الخطيئة هي نسبة الضلع المقابل للوتر. نظرية فيثاغورس لإيجاد جانب المثلث القائم الزاوية

سلوك الساق المقابلةإلى الوتر يسمى جيب زاوية حادة مثلث قائم.

\الخطيئة \alpha = \frac(أ)(ج)

جيب تمام الزاوية الحادة للمثلث القائم

تسمى نسبة الساق المجاورة إلى الوتر جيب تمام الزاوية الحادةمثلث قائم.

\cos \alpha = \frac(b)(c)

ظل الزاوية الحادة للمثلث القائم

تسمى نسبة الضلع المقابل إلى الضلع المجاور ظل الزاوية الحادةمثلث قائم.

tg \alpha = \frac(a)(b)

ظل التمام للزاوية الحادة للمثلث القائم

تسمى نسبة الضلع المجاور إلى الضلع المقابل ظل التمام لزاوية حادةمثلث قائم.

ctg \alpha = \frac(b)(a)

جيب الزاوية التعسفية

يسمى إحداثي نقطة على دائرة الوحدة التي تقابلها الزاوية \alpha جيب الزاوية التعسفيةالدوران \ ألفا .

\الخطيئة \alpha=y

جيب تمام الزاوية التعسفية

نقطة الإحداثي السيني على دائرة الوحدة، والتي تسمى الزاوية \alpha المقابلة لها جيب تمام الزاوية التعسفيةالدوران \ ألفا .

\cos \alpha=x

ظل الزاوية التعسفية

تسمى نسبة جيب زاوية الدوران الاختيارية \alpha إلى جيب تمامها ظل الزاوية التعسفيةالدوران \ ألفا .

تان \ ألفا = ص _ (أ)

تيراغرام \alpha = \frac(\sin \alpha)(\cos \alpha)

ظل التمام لزاوية تعسفية

تسمى نسبة جيب التمام لزاوية الدوران الاختيارية \alpha إلى جيبها ظل التمام لزاوية تعسفيةالدوران \ ألفا .

ctg \alpha =x_(A)

ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

مثال على إيجاد زاوية تعسفية

إذا كانت \alpha هي زاوية ما AOM، حيث M هي نقطة من دائرة الوحدة، إذن

\sin \alpha=y_(M) , \cos \alpha=x_(M) , tg \alpha=\frac(y_(M))(x_(M)), ctg \alpha=\frac(x_(M))(y_(M)).

على سبيل المثال، إذا \زاوية AOM = -\frac(\pi)(4)، إذن: إحداثي النقطة M يساوي -\frac(\sqrt(2))(2)، الإحداثي السيني متساوي \frac(\sqrt(2))(2)وهذا هو السبب

\sin \left (-\frac(\pi)(4) \right)=-\frac(\sqrt(2))(2);

\cos \left (\frac(\pi)(4) \right)=\frac(\sqrt(2))(2);

tg;

ctg \left (-\frac(\pi)(4) \right)=-1.

جدول قيم جيب التمام لظلال التمام

ترد في الجدول قيم الزوايا الرئيسية المتكررة:

0^(\دائرة) (0)30^(\circ)\left(\frac(\pi)(6)\يمين) 45^(\circ)\left(\frac(\pi)(4)\يمين) 60^(\circ)\left(\frac(\pi)(3)\يمين) 90^(\circ)\left(\frac(\pi)(2)\right) 180^(\circ)\يسار(\pi\يمين)270^(\circ)\left(\frac(3\pi)(2)\يمين) 360^(\دائرة)\يسار (2\بي\يمين)
\ الخطيئة \ ألفا0 \frac12\frac(\sqrt 2)(2)\frac(\sqrt 3)(2)1 0 −1 0
\كوس\ألفا1 \frac(\sqrt 3)(2)\frac(\sqrt 2)(2)\frac120 −1 0 1
تيراغرام ألفا0 \فارك(\sqrt 3)(3)1 \sqrt30 0
CTG\alpha\sqrt31 \فارك(\sqrt 3)(3)0 0

ترتبط مفاهيم الجيب ()، وجيب التمام ()، والظل ()، وظل التمام () ارتباطًا وثيقًا بمفهوم الزاوية. لفهم هذه الأمور جيدًا، للوهلة الأولى، مفاهيم معقدة(والتي تسبب حالة من الرعب لدى كثير من تلاميذ المدارس)، وللتأكد من أن "الشيطان ليس مخيفا كما هو مرسوم"، دعونا نبدأ من البداية ونفهم مفهوم الزاوية.

مفهوم الزاوية: راديان، درجة

دعونا ننظر إلى الصورة. لقد "تحول" المتجه بالنسبة إلى النقطة بمقدار معين. إذن، سيكون قياس هذا الدوران بالنسبة إلى الموضع الأولي ركن.

ماذا تريد أن تعرف أيضًا عن مفهوم الزاوية؟ حسنا، بالطبع، وحدات الزاوية!

يمكن قياس الزاوية، في كل من الهندسة وعلم المثلثات، بالدرجات والراديان.

تسمى الزاوية (درجة واحدة). الزاوية المركزيةفي دائرة، مبنية على قوس دائري يساوي جزء من الدائرة. وهكذا فإن الدائرة بأكملها تتكون من “قطع” من الأقواس الدائرية، أو أن الزاوية الموصوفة بالدائرة متساوية.

أي أن الشكل أعلاه يوضح زاوية مساوية، أي أن هذه الزاوية ترتكز على قوس دائري بحجم محيطه.

الزاوية بالراديان هي الزاوية المركزية في دائرة يقابلها قوس دائري طوله يساوي نصف قطر الدائرة. حسنًا، هل اكتشفت ذلك؟ إذا لم يكن الأمر كذلك، فلنكتشف ذلك من الرسم.

