឧទាហរណ៍នៃការគណនា

ទោះយ៉ាងណាក៏ដោយ មិនមែនដែនកំណត់ទាំងអស់ត្រូវបានគណនាយ៉ាងងាយស្រួលនោះទេ។ ជាញឹកញាប់ជាងនេះទៅទៀត ការគណនាដែនកំណត់ចុះមកដើម្បីបង្ហាញពីភាពមិនច្បាស់លាស់នៃប្រភេទ៖ ឬ។

.

2. ដេរីវេនៃមុខងារមួយ។

សូមឱ្យយើងមានមុខងារ
បន្តនៅលើផ្នែក
.

អាគុយម៉ង់ ទទួលបានការកើនឡើងខ្លះ
. បន្ទាប់មកមុខងារនឹងទទួលបានការកើនឡើង
.

តម្លៃអាគុយម៉ង់ ត្រូវគ្នានឹងតម្លៃមុខងារ
.

តម្លៃអាគុយម៉ង់
ត្រូវគ្នានឹងតម្លៃមុខងារ។

ដូច្នេះ, ។

អនុញ្ញាតឱ្យយើងរកឃើញដែនកំណត់នៃសមាមាត្រនេះនៅ
. ប្រសិនបើដែនកំណត់នេះមាន នោះវាត្រូវបានគេហៅថាដេរីវេនៃអនុគមន៍ដែលបានផ្តល់ឱ្យ។

និយមន័យ 3 ដេរីវេនៃមុខងារដែលបានផ្តល់ឱ្យ
ដោយអាគុយម៉ង់ ត្រូវបានគេហៅថាដែនកំណត់នៃសមាមាត្រនៃការកើនឡើងនៃអនុគមន៍មួយទៅនឹងការកើនឡើងនៃអាគុយម៉ង់ នៅពេលដែលការកើនឡើងនៃអាគុយម៉ង់មាននិន្នាការទៅសូន្យ។

ដេរីវេនៃមុខងារមួយ។
អាចត្រូវបានកំណត់ដូចខាងក្រោមៈ

; ; ; .

និយមន័យ 4 ប្រតិបត្តិការនៃការស្វែងរកដេរីវេនៃអនុគមន៍មួយត្រូវបានគេហៅថា ភាពខុសគ្នា។

២.១. អត្ថន័យមេកានិចនៃដេរីវេ។

ចូរយើងពិចារណាពីចលនា rectilinear នៃរាងកាយរឹងមួយចំនួន ឬចំណុចសម្ភារៈ។

អនុញ្ញាតឱ្យនៅចំណុចណាមួយនៅក្នុងពេលវេលា ចំណុចផ្លាស់ទី
គឺនៅចម្ងាយ ពីទីតាំងចាប់ផ្តើម
.

បន្ទាប់ពីមួយរយៈ
នាងបានផ្លាស់ប្តូរចម្ងាយ
. អាកប្បកិរិយា =- ល្បឿន​មធ្យមចំណុចសម្ភារៈ
. អនុញ្ញាតឱ្យយើងរកឃើញដែនកំណត់នៃសមាមាត្រនេះដោយគិតគូរពីនោះ។
.

ដូច្នេះនិយមន័យ ល្បឿនភ្លាមៗចលនានៃចំណុចសម្ភារៈមួយចុះមកដើម្បីស្វែងរកដេរីវេនៃផ្លូវដោយគោរពតាមពេលវេលា។

2.2. អត្ថន័យធរណីមាត្រដេរីវេ

អនុញ្ញាតឱ្យយើងមានមុខងារដែលបានកំណត់ក្រាហ្វិក
.

អង្ករ។ 1. អត្ថន័យធរណីមាត្រនៃដេរីវេ

ប្រសិនបើ
បន្ទាប់មកចំណុច
នឹងផ្លាស់ទីតាមខ្សែកោង ខិតជិតចំណុច
.

ដូច្នេះ
, i.e. តម្លៃនៃដេរីវេសម្រាប់តម្លៃដែលបានផ្តល់ឱ្យនៃអាគុយម៉ង់ ជាលេខស្មើនឹងតង់សង់នៃមុំដែលបង្កើតឡើងដោយតង់សង់នៅចំណុចដែលបានផ្តល់ឱ្យជាមួយនឹងទិសដៅវិជ្ជមាននៃអ័ក្ស
.

២.៣. តារាងនៃរូបមន្តនៃភាពខុសគ្នាជាមូលដ្ឋាន។

មុខងារថាមពល

អនុគមន៍អិចស្ប៉ូណង់ស្យែល

មុខងារលោការីត

អនុគមន៍ត្រីកោណមាត្រ

អនុគមន៍ត្រីកោណមាត្របញ្ច្រាស

២.៤. ច្បាប់នៃភាពខុសគ្នា។

ដេរីវេនៃ

ដេរីវេនៃផលបូក (ភាពខុសគ្នា) នៃមុខងារ


ដេរីវេនៃផលិតផលនៃមុខងារពីរ


ដេរីវេនៃកូតានៃអនុគមន៍ពីរ


២.៥. ដេរីវេនៃ មុខងារស្មុគស្មាញ.

អនុញ្ញាតឱ្យមុខងារត្រូវបានផ្តល់ឱ្យ
ដែលវាអាចត្រូវបានតំណាងនៅក្នុងទម្រង់

និង
ដែលជាកន្លែងដែលអថេរ នោះគឺជាអាគុយម៉ង់កម្រិតមធ្យម

ដេរីវេនៃអនុគមន៍ស្មុគ្រស្មាញគឺស្មើនឹងផលិតផលនៃដេរីវេនៃអនុគមន៍ដែលបានផ្តល់ឱ្យដោយគោរពទៅនឹងអាគុយម៉ង់កម្រិតមធ្យម និងដេរីវេនៃអាគុយម៉ង់កម្រិតមធ្យមទាក់ទងនឹង x ។

ឧទាហរណ៍ ១.

