Типы связей. Химическая связь и строение молекул


Интерактивный список. Начните вводить искомое слово.

СВЯЗЬ

Синонимы:

логичность, связность, непрерывность, складность, последовательность, стройность, взаимодействие, соединение, сочленение, конкатенация, сцепление, коммуникация, средство сообщения, сношение, общение, контакт, ассоциация, касательство, отношение, зависимость, привязка, узы, роман, соединительное звено, союз, причинность, паблик рилейшнз, томба, интимные отношения, интрига, соотношение, дуплекс, пуповина, сношения, бондинг, религия, сожительство, паратаксис, связующая нить, преемственность, спайка, взаимосвязанность, корреляция, обусловленность, связишка, родство, замазка, скрепа, амуры, интрижка, синапс, контекст, любовь, нить, почта, сообщение, квадруплекс. Ant. разрозненность

СВЯЗЬ синонимы, что такое СВЯЗЬ , СВЯЗЬ это, значение слова СВЯЗЬ , происхождение (этимология) СВЯЗЬ , СВЯЗЬ ударение, формы слова в других словарях

+ СВЯЗЬ синоним - Словарь русских синонимов 4

Исключительно большое значение в биологических системах имеет особый тип межмолекулярного взаимодействия, водородная связь, которая осуществляется между атомами водорода, химически соединенными в одной молекуле, и электроотрицательными атомами F, О, N, Cl, S, принадлежащими другой молекуле. Понятие «водородная связь» было введено впервые в 1920 г. Латимером и Родебушем для объяснения свойств воды и других ассоциированных веществ. Рассмотрим отдельные примеры такой связи.

В п. 5.2 речь шла о молекуле пиридина и было отмечено, что атом азота в ней имеет два внешних электрона с антипараллельными спинами, не участвующих в образовании химической связи. Эта «свободная» или «неподеленная» пара электронов будет притягивать протон и образовывать с ним химическую связь. При этом молекула пиридина перейдет в ионное состояние . Если имеются две пиридиновые молекулы, то они будут соревноваться в захвате протона, в результате образуется соединение

в котором тремя точками обозначен новый тип межмолекулярного взаимодействия, называемый водородной связью. В этом соединении протон находится ближе к левому атому азота. С таким же успехом протон может оказаться ближе к правому атому азота. Следовательно, потенциальная энергия протона как функция расстояния до правого или левого атома азота при фиксированном расстоянии между ними (примерно ) должна изображаться кривой с двумя минимумами. Квантовомеханический расчет такой кривой, проведенный Рейном и Харрисом , приведен на рис. 4.

Квантовомеханическую теорию водородной связи А-Н...В на основе донорно-акцепторных взаимодействий одним из первых развивал Н. Д. Соколов . Причиной связи является вызываемое протоном перераспределение электронной плотности между атомами А и В. Кратко говорят, что происходит обобществление «неподеленной пары» электронов. В действительности же в

Рис. 4. Потенциальная кривая энергии протона в зависимости от расстояния между атомами азота двух пиридиновых молекул.

образовании потенциальных кривых водородной связи участвуют и другие электроны молекул, хотя и в меньшей степени (см. ниже).

Энергия типичных водородных связей варьирует в пределах от 0,13 до 0,31 эВ. Она на порядок меньше энергии химических ковалентных связей, но на порядок больше энергии вандерваальсовых взаимодействий.

Наиболее простым межмолекулярным комплексом, образованным водородной связью, является комплекс Этот комплекс имеет линейную структуру. Расстояние между атомами фтора 2,79 А. Расртояние между атомами в полярной молекуле равно 0,92 А. При образовании комплекса выделяется энергия около 0,26 эВ.

С помощью водородной связи образуется димер воды с энергией связи около 0,2 эВ. Эта энергия равна примерно двадцатой части энергии ковалентной связи ОН. Расстояние меж двумя атомами кислорода в комплексе равно примерно 2,76 А. Оно меньше сумш вандерваальсовых радиусов атомов кислорода, равной 3,06 А. На рис. 5 указано рассчитанное в работе изменение электронной плотности атомов воды при образовании комплекса. Эти расчеты подтверждают, что при образовании комплекса изменяется распределение электронной плотности вокруг всех атомов реагирующих молекул.

О роли всех атомов в установлении водородных связей в комплексе можно судить также по взаимному влиянию двух водородных связей между азотистыми основаниями, тимином и аденином, входящими в состав двойной спирали молекулы ДНК . Расположение минимумов потенциальных кривых протонов в двух связях отражает их взаимную корреляцию (рис. 6).

Наряду с обычной или слабой водородной связью, образованной водородом с выделением энергии, меньшей 1 эВ, и характеризуемой потенциальной энергией с двумя минимумами, водород образует некоторые комплексы с большим энерговыделением. Например, при создании комплекса выделяется энергия, равная 2,17 эВ. Такой тип взаимодействия называют сильной

Рис. 5. Изменение электронной плотности около атомов в комплексе, образованном водородными связями из двух молекул воды.