إذن، يوضح الشكل زاوية تساوي الراديان، أي أن هذه الزاوية ترتكز على قوس دائري طوله يساوي نصف قطر الدائرة (الطول يساوي الطول أو نصف القطر يساوي الطولأقواس). وبالتالي، يتم حساب طول القوس بالصيغة:

أين الزاوية المركزية بالراديان؟

حسنًا، بمعرفة ذلك، هل يمكنك الإجابة عن عدد الراديان الموجود في الزاوية التي تصفها الدائرة؟ نعم، لهذا عليك أن تتذكر صيغة المحيط. ها هي:

حسنًا، لنربط الآن بين هاتين الصيغتين ونجد أن الزاوية التي تصفها الدائرة متساوية. وهذا يعني أنه من خلال ربط القيمة بالدرجات والراديان، نحصل على ذلك. على التوالى، . كما ترون، على عكس "الدرجات"، تم حذف كلمة "راديان"، لأن وحدة القياس عادة ما تكون واضحة من السياق.

كم عدد الراديان هناك؟ صحيح!

فهمتها؟ ثم المضي قدما وإصلاحه:

تواجه صعوبات؟ ثم ابحث إجابات:

المثلث الأيمن: الجيب، جيب التمام، الظل، ظل التمام للزاوية

لذلك، توصلنا إلى مفهوم الزاوية. ولكن ما هو جيب التمام، وجيب التمام، والظل، وظل التمام للزاوية؟ دعونا معرفة ذلك. للقيام بذلك، سوف يساعدنا المثلث الأيمن.

ماذا تسمى أضلاع المثلث القائم الزاوية؟ هذا صحيح، الوتر والساقان: الوتر هو الجانب الذي يقع في المقابل زاوية مستقيمة(في مثالنا هذا هو الجانب)؛ والساقان هما الضلعان المتبقيان و(المجاوران للزاوية القائمة)، وإذا اعتبرنا الساقين نسبة إلى الزاوية، فالرجل هو الساق المجاورة، والرجل هو المقابل. والآن، دعونا نجيب على السؤال: ما المقصود بجيب الجيب وجيب التمام والظل وظل التمام للزاوية؟

جيب الزاوية- هذه هي نسبة الساق المقابلة (البعيدة) إلى الوتر.

في مثلثنا.

جيب تمام الزاوية- هذه هي نسبة الساق المجاورة (المقربة) إلى الوتر.

في مثلثنا.

ظل الزاوية- هذه هي نسبة الضلع المقابل (البعيد) إلى الضلع المجاور (القريب).

في مثلثنا.

ظل التمام للزاوية- هذه هي نسبة الضلع المجاور (القريب) إلى الضلع المقابل (البعيد).

في مثلثنا.

هذه التعريفات ضرورية يتذكر! لتسهيل تذكر أي ساق يجب تقسيمها إلى ماذا، عليك أن تفهم ذلك بوضوح الظلو ظل التمامتجلس الأرجل فقط، ويظهر الوتر فقط في الداخل التجويفو جيب التمام. وبعد ذلك يمكنك التوصل إلى سلسلة من الارتباطات. على سبيل المثال، هذا:

جيب التمام → اللمس → اللمس → المجاورة؛

ظل التمام → اللمس → اللمس → المجاور.

بادئ ذي بدء، عليك أن تتذكر أن جيب التمام وجيب التمام والظل وظل التمام لأن نسب جوانب المثلث لا تعتمد على أطوال هذه الجوانب (في نفس الزاوية). لا تصدق؟ ثم تأكد من خلال النظر إلى الصورة:

خذ بعين الاعتبار، على سبيل المثال، جيب تمام الزاوية. بحكم التعريف، من مثلث: ولكن يمكننا حساب جيب التمام لزاوية من مثلث: . كما ترون، أطوال الجوانب مختلفة، ولكن قيمة جيب التمام لزاوية واحدة هي نفسها. وبالتالي، فإن قيم الجيب وجيب التمام والظل وظل التمام تعتمد فقط على حجم الزاوية.

إذا فهمت التعريفات، فقم بالمضي قدمًا ودمجها!

بالنسبة للمثلث الموضح في الشكل أدناه نجد.

حسنا، هل حصلت عليه؟ ثم جرب ذلك بنفسك: احسب نفس الشيء بالنسبة للزاوية.

دائرة الوحدة (المثلثية).

من خلال فهم مفاهيم الدرجات والراديان، اعتبرنا دائرة نصف قطرها يساوي. تسمى هذه الدائرة أعزب. سيكون مفيدًا جدًا عند دراسة علم المثلثات. لذلك، دعونا ننظر إليها بمزيد من التفصيل.

كما ترون، دائرة معينةبنيت في النظام الديكارتيالإحداثيات نصف قطر الدائرة يساوي واحد، بينما يقع مركز الدائرة عند نقطة الأصل، موقف البدايةيتم تثبيت ناقل نصف القطر على طول الاتجاه الموجب للمحور (في مثالنا، هذا هو نصف القطر).

كل نقطة على الدائرة تقابل رقمين: إحداثي المحور وإحداثي المحور. ما هي هذه الأرقام الإحداثية؟ وبشكل عام ما علاقتهم بالموضوع المطروح؟ للقيام بذلك، علينا أن نتذكر المثلث القائم الزاوية. في الشكل أعلاه، يمكنك رؤية مثلثين قائمين بالكامل. النظر في مثلث. وهو مستطيل لأنه عمودي على المحور.