ឧទាហរណ៍ ២.

3. មុខងារឌីផេរ៉ង់ស្យែល។

សូមឱ្យមាន
ដែលអាចផ្លាស់ប្តូរបាននៅចន្លោះពេលមួយចំនួន
តោះ​ទៅ នៅ មុខងារនេះមានដេរីវេ

,

បន្ទាប់មកយើងអាចសរសេរបាន។

(1),

កន្លែងណា - បរិមាណមិនកំណត់,

ចាប់​តាំង​ពី​ពេល​ដែល

គុណគ្រប់លក្ខខណ្ឌនៃសមភាព (១) ដោយ
យើង​មាន:

កន្លែងណា
- b.m.v. លំដាប់ខ្ពស់ជាង។

មាត្រដ្ឋាន
ហៅថាឌីផេរ៉ង់ស្យែលនៃមុខងារ
និងត្រូវបានកំណត់

.

៣.១. តម្លៃធរណីមាត្រនៃឌីផេរ៉ង់ស្យែល។

អនុញ្ញាតឱ្យមុខងារត្រូវបានផ្តល់ឱ្យ
.

រូប ២. អត្ថន័យធរណីមាត្រនៃឌីផេរ៉ង់ស្យែល។

.

ជាក់ស្តែងឌីផេរ៉ង់ស្យែលនៃមុខងារ
គឺស្មើនឹងការបង្កើនចំនួនតង់សង់នៅចំណុចដែលបានផ្តល់ឱ្យ។

៣.២. ដេរីវេ និងឌីផេរ៉ង់ស្យែលនៃការបញ្ជាទិញផ្សេងៗ។

ប្រសិនបើមាន
, បន្ទាប់មក
ត្រូវបានគេហៅថាដេរីវេទី 1 ។

ដេរីវេនៃដេរីវេទី 1 ត្រូវបានគេហៅថាដេរីវេទី 2 ហើយត្រូវបានសរសេរ
.

ដេរីវេនៃលំដាប់ទី n នៃអនុគមន៍
ត្រូវបានគេហៅថាដេរីវេនៃលំដាប់ទី (n-1) ហើយត្រូវបានសរសេរ៖

.

ឌីផេរ៉ង់ស្យែលឌីផេរ៉ង់ស្យែលនៃអនុគមន៍ត្រូវបានគេហៅថាឌីផេរ៉ង់ស្យែលទីពីរឬឌីផេរ៉ង់ស្យែលលំដាប់ទីពីរ។

.

.

3.3 ការដោះស្រាយបញ្ហាជីវសាស្រ្តដោយប្រើភាពខុសគ្នា។

កិច្ចការទី 1 ។ ការសិក្សាបានបង្ហាញថាការរីកលូតលាស់នៃអាណានិគមនៃ microorganisms គោរពច្បាប់
, កន្លែងណា - ចំនួនអតិសុខុមប្រាណ (គិតជាពាន់), t - ពេលវេលា (ថ្ងៃ) ។

ខ) តើចំនួនប្រជាជននៃអាណានិគមនឹងកើនឡើង ឬថយចុះក្នុងអំឡុងពេលនេះដែរឬទេ?

ចម្លើយ។ ទំហំនៃអាណានិគមនឹងកើនឡើង។

កិច្ចការទី 2. ទឹកនៅក្នុងបឹងត្រូវបានធ្វើតេស្តជាទៀងទាត់ ដើម្បីតាមដានមាតិកានៃបាក់តេរីបង្កជំងឺ។ តាមរយៈ t ប៉ុន្មានថ្ងៃបន្ទាប់ពីការធ្វើតេស្ត ការប្រមូលផ្តុំបាក់តេរីត្រូវបានកំណត់ដោយសមាមាត្រ

.

តើនៅពេលណាដែលបឹងមានកំហាប់បាក់តេរីអប្បបរមា ហើយតើវាអាចទៅរួចទេក្នុងការហែលនៅក្នុងវា?

ដំណោះ​ស្រាយ៖ អនុគមន៍​មួយ​ឡើង​ដល់​អតិបរិមា ឬ​នាទី​នៅ​ពេល​ដេរីវេ​របស់​វា​គឺ​សូន្យ។

,

ចូរ​កំណត់​អតិបរមា ឬ​អប្បបរមា​នឹង​មាន​ក្នុង​រយៈពេល 6 ថ្ងៃ។ ដើម្បីធ្វើដូច្នេះ ចូរយើងយកនិស្សន្ទវត្ថុទីពីរ។


ចម្លើយ៖ បន្ទាប់ពី 6 ថ្ងៃវានឹងមានកំហាប់បាក់តេរីអប្បបរមា។

ធាតុមួយនៃពិជគណិតកម្រិតបឋមគឺលោការីត។ ឈ្មោះមកពី ភាសាក្រិចពីពាក្យ "លេខ" ឬ "អំណាច" និងមានន័យថាកម្រិតដែលលេខនៅក្នុងមូលដ្ឋានត្រូវតែត្រូវបានលើកឡើងដើម្បីស្វែងរកលេខចុងក្រោយ។

ប្រភេទនៃលោការីត

  • កត់ត្រា a b - លោការីតនៃលេខ b ទៅមូលដ្ឋាន a (a> 0, a ≠ 1, b> 0);
  • log b – លោការីតទសភាគ (លោការីតដល់គោល ១០, a = ១០);
  • ln b – លោការីតធម្មជាតិ (លោការីតដល់គោល e, a = e) ។

តើធ្វើដូចម្តេចដើម្បីដោះស្រាយលោការីត?