Заряд электрона принят равным единице. В свободной молекула воды заряд 10 электронов распределен так, что около атома кислорода находится заряд 8,64, а у атомов водорода

Рис. 6. Водородные связи междк азотистыми основаниями: а - тимином (Т) и аденипом (А), входящими в состав молекул ДНН (стрелками указаны места присоединения оснований к цепям молекул сахара и фоофорной кислоты); - потенциальные кривые водородных связей; О - кислород; - водород; - углерод; - азот.

водородной связью. При образовании комплексов с сильной водородной связью значительно изменяется конфигурация молекул. Потенциальная энергия протона имеет один сравнительно плоский минимум, расположенный примерно в центре связи. Поэтому протон легко смещается. Легкая смещаемость протона под влиянием внешнего поля обусловливает большое значение поляризуемости комплекса.

Сильная водородная свягь не проявляется в биологических системах. Что же касается слабой водородной связи, то она имеет решающее значение во всех живых организмах.

Исключительно большая роль водородной связи в биологических системах обусловлена прежде всего тем, что она определяет вторичную структуру белков, имеющую основное значение для всех жизненных процессов; с помощью водородных свявей удерживаются пары оснований в молекулах ДНК и обеспечивается их устойчивая структура в виде двойных спиралей, и, наконец, водородная связь ответственна за весьма необычные свойвтва воды, важные для существования живых систем.

Вода является одним из основных компонентов всего живого. Организмы животных почти на две трети состоят из воды. Человеческий эмбрион в течение первого месяца содержит около 93% воды. Бег воды не было бы жигни. Вода служит основной средой, в которой происходят биохимические реакции в клетке. Она образует жидкую часть крови и лимфы. Вода необходима для пищеварения, так как расщепление углеводов, белков и жиров происходит с присоединением молекул воды. Вода выделяется в клетке при построении белков из аминокислот. Физиологические

Рис. 7. Структура льда. Каждая молекула воды соединена водородными связями (три точки) с четырьмя молекулами воды, находящимися в вершинах тетраэдра.

Рис. 8. Водородная связь в димере и «линейная» водородная связь

свойства биополимеров и многих надмолекулярных структур (в частности, клеточных мембран) весьма существенно зависят от их взаимодействия с водой.

Рассмотрим некоторые свойства воды. Каждая молекула воды обладает большим электрическим моментом. Вследствие высокой электроотрицательности атомов кислорода молекула воды может образовывать водородные связи с одной, двумя, тремя и четырьмя другими молекулами воды. В результате получаются сравнительно устойчивые димеры и другие полимерные комплексы. В среднем каждая молекула в жидкой воде имеет четыре соседа. Состав и структура межмолекулярных комплексов зависят от температуры воды.

Наиболее упорядоченную структуру имеет кристаллическая вода (лед) при нормальном давлении и температуре ниже нуля градусов Цельсия. Кристаллы ее имеют гексагональную структуру. В элементарную ячейку входят четыре молекулы воды. Структура ячейки изображена на рис. 7. Вокруг центрального атома кислорода располдженьг в вершинах правильного тетраэдра на расстояниях 2,76 А четыре других атома кислорода. Каждая молекула воды соединена с соседними четырьмя водородными связями. При этом угол между ОН-связями в молекуле приближается к «тетраэдрическому» значению 109,1°. В свободной молекуле он равен приблизительно 105°.

Структура льда напоминает структуру алмаза. Однако в алмазе между атомами углерода действуют химические силы. Кристалл алмаза - это большая молекула. Кристаллы льда относятся к молекулярным кристаллам. Молекулы в кристалле сохраняют в основном свою индивидуальность и удерживают друг друга водородными связями.

Рис. 9. Экспериментальное значение смещения инфракрасной частоты колебаний в воде при образовании водородной связи под углом .

Решетка льда весьма рыхлая и содержит много «пустот», так как число ближайших молекул воды у каждой молекулы (координационное число) равно только четырем. При расплавлении решетка льда частично разрушается, одновременно заполняются некоторые пустоты и плотность воды становится больше плотности льда. Это одна из основных аномалий воды. При дальнейшем нагревании до 4° С процесс уплотнения продолжается. При нагревании выше 4° С возрастает амплитуда ангармонических колебаний, уменьшается число ассоциированных молекул в комплексах (роях) и плотность воды уменьшается. По грубым оценкам в состав роев при комнатной температуре входит около 240 молекул, при 37° С - около 150, при 45 и 100° С соответственно 120 и 40.

Вклад водородной связи в полную энергию межмолекулярных взаимодействий (11,6 ккал/моль) составляет около 69%. Вследствие водородных связей температуры плавления (0° С) и кипения (100° С) воды существенно отличаются от температур плавления и кипения других молекулярных жидкостей, между молекулами которых действуют только вандерваальсовы силы. Например, для метана эти значения соответственно равны-186 и -161° С.