ما هو المثلث يساوي؟ صحيح. بالإضافة إلى ذلك، نحن نعلم أن هذا هو نصف قطر دائرة الوحدة، وهو ما يعني . لنعوض بهذه القيمة في صيغة جيب التمام. إليك ما يحدث:

ما هو المثلث يساوي؟ حسنا بالطبع، ! استبدل قيمة نصف القطر في هذه الصيغة واحصل على:

إذًا، هل يمكنك معرفة إحداثيات نقطة تنتمي إلى دائرة؟ حسنا، بأي حال من الأحوال؟ ماذا لو أدركت ذلك وما هي إلا أرقام؟ ما الإحداثيات التي تتوافق معها؟ حسنا، بالطبع، الإحداثيات! وما الإحداثيات التي تتوافق معها؟ هذا صحيح، الإحداثيات! وهكذا الفترة.

ما هي إذن وتساوي؟ هذا صحيح، دعونا نستخدم التعريفات المقابلة للظل وظل التمام ونحصل على ذلك، أ.

ماذا لو كانت الزاوية أكبر؟ على سبيل المثال، كما في هذه الصورة:

ما الذي تغير في في هذا المثال؟ دعونا معرفة ذلك. للقيام بذلك، دعونا ننتقل مرة أخرى إلى المثلث الأيمن. خذ بعين الاعتبار مثلثًا قائمًا: الزاوية (المجاورة للزاوية). ما هي قيم الجيب وجيب التمام والظل وظل التمام للزاوية؟ هذا صحيح، نحن نلتزم بالتعريفات المقابلة للدوال المثلثية:

حسنًا، كما ترون، فإن قيمة جيب الزاوية لا تزال تتوافق مع الإحداثيات؛ قيمة جيب التمام للزاوية - الإحداثيات؛ وقيم الظل وظل التمام للنسب المقابلة. وبالتالي، تنطبق هذه العلاقات على أي دوران لمتجه نصف القطر.

لقد سبق أن ذكرنا أن الموضع الأولي لمتجه نصف القطر يقع على طول الاتجاه الموجب للمحور. لقد قمنا حتى الآن بتدوير هذا المتجه عكس اتجاه عقارب الساعة، لكن ماذا يحدث إذا قمنا بتدويره في اتجاه عقارب الساعة؟ لا شيء غير عادي، ستحصل أيضًا على زاوية ذات قيمة معينة، لكنها فقط ستكون سلبية. وبالتالي، عند تدوير ناقل نصف القطر عكس اتجاه عقارب الساعة، نحصل على زوايا إيجابية، وعند الدوران في اتجاه عقارب الساعة - سلبي.

إذن، نحن نعلم أن الدورة الكاملة لمتجه نصف القطر حول الدائرة هي أو. هل من الممكن تدوير ناقل نصف القطر إلى أو إلى؟ حسنا بالطبع يمكنك! في الحالة الأولى، فإن متجه نصف القطر سيقوم بدورة كاملة ويتوقف عند الموضع أو.

في الحالة الثانية، أي أن متجه نصف القطر سيقوم بثلاث دورات كاملة ويتوقف عند الموضع أو.

وبالتالي، من الأمثلة المذكورة أعلاه يمكننا أن نستنتج أن الزوايا التي تختلف بـ أو (حيث يوجد أي عدد صحيح) تتوافق مع نفس موضع متجه نصف القطر.

الشكل أدناه يوضح زاوية. نفس الصورة تتوافق مع الزاوية، الخ. هذه القائمة يمكن أن تستمر إلى أجل غير مسمى. يمكن كتابة كل هذه الزوايا بالصيغة العامة أو (أين يوجد أي عدد صحيح)

الآن، بعد معرفة تعريفات الدوال المثلثية الأساسية واستخدام دائرة الوحدة، حاول الإجابة على ما هي القيم:

إليك دائرة الوحدة لمساعدتك:

تواجه صعوبات؟ ثم دعونا معرفة ذلك. لذلك نحن نعرف أن:

ومن هنا، نحدد إحداثيات النقاط المقابلة لقياسات زوايا معينة. حسنًا، لنبدأ بالترتيب: الزاوية عند تتوافق مع نقطة ذات إحداثيات، وبالتالي:

غير موجود؛

علاوة على ذلك، فإن الالتزام بنفس المنطق، نكتشف أن الزوايا تتوافق مع النقاط ذات الإحداثيات، على التوالي. بمعرفة ذلك، من السهل تحديد قيم الدوال المثلثية فيها النقاط المقابلة. جربه بنفسك أولاً، ثم تحقق من الإجابات.

الإجابات:

غير موجود

غير موجود

غير موجود

غير موجود

وبذلك يمكننا عمل الجدول التالي:

ليست هناك حاجة لتذكر كل هذه القيم. يكفي أن نتذكر المراسلات بين إحداثيات النقاط على دائرة الوحدة وقيم الدوال المثلثية:

لكن قيم الدوال المثلثية للزوايا في و، الواردة في الجدول أدناه، يجب أن نتذكر:

لا تخف، الآن سنعرض لك مثالاً واحدًا من السهل جدًا تذكر القيم المقابلة:

لاستخدام هذه الطريقة، من المهم أن نتذكر قيم الجيب لجميع قياسات الزاوية الثلاثة ()، وكذلك قيمة ظل الزاوية. بمعرفة هذه القيم، من السهل جدًا استعادة الجدول بأكمله - يتم نقل قيم جيب التمام وفقًا للأسهم، أي:

مع العلم بذلك، يمكنك استعادة القيم ل. سوف يتطابق البسط " " وسيتطابق المقام " ". يتم نقل قيم ظل التمام وفقًا للأسهم الموضحة في الشكل. إذا فهمت هذا وتذكرت الرسم التخطيطي بالأسهم، فسيكون ذلك كافيًا لتذكر جميع القيم من الجدول.

إحداثيات نقطة على الدائرة

هل من الممكن العثور على نقطة (إحداثياتها) على الدائرة، معرفة إحداثيات مركز الدائرة ونصف قطرها وزاوية الدوران?

حسنا بالطبع يمكنك! دعونا نخرجها صيغة عامةللعثور على إحداثيات نقطة.