លោការីតនៃ b ទៅមូលដ្ឋាន a គឺជានិទស្សន្តដែលតម្រូវឱ្យ b ត្រូវបានលើកឡើងទៅមូលដ្ឋាន a ។ លទ្ធផលដែលទទួលបានត្រូវបានប្រកាសដូចនេះ៖ "លោការីតនៃ b ដល់ ក" ។ ដំណោះស្រាយចំពោះបញ្ហាលោការីតគឺថាអ្នកត្រូវកំណត់ថាមពលដែលបានផ្តល់ឱ្យជាលេខដោយ លេខដែលបានចង្អុលបង្ហាញ. មានច្បាប់ជាមូលដ្ឋានមួយចំនួនដើម្បីកំណត់ ឬដោះស្រាយលោការីត ក៏ដូចជាបំប្លែងសញ្ញាណដោយខ្លួនវាផ្ទាល់។ ដោយប្រើពួកវាដំណោះស្រាយត្រូវបានបង្កើតឡើង សមីការលោការីតនិស្សន្ទវត្ថុត្រូវបានរកឃើញ អាំងតេក្រាលត្រូវបានដោះស្រាយ ហើយប្រតិបត្តិការផ្សេងទៀតជាច្រើនត្រូវបានអនុវត្ត។ ជាទូទៅ ដំណោះស្រាយចំពោះលោការីតខ្លួនវាគឺជាការសម្គាល់សាមញ្ញរបស់វា។ ខាងក្រោមនេះជារូបមន្ត និងលក្ខណៈសម្បត្តិជាមូលដ្ឋាន៖

សម្រាប់ណាមួយ a ; a > 0; a ≠ 1 និងសម្រាប់ x ណាមួយ; y > 0 ។

  • កំណត់ហេតុ a b = b – មូលដ្ឋាន អត្តសញ្ញាណលោការីត
  • កំណត់ហេតុ a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • កត់ត្រា x/ y = កត់ត្រា x – កត់ត្រា y
  • កំណត់ហេតុ a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x សម្រាប់ k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – រូបមន្តសម្រាប់ផ្លាស់ទីទៅមូលដ្ឋានថ្មី។
  • log a x = 1/log x a


វិធីដោះស្រាយលោការីត - ការណែនាំជាជំហាន ៗ សម្រាប់ដោះស្រាយ

  • ដំបូងសរសេរសមីការដែលត្រូវការ។

សូមចំណាំ៖ ប្រសិនបើលោការីតគោលគឺ 10 នោះការបញ្ចូលត្រូវបានបង្រួមជាលទ្ធផលជាលោការីតគោលដប់។ ប្រសិនបើវាមានតម្លៃ លេខធម្មជាតិ e បន្ទាប់មកយើងសរសេរវាចុះ ដោយកាត់បន្ថយវាទៅជាលោការីតធម្មជាតិ។ នេះមានន័យថាលទ្ធផលនៃលោការីតទាំងអស់គឺជាអំណាចដែលលេខគោលត្រូវបានលើកឡើងដើម្បីទទួលបានលេខ ខ។


ដោយផ្ទាល់ ដំណោះស្រាយស្ថិតនៅក្នុងការគណនាសញ្ញាបត្រនេះ។ មុននឹងដោះស្រាយកន្សោមជាមួយលោការីត ត្រូវតែធ្វើឱ្យសាមញ្ញទៅតាមច្បាប់ ពោលគឺប្រើរូបមន្ត។ អ្នកអាចស្វែងរកអត្តសញ្ញាណសំខាន់ៗដោយត្រឡប់ទៅក្រោយបន្តិចក្នុងអត្ថបទ។

ការបូកនិងដកលោការីតដោយពីរ លេខផ្សេងគ្នាប៉ុន្តែជាមួយនឹងមូលដ្ឋានដូចគ្នា ជំនួសដោយលោការីតមួយជាមួយនឹងផលិតផល ឬការបែងចែកលេខ b និង c រៀងគ្នា។ ក្នុងករណីនេះអ្នកអាចអនុវត្តរូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានផ្សេងទៀត (សូមមើលខាងលើ) ។

ប្រសិនបើអ្នកប្រើកន្សោមដើម្បីសម្រួលលោការីត វាមានដែនកំណត់មួយចំនួនដែលត្រូវពិចារណា។ ហើយនោះគឺ៖ មូលដ្ឋាននៃលោការីត a គ្រាន់តែជាចំនួនវិជ្ជមានប៉ុណ្ណោះ ប៉ុន្តែមិនមែនទេ។ ស្មើនឹងមួយ។. លេខ b ដូចជា a ត្រូវតែធំជាងសូន្យ។

មាន​ករណី​ដែល​ដោយ​ការ​សម្រួល​កន្សោម​មួយ អ្នក​នឹង​មិន​អាច​គណនា​លោការីត​ចូល​បាន​ទេ។ ទម្រង់លេខ. វាកើតឡើងថាការបញ្ចេញមតិបែបនេះមិនសមហេតុផលទេព្រោះអំណាចជាច្រើនគឺជាលេខមិនសមហេតុផល។ នៅក្រោមលក្ខខណ្ឌនេះ ទុកអំណាចនៃលេខជាលោការីត។



លោការីត ដូចជាលេខណាមួយ អាចត្រូវបានបន្ថែម ដក និងបំប្លែងតាមគ្រប់មធ្យោបាយ។ ប៉ុន្តែដោយសារលោការីតមិនពិតប្រាកដ លេខធម្មតា។មានច្បាប់នៅទីនេះដែលត្រូវបានគេហៅថា លក្ខណៈសម្បត្តិចម្បង.

អ្នកប្រាកដជាត្រូវដឹងពីច្បាប់ទាំងនេះ - បើគ្មានពួកគេទេ បញ្ហាធ្ងន់ធ្ងរតែមួយមិនអាចដោះស្រាយបានទេ។ បញ្ហាលោការីត. លើសពីនេះទៀតមានពួកគេតិចតួចណាស់ - អ្នកអាចរៀនអ្វីគ្រប់យ៉ាងក្នុងមួយថ្ងៃ។ ដូច្នេះសូមចាប់ផ្តើម។

ការបូកនិងដកលោការីត

ពិចារណាលោការីតពីរដែលមានមូលដ្ឋានដូចគ្នា៖ កំណត់ហេតុ xនិងកំណត់ហេតុ y. បន្ទាប់មក គេអាចបូក និងដក និង៖

  1. កំណត់ហេតុ x+ កំណត់ហេតុ y=កំណត់ហេតុ (x · y);
  2. កំណត់ហេតុ x- កំណត់ហេតុ y=កំណត់ហេតុ (x : y).

ដូច្នេះផលបូកនៃលោការីតគឺស្មើនឹងលោការីតនៃផលិតផល ហើយភាពខុសគ្នាគឺស្មើនឹងលោការីតនៃកូតា។ ចំណាំ៖ ពេលសំខាន់នៅទីនេះ - មូលដ្ឋានដូចគ្នា។. បើហេតុផលខុសគ្នា ច្បាប់ទាំងនេះមិនដំណើរការទេ!

រូបមន្តទាំងនេះនឹងជួយអ្នកក្នុងការគណនា កន្សោមលោការីតទោះបីជាផ្នែកនីមួយៗរបស់វាមិនត្រូវបានរាប់បញ្ចូលក៏ដោយ (សូមមើលមេរៀន “តើលោការីតជាអ្វី”)។ សូមក្រឡេកមើលឧទាហរណ៍ហើយមើល៖

កំណត់ហេតុ ៦ ៤ + កំណត់ហេតុ ៦ ៩.

ដោយសារលោការីតមានមូលដ្ឋានដូចគ្នា យើងប្រើរូបមន្តបូក៖
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2 ។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log 2 48 − log 2 ៣.

មូលដ្ឋានគឺដូចគ្នា យើងប្រើរូបមន្តខុសគ្នា៖
log 2 48 − log 2 3 = log 2 (48:3) = log 2 16 = 4 ។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log 3 135 − log 3 5 ។

ជាថ្មីម្តងទៀត មូលដ្ឋានគឺដូចគ្នា ដូច្នេះយើងមាន៖
log 3 135 − log 3 5 = log 3 (135:5) = log 3 27 = 3 ។

ដូចដែលអ្នកអាចឃើញកន្សោមដើមត្រូវបានបង្កើតឡើងដោយលោការីត "អាក្រក់" ដែលមិនត្រូវបានគណនាដោយឡែកពីគ្នា។ ប៉ុន្តែ​បន្ទាប់​ពី​ការ​ផ្លាស់​ប្តូ​រ​ពួក​គេ​បាន​ចេញ​យ៉ាង​ខ្លាំង​ លេខធម្មតា។. មនុស្សជាច្រើនត្រូវបានបង្កើតឡើងនៅលើការពិតនេះ។ ឯកសារសាកល្បង. ចុះការគ្រប់គ្រងវិញ? កន្សោមស្រដៀងគ្នានៅក្នុងភាពធ្ងន់ធ្ងរទាំងអស់ (ជួនកាលស្ទើរតែគ្មានការផ្លាស់ប្តូរ) ត្រូវបានផ្តល់ជូននៅលើការប្រឡងរដ្ឋបង្រួបបង្រួម។

ការដកនិទស្សន្តចេញពីលោការីត

ឥឡូវ​នេះ​សូម​ធ្វើ​ឱ្យ​ស្មុគស្មាញ​ដល់​កិច្ចការ​បន្តិច។ ចុះបើមូលដ្ឋាន ឬអាគុយម៉ង់នៃលោការីតជាថាមពល? បន្ទាប់មកនិទស្សន្តនៃដឺក្រេនេះអាចត្រូវបានយកចេញពីសញ្ញានៃលោការីតដោយយោងទៅតាមច្បាប់ដូចខាងក្រោមៈ

វាងាយស្រួលក្នុងការកត់សម្គាល់វា។ ច្បាប់ចុងក្រោយធ្វើតាមពីរដំបូង។ ប៉ុន្តែវាជាការល្អប្រសើរជាងមុនក្នុងការចងចាំវាយ៉ាងណាក៏ដោយ - ក្នុងករណីខ្លះវានឹងកាត់បន្ថយបរិមាណនៃការគណនាយ៉ាងខ្លាំង។

ជាការពិតណាស់ ច្បាប់ទាំងអស់នេះមានន័យប្រសិនបើ ODZ នៃលោការីតត្រូវបានអង្កេត៖ > 0, ≠ 1, x> 0. ហើយរឿងមួយទៀត៖ រៀនអនុវត្តរូបមន្តទាំងអស់ មិនត្រឹមតែពីឆ្វេងទៅស្តាំប៉ុណ្ណោះទេ ថែមទាំងច្រាសមកវិញ i.e. អ្នកអាចបញ្ចូលលេខមុនពេលចុះហត្ថលេខាលោការីតចូលទៅក្នុងលោការីតខ្លួនឯង។ នេះគឺជាអ្វីដែលត្រូវការញឹកញាប់បំផុត។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ កំណត់ហេតុ ៧ ៤៩ ៦ .