على سبيل المثال، هذه دائرة أمامنا:

لقد علمنا أن النقطة هي مركز الدائرة. نصف قطر الدائرة متساوي. من الضروري العثور على إحداثيات نقطة تم الحصول عليها عن طريق تدوير النقطة بالدرجات.

كما يتبين من الشكل، فإن إحداثيات النقطة تتوافق مع طول القطعة. طول القطعة يتوافق مع إحداثيات مركز الدائرة، أي أنها متساوية. يمكن التعبير عن طول المقطع باستخدام تعريف جيب التمام:

ثم لدينا ذلك لإحداثي النقطة.

وباستخدام نفس المنطق، نجد قيمة الإحداثيات y للنقطة. هكذا،

لذلك، في منظر عاميتم تحديد إحداثيات النقاط بواسطة الصيغ:

إحداثيات مركز الدائرة،

نصف قطر الدائرة,

زاوية دوران نصف قطر المتجه.

كما ترون، بالنسبة لدائرة الوحدة التي ندرسها، تم تقليل هذه الصيغ بشكل كبير، حيث أن إحداثيات المركز تساوي الصفر ونصف القطر يساوي واحدًا:

حسنًا، دعونا نجرب هذه الصيغ من خلال التدرب على إيجاد النقاط على الدائرة؟

1. ابحث عن إحداثيات نقطة على دائرة الوحدة التي تم الحصول عليها عن طريق تدوير النقطة.

2. أوجد إحداثيات نقطة على دائرة الوحدة التي تم الحصول عليها عن طريق تدوير النقطة.

3. أوجد إحداثيات نقطة على دائرة الوحدة التي تم الحصول عليها عن طريق تدوير النقطة.

4. النقطة هي مركز الدائرة. نصف قطر الدائرة متساوي. من الضروري العثور على إحداثيات النقطة التي تم الحصول عليها عن طريق تدوير متجه نصف القطر الأولي.

5. النقطة هي مركز الدائرة. نصف قطر الدائرة متساوي. من الضروري العثور على إحداثيات النقطة التي تم الحصول عليها عن طريق تدوير متجه نصف القطر الأولي.

هل تواجه صعوبة في العثور على إحداثيات نقطة على الدائرة؟

قم بحل هذه الأمثلة الخمسة (أو كن جيدًا في حلها) وسوف تتعلم كيفية العثور عليها!

1.

يمكنك ملاحظة ذلك. لكننا نعرف ما يقابل الثورة الكاملة لنقطة البداية. هكذا، النقطة المطلوبةسيكون في نفس الوضع عند التشغيل. وبمعرفة ذلك نجد الإحداثيات المطلوبة للنقطة:

2. تتمركز دائرة الوحدة عند نقطة، مما يعني أنه يمكننا استخدام صيغ مبسطة:

يمكنك ملاحظة ذلك. نحن نعرف ما يتوافق مع اثنين السرعة الكاملةنقطة البداية. وبالتالي فإن النقطة المطلوبة ستكون في نفس الوضع الذي كانت عليه عند التحول إليها. وبمعرفة ذلك نجد الإحداثيات المطلوبة للنقطة:

الجيب وجيب التمام هما قيمتان في الجدول. ونتذكر معانيها ونحصل على:

وبالتالي، فإن النقطة المطلوبة لها إحداثيات.

3. تتمركز دائرة الوحدة عند نقطة، مما يعني أنه يمكننا استخدام صيغ مبسطة:

يمكنك ملاحظة ذلك. دعونا نصور المثال المعني في الشكل:

نصف القطر يجعل الزوايا متساوية مع المحور ومعه. مع العلم أن القيم الجدولية لجيب التمام والجيب متساوية، وبعد تحديد أن جيب التمام هنا يأخذ معنى سلبي، وجيب الزاوية موجب، لدينا:

المزيد من التفاصيل أمثلة مماثلةيتم فهمها عند دراسة صيغ تقليل الدوال المثلثية في الموضوع.

وبالتالي، فإن النقطة المطلوبة لها إحداثيات.

4.

زاوية دوران نصف قطر المتجه (حسب الحالة)

لتحديد العلامات المقابلة للجيب وجيب التمام، نقوم ببناء دائرة الوحدة والزاوية:

كما ترون، القيمة، أي موجبة، والقيمة، أي، سلبية. وبمعرفة القيم الجدولية للدوال المثلثية المقابلة نحصل على ما يلي:

دعنا نستبدل القيم التي تم الحصول عليها في صيغتنا ونجد الإحداثيات:

وبالتالي، فإن النقطة المطلوبة لها إحداثيات.

5. لحل هذه المشكلة، نستخدم الصيغ في الصورة العامة، حيث

إحداثيات مركز الدائرة (في مثالنا،

نصف قطر الدائرة (حسب الحالة)

زاوية دوران نصف قطر المتجه (حسب الحالة).

دعنا نستبدل جميع القيم في الصيغة ونحصل على:

و - قيم الجدول. دعونا نتذكرها ونستبدلها في الصيغة:

وبالتالي، فإن النقطة المطلوبة لها إحداثيات.

الملخص والصيغ الأساسية

جيب الزاوية هو نسبة الساق المقابلة (البعيدة) إلى الوتر.

جيب تمام الزاوية هو نسبة الساق المجاورة (المقربة) إلى الوتر.

ظل الزاوية هو نسبة الجانب المقابل (البعيد) إلى الجانب المجاور (القريب).

ظل التمام للزاوية هو نسبة الضلع المجاور (القريب) إلى الضلع المقابل (البعيد).

في الحياة سوف نضطر في كثير من الأحيان إلى التعامل معها مسائل حسابية: في المدرسة، في الجامعة، ومن ثم مساعدة طفلك على إكمال الدراسة العمل في المنزل. سيواجه الأشخاص في بعض المهن الرياضيات بشكل يومي. ولذلك فمن المفيد أن نتذكر أو نتذكر القواعد الرياضية. في هذه المقالة سوف نلقي نظرة على إحداها: إيجاد جانب المثلث القائم الزاوية.