ចូរយើងកម្ចាត់សញ្ញាបត្រនៅក្នុងអាគុយម៉ង់ដោយប្រើរូបមន្តទីមួយ៖
log 7 49 6 = 6 log 7 49 = 6 2 = 12

កិច្ចការ។ ស្វែងរកអត្ថន័យនៃការបញ្ចេញមតិ៖

[ចំណងជើងសម្រាប់រូបភាព]

ចំណាំថាភាគបែងមានលោការីត មូលដ្ឋាន និងអាគុយម៉ង់ដែលជាអំណាចពិតប្រាកដ៖ 16 = 2 4 ; ៤៩ = ៧ ២. យើង​មាន:

[ចំណងជើងសម្រាប់រូបភាព]

ខ្ញុំគិតថា ឧទាហរណ៍ចុងក្រោយការ​បញ្ជាក់​ត្រូវ​ការ។ តើលោការីតបានទៅណា? រហូតដល់ពេលចុងក្រោយ យើងធ្វើការតែជាមួយភាគបែងប៉ុណ្ណោះ។ យើងបានបង្ហាញមូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីតឈរនៅទីនោះក្នុងទម្រង់ជាអំណាច ហើយយកនិទស្សន្តចេញ - យើងទទួលបានប្រភាគ "បីជាន់" ។

ឥឡូវនេះសូមក្រឡេកមើលប្រភាគសំខាន់។ ភាគយក និងភាគបែងមានលេខដូចគ្នា៖ log 2 7. ចាប់តាំងពី log 2 7 ≠ 0 យើងអាចកាត់បន្ថយប្រភាគ - 2/4 នឹងនៅតែមាននៅក្នុងភាគបែង។ យោងតាមក្បួននព្វន្ធ លេខទាំងបួនអាចផ្ទេរទៅភាគយកដែលជាអ្វីដែលបានធ្វើ។ លទ្ធផល​បាន​ជា​ចម្លើយ៖ ២.

ការផ្លាស់ប្តូរទៅគ្រឹះថ្មី។

និយាយអំពីច្បាប់សម្រាប់បូក និងដកលោការីត ខ្ញុំបានសង្កត់ធ្ងន់ជាពិសេសថាពួកវាដំណើរការតែជាមួយមូលដ្ឋានតែមួយប៉ុណ្ណោះ។ ចុះបើហេតុផលខុសគ្នា? ចុះ​បើ​ពួក​គេ​មិន​មែន​ជា​លេខ​ដូច​គ្នា?

រូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅគ្រឹះថ្មីមួយមកជួយសង្គ្រោះ។ ចូរយើងបង្កើតវានៅក្នុងទម្រង់នៃទ្រឹស្តីបទ៖

សូម​ឱ្យ​កំណត់​ហេតុ​លោការីត​ត្រូវ​បាន​ផ្តល់ x. បន្ទាប់មកសម្រាប់លេខណាមួយ។ បែបនោះ។ > 0 និង ≠ ១, សមភាពគឺពិត៖

[ចំណងជើងសម្រាប់រូបភាព]

ជាពិសេសប្រសិនបើយើងដាក់ = x, យើង​ទទួល​បាន:

[ចំណងជើងសម្រាប់រូបភាព]

ពីរូបមន្តទីពីរ វាធ្វើតាមដែលមូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីតអាចប្តូរបាន ប៉ុន្តែក្នុងករណីនេះកន្សោមទាំងមូលត្រូវបាន "ត្រឡប់" ពោលគឺឧ។ លោការីតលេចឡើងនៅក្នុងភាគបែង។

រូបមន្ត​ទាំងនេះ​កម្រ​រកបាន​ក្នុង​សាមញ្ញ​ណាស់​ កន្សោមលេខ. វាអាចធ្វើទៅបានដើម្បីវាយតម្លៃថាតើពួកវាមានភាពងាយស្រួលយ៉ាងណានៅពេលដោះស្រាយសមីការលោការីត និងវិសមភាព។

ទោះយ៉ាងណាក៏ដោយ មានបញ្ហាដែលមិនអាចដោះស្រាយបានទាល់តែសោះ លើកលែងតែការផ្លាស់ប្តូរទៅគ្រឹះថ្មីមួយ។ តោះ​មើល​ពីរ​បី​ចំណុច​នេះ៖

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log 5 16 log 2 25 ។

ចំណាំថាអាគុយម៉ង់នៃលោការីតទាំងពីរមានអំណាចពិតប្រាកដ។ ចូរយកសូចនាករនេះចេញ៖ log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

ឥឡូវនេះសូម "បញ្ច្រាស" លោការីតទីពីរ៖

[ចំណងជើងសម្រាប់រូបភាព]

ដោយសារផលិតផលមិនផ្លាស់ប្តូរនៅពេលរៀបចំកត្តាឡើងវិញ យើងបានគុណបួន និងពីរដោយស្ងប់ស្ងាត់ ហើយបន្ទាប់មកដោះស្រាយជាមួយលោការីត។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log 9 100 lg ៣.

មូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីតទីមួយគឺជាអំណាចពិតប្រាកដ។ ចូរសរសេរវាចុះ ហើយកម្ចាត់សូចនាករនេះ៖

[ចំណងជើងសម្រាប់រូបភាព]

ឥឡូវនេះ ចូរយើងកម្ចាត់លោការីតទសភាគដោយផ្លាស់ទីទៅមូលដ្ឋានថ្មី៖

[ចំណងជើងសម្រាប់រូបភាព]

អត្តសញ្ញាណលោការីតមូលដ្ឋាន

ជាញឹកញាប់នៅក្នុងដំណើរការដំណោះស្រាយ វាចាំបាច់ក្នុងការតំណាងឱ្យលេខជាលោការីតទៅមូលដ្ឋានដែលបានផ្តល់ឱ្យ។ ក្នុងករណីនេះ រូបមន្តខាងក្រោមនឹងជួយយើង៖

ក្នុងករណីដំបូងលេខ ក្លាយជាសូចនាករនៃកម្រិតដែលឈរនៅក្នុងអាគុយម៉ង់។ ចំនួន វាអាចជាអ្វីទាំងអស់ ព្រោះវាគ្រាន់តែជាតម្លៃលោការីត។

រូបមន្តទីពីរគឺពិតជានិយមន័យដែលបកស្រាយ។ នោះហើយជាអ្វីដែលគេហៅថា៖ អត្តសញ្ញាណលោការីតមូលដ្ឋាន។

ជាការពិតតើនឹងមានអ្វីកើតឡើងប្រសិនបើលេខ បង្កើនអំណាចបែបនេះដែលចំនួន អំណាចនេះផ្តល់លេខ ? ត្រឹមត្រូវ៖ អ្នកទទួលបានលេខដូចគ្នានេះ។ . អានកថាខណ្ឌនេះម្តងទៀតដោយប្រុងប្រយ័ត្ន - មនុស្សជាច្រើនជាប់គាំង។

ដូចជារូបមន្តសម្រាប់ផ្លាស់ទីទៅមូលដ្ឋានថ្មី អត្តសញ្ញាណលោការីតមូលដ្ឋាន ជួនកាលជាដំណោះស្រាយតែមួយគត់ដែលអាចធ្វើទៅបាន។

កិច្ចការ។ ស្វែងរកអត្ថន័យនៃការបញ្ចេញមតិ៖

[ចំណងជើងសម្រាប់រូបភាព]

ចំណាំថា log 25 64 = log 5 8 - គ្រាន់តែយកការ៉េចេញពីមូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីត។ ពិចារណាក្បួនសម្រាប់គុណអំណាចជាមួយ មូលដ្ឋានដូចគ្នា។, យើង​ទទួល​បាន:

[ចំណងជើងសម្រាប់រូបភាព]

បើអ្នកណាមិនដឹង នេះជាភារកិច្ចពិតពីការប្រឡង Unified State :)

ឯកតាលោការីត និងសូន្យលោការីត

សរុបសេចក្តីមក ខ្ញុំនឹងផ្តល់អត្តសញ្ញាណពីរដែលស្ទើរតែមិនអាចហៅថាលក្ខណៈសម្បត្តិ - ផ្ទុយទៅវិញ ពួកវាជាផលវិបាកនៃនិយមន័យនៃលោការីត។ ពួកគេតែងតែលេចឡើងក្នុងបញ្ហា ហើយគួរឱ្យភ្ញាក់ផ្អើល បង្កើតបញ្ហាសូម្បីតែសម្រាប់សិស្ស "កម្រិតខ្ពស់" ក៏ដោយ។

  1. កំណត់ហេតុ = 1 គឺ ឯកតាលោការីត. ចងចាំម្តងនិងសម្រាប់ទាំងអស់: លោការីតទៅមូលដ្ឋានណាមួយ។ ពីមូលដ្ឋាននេះគឺស្មើនឹងមួយ។
  2. កំណត់ហេតុ 1 = 0 គឺ លោការីត សូន្យ. មូលដ្ឋាន អាចជាអ្វីក៏បាន ប៉ុន្តែប្រសិនបើអាគុយម៉ង់មានមួយ នោះលោការីតគឺស្មើនឹងសូន្យ! ដោយសារតែ 0 = 1 គឺជាលទ្ធផលផ្ទាល់នៃនិយមន័យ។

នោះហើយជាលក្ខណៈសម្បត្តិទាំងអស់។ ត្រូវ​អនុវត្ត​ឲ្យ​បាន​ជាក់​ជា​មិន​ខាន! ទាញយកសន្លឹកបន្លំនៅដើមមេរៀន បោះពុម្ពវាចេញ និងដោះស្រាយបញ្ហា។

    ចូរចាប់ផ្តើមជាមួយ លក្ខណៈសម្បត្តិលោការីតនៃមួយ។. រូបមន្តរបស់វាមានដូចខាងក្រោម៖ លោការីតនៃការរួបរួមគឺស្មើនឹងសូន្យ ពោលគឺ កំណត់ហេតុ a 1=0សម្រាប់ a>0, a≠1។ ភ័ស្តុតាងមិនពិបាកទេ៖ ចាប់តាំងពី 0 = 1 សម្រាប់ការបំពេញលក្ខខណ្ឌខាងលើ a> 0 និង a≠1 បន្ទាប់មកសមភាពកំណត់ហេតុ a 1 = 0 ដែលត្រូវបង្ហាញដូចខាងក្រោមភ្លាមៗពីនិយមន័យនៃលោការីត។

    ចូរយើងផ្តល់ឧទាហរណ៍នៃកម្មវិធីនៃទ្រព្យសម្បត្តិដែលបានពិចារណា៖ log 3 1=0, log1=0 និង .

    តោះបន្តទៅអចលនទ្រព្យបន្ទាប់៖ លោការីតនៃចំនួន, ស្មើនឹងមូលដ្ឋាន, ស្មើនឹងមួយ។នោះគឺ កំណត់ហេតុ a=1សម្រាប់ a>0, a≠1។ ជាការពិតណាស់ចាប់តាំងពី 1 = a សម្រាប់ a ណាមួយបន្ទាប់មកតាមនិយមន័យ កំណត់ហេតុលោការីត a a=1 ។

    ឧទាហរណ៍នៃការប្រើលក្ខណសម្បត្តិនៃលោការីតនេះគឺ កំណត់ហេតុសមភាព 5 5=1, កំណត់ហេតុ 5.6 5.6 និង lne=1 ។

    ឧទាហរណ៍ log 2 2 7 = 7, log10 -4 =-4 និង .