ما هو المثلث الصحيح

أولاً، دعونا نتذكر ما هو المثلث القائم الزاوية. مثلث قائم- هذا الشكل الهندسيمكونة من ثلاثة قطع تصل بين نقاط لا تقع على خط مستقيم واحد، وقياس إحدى زوايا هذا الشكل 90 درجة. تسمى الجوانب التي تشكل زاوية قائمة بالساقين، والجانب الذي يقع مقابل الزاوية القائمة يسمى الوتر.

إيجاد ساق المثلث القائم الزاوية

هناك عدة طرق لمعرفة طول الساق. أود أن أفكر فيها بمزيد من التفصيل.

نظرية فيثاغورس لإيجاد جانب المثلث القائم الزاوية

إذا عرفنا الوتر والضلع، فيمكننا إيجاد طول الضلع المجهول باستخدام نظرية فيثاغورس. يبدو مثل هذا: "مربع الوتر يساوي المبلغمربعات من الأرجل." الصيغة: c²=a²+b²، حيث c هو الوتر، وa وb هما الساقين. نحول الصيغة ونحصل على: a²=c²-b².

مثال. طول الوتر 5 سم، والساق 3 سم. نحول الصيغة: c²=a²+b² → a²=c²-b². بعد ذلك نحل: a²=5²-3²; أ² = 25-9؛ أ²=16; أ=√16; أ = 4 (سم).


النسب المثلثية لإيجاد ساق المثلث القائم الزاوية

يمكنك أيضًا العثور على ساق مجهولة إذا كان أي جانب آخر وأي زاوية حادة في المثلث القائم معروفة. هناك أربعة خيارات للعثور على الساق باستخدام الدوال المثلثية: جيب التمام، وجيب التمام، والظل، وظل التمام. لحل المشاكل، سوف يساعدنا الجدول أدناه. دعونا نفكر في هذه الخيارات.


أوجد ساق المثلث القائم باستخدام الجيب

جيب الزاوية (الخطيئة) هو نسبة الضلع المقابل إلى الوتر. الصيغة: sin=a/c، حيث a هو الساق المقابلة للزاوية المعطاة، وc هو الوتر. بعد ذلك، نحول الصيغة ونحصل على: a=sin*c.

مثال. طول الوتر 10 سم والزاوية أ 30 درجة. باستخدام الجدول، نحسب جيب الزاوية A، وهو يساوي 1/2. ثم، باستخدام الصيغة المحولة، نحل: a=sin∠A*c; أ=1/2*10; أ = 5 (سم).


ابحث عن ساق المثلث القائم باستخدام جيب التمام

جيب تمام الزاوية (cos) هو النسبة الساق المجاورةإلى الوتر. الصيغة: cos=b/c، حيث b هو الساق المجاورة لـ هذه الزاويةو c هو الوتر. دعونا نحول الصيغة ونحصل على: b=cos*c.

مثال. الزاوية A تساوي 60 درجة، والوتر يساوي 10 سم. باستخدام الجدول، نحسب جيب تمام الزاوية A، وهو يساوي 1/2. بعد ذلك نحل: b=cos∠A*c; ب=1/2*10، ب=5 (سم).


أوجد ساق المثلث القائم باستخدام الظل

ظل الزاوية (tg) هو نسبة الجانب المقابل إلى الجانب المجاور. الصيغة: tg=a/b، حيث a هو الضلع المقابل للزاوية، وb هو الضلع المجاور. دعونا نحول الصيغة ونحصل على: a=tg*b.

مثال. الزاوية A تساوي 45 درجة، والوتر يساوي 10 سم. باستخدام الجدول، نحسب ظل الزاوية A، وهو يساوي الحل: a=tg∠A*b; أ=1*10; أ = 10 (سم).


أوجد ساق المثلث القائم باستخدام ظل التمام

زاوية ظل التمام (ctg) هي نسبة الجانب المجاور إلى الجانب المقابل. الصيغة: ctg=b/a، حيث b هو الضلع المجاور للزاوية والضلع المقابل لها. وبعبارة أخرى، ظل التمام هو "الظل المقلوب". نحصل على: ب=ctg*a.

مثال. الزاوية A قياسها 30 درجة، والضلع المقابل لها 5 سم، وفقًا للجدول، ظل الزاوية A هو √3. نحسب: b=ctg∠A*a; ب=√3*5; ب=5√3 (سم).


الآن أنت تعرف كيفية العثور على ساق في المثلث القائم. كما ترون، ليس الأمر بهذه الصعوبة، والشيء الرئيسي هو أن نتذكر الصيغ.


في هذه المقالة سوف نوضح كيفية العطاء تعاريف الجيب وجيب التمام والظل وظل التمام للزاوية والرقم في علم المثلثات. سنتحدث هنا عن الملاحظات ونعطي أمثلة على الإدخالات ونقدم الرسوم التوضيحية. في الختام، دعونا نرسم توازيًا بين تعريفات الجيب وجيب التمام والظل وظل التمام في علم المثلثات والهندسة.

التنقل في الصفحة.

تعريف الجيب وجيب التمام والظل وظل التمام

دعونا نرى كيف تتشكل فكرة الجيب وجيب التمام والظل وظل التمام دورة المدرسةالرياضيات. في دروس الهندسة، يتم تقديم تعريف الجيب وجيب التمام والظل وظل التمام للزاوية الحادة في المثلث القائم. وبعد ذلك يتم دراسة علم المثلثات الذي يتحدث عن جيب التمام وجيب التمام والظل وظل التمام لزاوية الدوران والعدد. دعونا نعرض كل هذه التعريفات ونعطي الأمثلة ونعطي التعليقات اللازمة.