    លោការីតនៃផលិតផលនៃពីរ លេខវិជ្ជមាន x និង y គឺស្មើនឹងផលគុណនៃលោការីតនៃលេខទាំងនេះ៖ log a (x y)=log a x+log a y, a>0 , a≠1 . អនុញ្ញាតឱ្យយើងបញ្ជាក់ពីទ្រព្យសម្បត្តិរបស់លោការីតនៃផលិតផលមួយ។ ដោយសារតែលក្ខណៈសម្បត្តិនៃសញ្ញាបត្រ a log a x+log a y = a log a x ·a log a yហើយចាប់តាំងពីដោយអត្តសញ្ញាណលោការីតមេ កំណត់ហេតុ a x = x និងកំណត់ហេតុមួយ y = y បន្ទាប់មកកំណត់ហេតុ a x ·a កំណត់ហេតុមួយ y = x·y ។ ដូច្នេះ log a x+log a y =x·y ដែលតាមនិយមន័យលោការីត ភាពស្មើគ្នាត្រូវបានបង្ហាញដូចខាងក្រោម។

    ចូរបង្ហាញឧទាហរណ៍នៃការប្រើលក្ខណសម្បត្តិនៃលោការីតនៃផលិតផលមួយ៖ log 5 (2 3)=log 5 2+log 5 3 និង .

    ទ្រព្យសម្បត្តិនៃលោការីតរបស់ផលិតផលមួយអាចត្រូវបានទូទៅទៅជាផលិតផលនៃចំនួនកំណត់ n នៃចំនួនវិជ្ជមាន x 1 , x 2 , … , x n ជា កំណត់ហេតុ a (x 1 · x 2 · ... · x n) = log a x 1 +log a x 2 +…+log a x n . សមភាពនេះអាចត្រូវបានបញ្ជាក់ដោយគ្មានបញ្ហា។

    ឧទាហរណ៍ លោការីតធម្មជាតិនៃផលិតផលមួយអាចត្រូវបានជំនួសដោយផលបូកនៃបី លោការីតធម្មជាតិលេខ 4, អ៊ី, និង .

    លោការីតនៃកូតានៃចំនួនវិជ្ជមានពីរ x និង y គឺស្មើនឹងភាពខុសគ្នារវាងលោការីតនៃលេខទាំងនេះ។ ទ្រព្យសម្បត្តិនៃលោការីតនៃកូតាត្រូវគ្នាទៅនឹងរូបមន្តនៃទម្រង់ ដែល a>0, a≠1, x និង y គឺជាចំនួនវិជ្ជមានមួយចំនួន។ សុពលភាពនៃរូបមន្តនេះត្រូវបានបញ្ជាក់ក៏ដូចជារូបមន្តសម្រាប់លោការីតនៃផលិតផល៖ ចាប់តាំងពី បន្ទាប់មកតាមនិយមន័យលោការីត។

    នេះគឺជាឧទាហរណ៍នៃការប្រើប្រាស់លក្ខណសម្បត្តិនៃលោការីតនេះ៖ .

    តោះបន្តទៅ ទ្រព្យសម្បត្តិនៃលោការីតនៃអំណាច. លោការីតនៃដឺក្រេគឺស្មើនឹងផលគុណនៃនិទស្សន្ត និងលោការីតនៃម៉ូឌុលនៃគោលនៃដឺក្រេនេះ។ ចូរយើងសរសេរលក្ខណសម្បត្តិនៃលោការីតនៃថាមពលជារូបមន្ត៖ log a b p =p·log a |b|ដែលជាកន្លែងដែល a>0, a≠1, b និង p គឺជាលេខដែលកម្រិត b p មានន័យ និង b p>0 ។

    ដំបូង​យើង​បង្ហាញ​លក្ខណៈ​នេះ​សម្រាប់​វិជ្ជមាន ខ. អត្តសញ្ញាណលោការីតមូលដ្ឋានអនុញ្ញាតឱ្យយើងតំណាងឱ្យលេខ b ជាកំណត់ហេតុ a b បន្ទាប់មក b p = (a log a b) p ហើយកន្សោមលទ្ធផលដោយសារតែទ្រព្យសម្បត្តិនៃអំណាចគឺស្មើនឹង p · plog a b ។ ដូច្នេះយើងមករកសមភាព b p =a p·plog a b ដែលតាមនិយមន័យលោការីត យើងសន្និដ្ឋានថា log a b p =p·log a b ។

    វានៅសល់ដើម្បីបញ្ជាក់ទ្រព្យសម្បត្តិនេះសម្រាប់អវិជ្ជមាន ខ. នៅទីនេះយើងកត់សំគាល់ថាកន្សោម a b p សម្រាប់អវិជ្ជមាន b មានន័យសម្រាប់តែនិទស្សន្ត p ប៉ុណ្ណោះ (ចាប់តាំងពីតម្លៃនៃដឺក្រេ b p ត្រូវតែធំជាងសូន្យនៅក្នុង បើមិនដូច្នេះទេលោការីតនឹងមិនសមហេតុផលទេ) ហើយក្នុងករណីនេះ b p =|b| ទំ។ បន្ទាប់មក b p =|b| p =(a log a |b|) p =a p·log a |b|ពីកន្លែងដែល log a b p =p·log a |b| .

    ឧទាហរណ៍, និង ln(-3) 4 =4·ln|-3|=4·ln3 ។

    វាធ្វើតាមពីទ្រព្យសម្បត្តិមុន។ ទ្រព្យសម្បត្តិលោការីតពីឫស៖ លោការីតនៃឫសទី n គឺស្មើនឹងផលគុណនៃប្រភាគ 1/n ដោយលោការីតនៃកន្សោមរ៉ាឌីកាល់ នោះគឺ ដែលជាកន្លែងដែល a> 0, a≠1, n - ចំនួនធម្មជាតិ, ធំជាងមួយ។, b>0 ។

    ភស្តុតាងគឺផ្អែកលើសមភាព (សូមមើល) ដែលមានសុពលភាពសម្រាប់ b វិជ្ជមានណាមួយ និងទ្រព្យសម្បត្តិនៃលោការីតនៃអំណាច៖ .

    នេះជាឧទាហរណ៍នៃការប្រើប្រាស់ទ្រព្យសម្បត្តិនេះ៖ .