زاوية حادة في مثلث قائم

من مقرر الهندسة، نعرف تعريفات الجيب وجيب التمام والظل وظل التمام للزاوية الحادة في المثلث القائم. يتم إعطاؤها كنسبة لأضلاع المثلث القائم الزاوية. دعونا نعطي صيغهم.

تعريف.

جيب الزاوية الحادة في المثلث القائمهي نسبة الضلع المقابل للوتر.

تعريف.

جيب تمام الزاوية الحادة في المثلث القائمهي نسبة الساق المجاورة إلى الوتر.

تعريف.

ظل زاوية حادة في مثلث قائم– هذه هي نسبة الضلع المقابل إلى الضلع المجاور.

تعريف.

ظل تمام الزاوية الحادة في المثلث القائم- هذه هي نسبة الضلع المجاور إلى الضلع المقابل.

يتم أيضًا تقديم تسميات الجيب وجيب التمام والظل وظل التمام - sin وcos وtg وctg، على التوالي.

على سبيل المثال، إذا كان ABC مثلثًا قائمًا بزاوية قائمة C، فإن جيب الزاوية الحادة A يساوي النسبةالجانب المقابل BC للوتر AB، أي sin∠A=BC/AB.

تتيح لك هذه التعريفات حساب قيم الجيب وجيب التمام والظل وظل التمام لزاوية حادة من الأطوال المعروفة لأضلاع المثلث القائم، وكذلك من القيم المعروفةأوجد أطوال الأضلاع الأخرى باستخدام جيب التمام وجيب التمام والظل وظل التمام وطول أحد الجوانب. على سبيل المثال، إذا علمنا أنه في المثلث القائم، فإن الساق AC تساوي 3 والوتر AB يساوي 7، فيمكننا حساب قيمة جيب تمام الزاوية الحادة A بالتعريف: cos∠A=AC/ أ ب = 3/7.

زاوية الدوران

في علم المثلثات، بدأوا في النظر إلى الزاوية على نطاق أوسع - وقدموا مفهوم زاوية الدوران. لا يقتصر حجم زاوية الدوران، على عكس الزاوية الحادة، على 0 إلى 90 درجة؛ يمكن التعبير عن زاوية الدوران بالدرجات (والراديان) بأي رقم حقيقي من −∞ إلى +∞.

في ضوء ذلك، لا يتم تقديم تعريفات الجيب وجيب التمام والظل وظل التمام لزاوية حادة، ولكن لزاوية ذات حجم تعسفي - زاوية الدوران. يتم تقديمها من خلال إحداثيات x و y للنقطة A 1، والتي تذهب إليها ما يسمى بنقطة البداية A(1، 0) بعد دورانها بزاوية α حول النقطة O - بداية نظام الإحداثيات الديكارتية المستطيل ومركز دائرة الوحدة .

تعريف.

جيب زاوية الدورانα هو إحداثي النقطة A 1، أي sinα=y.

تعريف.

جيب تمام زاوية الدورانيُطلق على α محور النقطة A 1، أي cosα=x.

تعريف.

ظل زاوية الدورانα هي نسبة إحداثي النقطة A 1 إلى حدها الإحداثي، أي tanα=y/x.

تعريف.

ظل تمام زاوية الدورانα هي نسبة الإحداثيات الإحداثية للنقطة A 1 إلى إحداثيتها، أي ctgα=x/y.

يتم تعريف الجيب وجيب التمام لأي زاوية α، حيث يمكننا دائمًا تحديد الإحداثيات الإحداثية والنقطة، والتي يتم الحصول عليها عن طريق تدوير نقطة البداية بالزاوية α. ولكن لم يتم تعريف الظل وظل التمام لأي زاوية. لم يتم تعريف الظل للزوايا α التي تذهب عندها نقطة البداية إلى نقطة بها صفر الإحداثي السيني (0، 1) أو (0، −1)، ويحدث هذا عند الزوايا 90°+180° k، k∈Z (π) /2+π·ك راد). في الواقع، عند زوايا الدوران هذه، فإن التعبير tgα=y/x ليس له معنى، لأنه يحتوي على القسمة على صفر. أما ظل التمام فهو غير محدد للزوايا α التي تذهب عندها نقطة البداية إلى النقطة ذات الإحداثي الصفري (1, 0) أو (−1, 0)، ويحدث ذلك للزوايا 180° k, k ∈Z (π · ك راد).

لذلك، يتم تعريف الجيب وجيب التمام لأي زوايا دوران، ويتم تعريف الظل لجميع الزوايا باستثناء 90°+180°k، k∈Z (π/2+πk rad)، ويتم تعريف ظل التمام لجميع الزوايا باستثناء 180° ·k ، k∈Z (π·k راد).

تتضمن التعريفات التسميات المعروفة لدينا بالفعل sin وcos وtg وctg، كما أنها تستخدم لتعيين جيب التمام وجيب التمام والظل وظل التمام لزاوية الدوران (في بعض الأحيان يمكنك العثور على التسميات tan وcotالمقابلة للظل وظل التمام) . لذلك يمكن كتابة جيب زاوية دوران مقدارها 30 درجة بالشكل sin30°، وتتوافق الإدخالات tg(−24°17′) وctgα مع ظل زاوية الدوران −24 درجة 17 دقيقة وظل التمام لزاوية الدوران α . دعونا نتذكر أنه عند كتابة قياس الراديان للزاوية، غالبًا ما يتم حذف التسمية "rad". على سبيل المثال، يُشار عادةً إلى جيب تمام زاوية الدوران البالغة ثلاثة باي راد بـ cos3·π.