    ឥឡូវនេះសូមបញ្ជាក់ រូបមន្តសម្រាប់ផ្លាស់ទីទៅមូលដ្ឋានលោការីតថ្មី។ប្រភេទ . ដើម្បីធ្វើដូច្នេះ វាគ្រប់គ្រាន់ដើម្បីបញ្ជាក់សុពលភាពនៃសមភាព log c b=log a b·log c a ។ អត្តសញ្ញាណលោការីតជាមូលដ្ឋានអនុញ្ញាតឱ្យយើងតំណាងឱ្យលេខ b ជាកំណត់ហេតុ a b បន្ទាប់មកកំណត់ហេតុ c b = កំណត់ហេតុ c កំណត់ហេតុ a b ។ វានៅសល់ដើម្បីប្រើទ្រព្យសម្បត្តិនៃលោការីតនៃដឺក្រេ: log c a log a b = log a b log c a. នេះបង្ហាញពីកំណត់ហេតុសមភាព c b=log a b·blog c a ដែលមានន័យថារូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីនៃលោការីតក៏ត្រូវបានបញ្ជាក់ផងដែរ។

    ចូរបង្ហាញឧទាហរណ៍មួយចំនួននៃការប្រើប្រាស់លក្ខណសម្បត្តិនៃលោការីតនេះ៖ និង .

    រូបមន្តសម្រាប់ផ្លាស់ទីទៅមូលដ្ឋានថ្មីអនុញ្ញាតឱ្យអ្នកបន្តទៅធ្វើការជាមួយលោការីតដែលមានមូលដ្ឋាន "ងាយស្រួល" ។ ឧទាហរណ៍ វាអាចត្រូវបានប្រើដើម្បីផ្លាស់ទីទៅលោការីតធម្មជាតិ ឬគោលដប់ ដូច្នេះអ្នកអាចគណនាតម្លៃលោការីតពីតារាងលោការីត។ រូបមន្តសម្រាប់ផ្លាស់ទីទៅមូលដ្ឋានលោការីតថ្មីក៏អនុញ្ញាតឱ្យក្នុងករណីខ្លះដើម្បីស្វែងរកតម្លៃនៃលោការីតដែលបានផ្តល់ឱ្យនៅពេលដែលតម្លៃនៃលោការីតមួយចំនួនជាមួយមូលដ្ឋានផ្សេងទៀតត្រូវបានគេស្គាល់។

    ប្រើញឹកញាប់ ករណីពិសេសរូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីនៃលោការីតជាមួយ c=b នៃទម្រង់ . នេះបង្ហាញថា log a b និង log b a – . ឧ. .

    រូបមន្តក៏ត្រូវបានគេប្រើជាញឹកញាប់ផងដែរ។ ដែលងាយស្រួលសម្រាប់ស្វែងរកតម្លៃលោការីត។ ដើម្បី​បញ្ជាក់​ពាក្យ​របស់​យើង យើង​នឹង​បង្ហាញ​ពី​របៀប​ដែល​វា​អាច​ត្រូវ​បាន​ប្រើ​ដើម្បី​គណនា​តម្លៃ​នៃ​លោការីត​នៃ​ទម្រង់។ យើង​មាន . ដើម្បីបញ្ជាក់រូបមន្ត វាគ្រប់គ្រាន់ក្នុងការប្រើរូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីនៃលោការីត a: .

    វានៅសល់ដើម្បីបញ្ជាក់លក្ខណៈសម្បត្តិនៃការប្រៀបធៀបលោការីត។

    ចូរយើងបញ្ជាក់ថា សម្រាប់លេខវិជ្ជមានណាមួយ b 1 និង b 2, b 1 កំណត់ហេតុ a b 2 និងសម្រាប់ a> 1 - កំណត់ហេតុវិសមភាព a b 1

    ជាចុងក្រោយ វានៅតែជាការបញ្ជាក់ចុងក្រោយនៃលក្ខណៈសម្បត្តិដែលបានរាយបញ្ជីនៃលោការីត។ អនុញ្ញាតឱ្យយើងដាក់កម្រិតខ្លួនយើងទៅនឹងភស្តុតាងនៃផ្នែកទីមួយរបស់វា ពោលគឺ យើងនឹងបង្ហាញថា ប្រសិនបើ 1 > 1, 2 > 1 និង 1 1 គឺជាកំណត់ហេតុពិត a 1 b>log a 2 b ។ សេចក្តីថ្លែងការណ៍ដែលនៅសល់នៃទ្រព្យសម្បត្តិលោការីតនេះត្រូវបានបង្ហាញឱ្យឃើញតាមគោលការណ៍ស្រដៀងគ្នា។

    ចូរយើងប្រើវិធីផ្ទុយ។ ឧបមាថាសម្រាប់ 1>1, 2>1 និង 1 1 គឺពិត log a 1 b≤log a 2 b ។ ដោយផ្អែកលើលក្ខណៈសម្បត្តិនៃលោការីត វិសមភាពទាំងនេះអាចត្រូវបានសរសេរឡើងវិញជា និង រៀងៗខ្លួន ហើយពីពួកវា វាធ្វើតាមថា log b a 1 ≤log b a 2 និង log b a 1 ≥log b a 2 រៀងគ្នា។ បន្ទាប់មកយោងទៅតាមលក្ខណៈសម្បត្តិនៃអំណាចដែលមានមូលដ្ឋានដូចគ្នា សមភាព b log b a 1 ≥b log b a 2 និង b log b a 1 ≥b log b a 2 ត្រូវតែកាន់ នោះគឺ a 1 ≥a 2 ។ ដូច្នេះ​យើង​បាន​មក​ដល់​ការ​ផ្ទុយ​ទៅ​នឹង​លក្ខខណ្ឌ 1

គន្ថនិទ្ទេស។

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. និងផ្សេងៗទៀត។
  • Gusev V.A., Mordkovich A.G. គណិតវិទ្យា (សៀវភៅណែនាំសម្រាប់អ្នកចូលសាលាបច្ចេកទេស)។