في ختام هذه النقطة، تجدر الإشارة إلى أنه عند الحديث عن جيب التمام وجيب التمام والظل وظل التمام لزاوية الدوران، غالبًا ما يتم حذف عبارة "زاوية الدوران" أو كلمة "الدوران". وهذا يعني أنه بدلاً من عبارة "جيب زاوية الدوران ألفا"، يتم عادةً استخدام عبارة "جيب زاوية ألفا" أو حتى أقصر "جيب ألفا". الأمر نفسه ينطبق على جيب التمام، الظل، وظل التمام.

سنقول أيضًا أن تعريفات الجيب وجيب التمام والظل وظل التمام للزاوية الحادة في المثلث الأيمن تتوافق مع التعريفات المعطاة للتو للجيب وجيب التمام والظل وظل التمام لزاوية دوران تتراوح من 0 إلى 90 درجة. سوف نبرر هذا.

أعداد

تعريف.

جيب التمام وجيب التمام والظل وظل التمام لعددر هو الرقم يساوي جيبوجيب التمام والظل وظل التمام لزاوية الدوران بوحدات الراديان t، على التوالي.

على سبيل المثال، جيب التمام للرقم 8 π حسب التعريف هو الرقم يساوي جيب التمامزاوية 8·π راد. وجيب تمام الزاوية 8·π راد يساوي واحدًا، وبالتالي فإن جيب تمام العدد 8·π يساوي 1.

هناك طريقة أخرى لتحديد جيب التمام وجيب التمام والظل وظل التمام لأي رقم. وهو يتألف من حقيقة أن الجميع عدد حقيقييتم تعيين t لنقطة على دائرة الوحدة يكون مركزها في البداية نظام مستطيلالإحداثيات، ويتم تحديد الجيب وجيب التمام والظل وظل التمام من خلال إحداثيات هذه النقطة. دعونا ننظر إلى هذا بمزيد من التفصيل.

دعونا نوضح كيف يتم إنشاء المراسلات بين الأعداد الحقيقية والنقاط الموجودة على الدائرة:

  • يتم تعيين الرقم 0 كنقطة البداية A(1, 0);
  • رقم موجب، عدد إيجابييرتبط t بنقطة دائرة الوحدة التي سنصل إليها إذا تحركنا على طول الدائرة من نقطة البداية في اتجاه عكس اتجاه عقارب الساعة و دعونا نسير على الطريقالطول ر؛
  • عدد السلبييرتبط t بنقطة دائرة الوحدة، والتي سنصل إليها إذا تحركنا على طول الدائرة من نقطة البداية في اتجاه عقارب الساعة ومشينا في مسار بطول |t| .

ننتقل الآن إلى تعريفات الجيب وجيب التمام والظل وظل التمام للرقم t. لنفترض أن الرقم t يتوافق مع نقطة على الدائرة A 1 (x, y) (على سبيل المثال، الرقم &pi/2; يتوافق مع النقطة A 1 (0, 1)).

تعريف.

جيب الرقم t هو إحداثي النقطة على دائرة الوحدة المقابلة للرقم t، أي sint=y.

تعريف.

جيب تمام الرقميُسمى t بإحداثيات نقطة دائرة الوحدة المقابلة للرقم t، أي التكلفة=x.

تعريف.

ظل الرقم t هي نسبة الإحداثي إلى الإحداثي الإحداثي لنقطة ما على دائرة الوحدة المقابلة للرقم t، أي tgt=y/x. في صيغة مكافئة أخرى، ظل الرقم t هو نسبة جيب هذا الرقم إلى جيب التمام، أي tgt=sint/cost.

تعريف.

ظل التمام للعدد t هي نسبة الإحداثي الإحداثي لنقطة على دائرة الوحدة المقابلة للرقم t، أي ctgt=x/y. صيغة أخرى هي: ظل الرقم t هو نسبة جيب تمام الرقم t إلى جيب الرقم t: ctgt=cost/sint.

ونلاحظ هنا أن التعريفات الواردة للتو تتفق مع التعريف الوارد في بداية هذه الفقرة. في الواقع، نقطة على دائرة الوحدة، المقابلة للرقم t ، يتزامن مع النقطة التي تم الحصول عليها عن طريق تدوير نقطة البداية بزاوية t راديان.

لا يزال الأمر يستحق توضيح هذه النقطة. لنفترض أن لدينا مدخل sin3. كيف يمكننا أن نفهم ما إذا كنا نتحدث عن جيب الرقم 3 أو جيب زاوية الدوران البالغة 3 راديان؟ وهذا عادة ما يكون واضحا من السياق، في خلاف ذلكوهذا على الأرجح ليس ذا أهمية أساسية.

الدوال المثلثية للوسيطة الزاوية والرقمية

وفقا لبيانات في الفقرة السابقةالتعريفات، كل زاوية دوران α تقابل زاوية محددة جيدًا قيمة الخطيئةα، مثل قيمة cosα. بالإضافة إلى ذلك، جميع زوايا الدوران بخلاف 90°+180°k، k∈Z (π/2+πk rad) تتوافق مع قيم tgα، والقيم بخلاف 180°k، k∈Z (πk rad ) - القيم ​​من ctgα . وبالتالي فإن sinα وcosα وtanα وctgα هي وظائف الزاوية α. وبعبارة أخرى، هذه هي وظائف الوسيطة الزاوية.

وبالمثل، يمكننا التحدث عن دوال الجيب وجيب التمام والظل وظل التمام حجة رقمية. في الواقع، لكل عدد حقيقي هناك توافق كامل قيمة محددةالخطيئة، مثل التكلفة. بالإضافة إلى ذلك، جميع الأرقام غير π/2+π·k، k∈Z تتوافق مع قيم tgt، والأرقام π·k، k∈Z - قيم ctgt.

يتم استدعاء وظائف الجيب وجيب التمام والظل وظل التمام الدوال المثلثية الأساسية.

عادةً ما يكون واضحًا من السياق ما إذا كنا نتعامل مع الدوال المثلثية للوسيطة الزاوية أو الوسيطة العددية. بخلاف ذلك، يمكننا التفكير في المتغير المستقل كمقياس للزاوية (الوسيطة الزاوية) ووسيطة رقمية.

ومع ذلك، في المدرسة يدرسون بشكل رئيسي وظائف رقمية، أي الوظائف التي تكون وسيطاتها، مثل قيم الوظائف المقابلة لها، أرقامًا. لذلك، إذا نحن نتحدث عنعلى وجه التحديد حول الوظائف، فمن المستحسن أن تأخذ في الاعتبار الدوال المثلثيةوظائف الحجج الرقمية.

العلاقة بين التعاريف من الهندسة وعلم المثلثات

إذا اعتبرنا زاوية الدوران α تتراوح من 0 إلى 90 درجة، فإن تعريفات الجيب وجيب التمام والظل وظل التمام لزاوية الدوران في سياق علم المثلثات تتوافق تمامًا مع تعريفات الجيب وجيب التمام والظل وظل التمام لزاوية الدوران الزاوية الحادة في المثلث القائم والتي تعطى في مقرر الهندسة. دعونا نبرر هذا.

دعونا نصور دائرة الوحدة في نظام الإحداثيات الديكارتية المستطيل أوكسي. لنضع علامة على نقطة البداية A(1, 0) . دعونا نديرها بزاوية α تتراوح من 0 إلى 90 درجة، نحصل على النقطة A 1 (x، y). دعونا نسقط العمود A 1 H من النقطة A 1 على محور الثور.

ومن السهل أن نرى ذلك في المثلث القائم الزاوية A 1 OH يساوي الزاويةالدوران α، طول الساق OH المجاورة لهذه الزاوية يساوي حدود النقطة A 1، أي |OH|=x، طول الساق A 1 H المقابلة للزاوية يساوي إحداثي النقطة A 1، أي |A 1 H|=y، وطول الوتر OA 1 يساوي واحدًا، لأنه نصف قطر دائرة الوحدة. بعد ذلك، بحكم التعريف من الهندسة، جيب الزاوية الحادة α في المثلث القائم A 1 OH يساوي نسبة الساق المقابلة إلى الوتر، أي sinα=|A 1 H|/|OA 1 |= ص/1=ص. وبحسب تعريف علم المثلثات، فإن جيب زاوية الدوران α يساوي إحداثي النقطة A 1، أي sinα=y. يوضح هذا أن تحديد جيب الزاوية الحادة في المثلث القائم يعادل تحديد جيب زاوية الدوران α عندما تكون α من 0 إلى 90 درجة.

وبالمثل، يمكن إثبات أن تعريفات جيب التمام والظل وظل التمام للزاوية الحادة α تتوافق مع تعريفات جيب التمام والظل وظل التمام لزاوية الدوران α.

فهرس.

  1. الهندسة. 7-9 درجات: كتاب مدرسي للتعليم العام المؤسسات / [ل. S. Atanasyan، V. F. Butuzov، S. B. Kadomtsev، إلخ.]. - الطبعة العشرين. م: التربية، 2010. - 384 ص: مريض. - ردمك 978-5-09-023915-8.
  2. بوجوريلوف أ.ف.الهندسة: كتاب مدرسي. للصفوف 7-9. تعليم عام المؤسسات / أ.ف.بوجوريلوف. - الطبعة الثانية - م: التربية، 2001. - 224 ص: مريض. - ردمك 5-09-010803-X.
  3. الجبر و وظائف أولية : درس تعليميلطلاب الصف التاسع المدرسة الثانوية/ E. S. Kochetkov، E. S. Kochetkova؛ حرره دكتور في العلوم الفيزيائية والرياضية O. N. Golovin - الطبعة الرابعة. م: التربية، 1969.
  4. الجبر:كتاب مدرسي للصف التاسع. متوسط المدرسة / يو. N. Makarychev، N. G. Mindyuk، K. I. Neshkov، S. B. Suvorova؛ إد. S. A. Teleakovsky - M.: التعليم، 1990. - 272 ص: مريض - ISBN 5-09-002727-7
  5. الجبروبداية التحليل: بروك. للصفوف 10-11. تعليم عام المؤسسات / A. N. Kolmogorov، A. M. Abramov، P. Dudnitsyn وآخرون؛ إد. أ.ن.كولموجوروف – الطبعة الرابعة عشرة – م: التعليم، 2004. – 384 صفحة: مريض – ISBN 5-09-013651-3.
  6. موردكوفيتش أ.ج.الجبر وبدايات التحليل. الصف 10. في 2 ص الجزء 1: البرنامج التعليمي ل المؤسسات التعليمية (مستوى الملف الشخصي)/ A. G. Mordkovich، P. V. Semenov. - الطبعة الرابعة، إضافة. - م: منيموسين، 2007. - 424 ص: مريض. ردمك 978-5-346-00792-0.
  7. الجبرو بدأ التحليل الرياضي. الصف العاشر: كتاب مدرسي. للتعليم العام المؤسسات: الأساسية والملف الشخصي. المستويات /[يو. M. Kolyagin، M. V. Tkacheva، N. E. Fedorova، M. I. Shabunin]؛ حررت بواسطة أ.ب. زيزتشينكو. - الطبعة الثالثة. - أولا: التعليم، 2010.- 368 ص: مريض- ISBN 978-5-09-022771-1.
  8. باشماكوف م.الجبر وبدايات التحليل: كتاب مدرسي. للصفوف 10-11. متوسط مدرسة - الطبعة الثالثة. - م: التربية، 1993. - 351 ص: مريض. -ردمك 5-09-004617-4.
  9. غوسيف ف.أ.، موردكوفيتش أ.ج.الرياضيات (دليل للمتقدمين إلى المدارس الفنية): بروك. بدل.- م. أعلى المدرسة، 1984.-351 ص، مريض.