В жидкой воде наряду с остатками тетраэдрической структуры льда имеются линейные и циклические димеры и другие комплексы, содержащие 3, 4, 5, 6 и более молекул. Существенно, что в зависимости от числа молекул в цикле меняется угол Р, образованный между связью ОН и водородной связью (рис. 8). В димере этот угол равен 110°, в пятичленном кольце 10°, а в шестичленном кольце и гексагональной структуре льда он близок к пулю («линейная» водородная связь).

Оказывается, что наибольшая энергия одной водородной связи соответствует углу Энергия водородной связи пропорциональна (правило Бадгера - Бауера) смещению частоты валентных инфракрасных колебаний группы ОН в молекуле воды но сравнению с частотой колебаний свободной молекулы. Максимальное смещение наблюдается в случае «линейной» водородной связи. В молекуле воды в этом случае частота уменьшается на , а частота - на . На рис. 9 приведен график зависимости отношения смещения

частоты к максимальному смещению от угла . Следовательно, этот график характеризует также зависимость энергии водородной связи от угла . Такая зависимость является проявлением кооперативного характера водородной связи.

Предпринимались многократные попытки теоретического вычисления структуры и свойств воды при учете водородных связей и других межмолекулярных взаимодействий. Согласно статистической физике термодинамические свойства системы взаимодействующих молекул, находящейся в объеме V при постоянном давлении Р в статистическом равновесии с термостатом, определяются через статистическую сумму состояний

Здесь V - объем системы; к - постоянная Больцмана; Т - абсолютная температура; означает, что надо взять след от статистического оператора, стоящего в фигурных скобках, где Н - квантовый оператор энергии всей системы. Этот оператор равен сумме операторов кинетической энергии поступательного и вращательного движений молекул и оператора потенциальной энергии взаимодействия всех молекул.

Если известны все собственные функции и полный спектр энергий Е, оператора Н, то (6.2) принимает вид

Тогда свободная энергия Гиббса G системы при давлении Р и температуре Т определяется простым выражением

Зная гиббсовскую свободную энергию, находим полную энергию энтропию объем .

К сожалению, вследствие сложного характера взаимодействий между молекулами в воде (анизотропные дипольные молекулы, водородные связи, приводящие к комплексам переменного состава, в которых энергия водородных связей сама зависит от состава и структуры комплекса и т. д.) мы не можем записать оператор Н в явном виде. Поэтому приходится прибегать к очень большим упрощениям. Так, Намети и Шерага вычислили статистическую сумму, исходя того, что можно учесть только пять энергетических состояний молекул в комплексах соответствии

с числом образуемых ими водородных связей (0, 1, 2, 3, 4) с соседними молекулами. С помощью этой модели им даже удалось показать, что плотность воды максимальна при 4° С. Однако в дальнейшем сами авторы подвергли критике развитую ими теорию, так как она не описывала многие экспериментальные факты. С другими попытками теоретических расчетов структуры воды можно познакомиться в обзоре Бен-Наима и Стиллингера .

Вследствие дипольного характера молекул воды и большой роли водородных связей исключительно важную роль играют и взаимодействия молекул воды с ионами и нейтральными молекулами в живых организмах. Взаимодействия, приводящие к гидратации ионов и особому типу взаимодействий, получивших название гидрофобных и гидрофильных, будут рассмотрены в следующих разделах этой главы»

Говоря о роли воды в биологических явлениях, следует отметить, что все живые организмы весьма успешно приспособились к определенной величине водородной связи между молекулами . Об этом свидетельствует тот факт, что замена молекулами тяжелой воды оказывает весьма существенное влияние на биологические системы . Уменьшается растворимость полярных молекул, уменьшается скорость прохождения нервного импульса, нарушается работа ферментов, замедляется рост бактерий и грибов и т. д. Возможно, все эти явления связаны с тем, что водородное взаимодействие между молекулами сильнее, чем взаимодействие между молекулами На большее значение водородной связи между молекулами тяжелой воды указывает бояее высокая температура ее плавления (3,8° С) и большая теплота плавления (1,51 ккал/моль). Для обычной воды теплота плавления 1,43 ккал/моль.

Типы связей.

В химии различают следующие типы связей: ковалентная, ионная, металлическая, водородная связь, связь Ван-дер-Ваальса, донорно-акцепторная связь, дативная связь.

Ковалентная связь

При образовании ковалентной связи атомы делятся друг с другом электронами. Примером ковалентной связи является химическая связь в молекуле Cl 2 . Впервые Льюис (1916 г.) предположил, что в такой связи каждый из двух атомов хлора делится одним из своих внешних электронов с другим атомом хлора. Для перекрывания атомных орбиталей два атома должны подойти друг к другу как можно ближе. Общая пара электронов образует ковалентную связь. Эти электроны занимают одну и туже орбиталь, а их спины направлены в противоположные стороны.

Таким образом, ковалентная связь осуществляется обобществлением электронов от разных атомов в результате спаривания электронов с противоположными спинами.

Ковалентная связь является широко распространенным типом связи. Ковалентная связь может возникать не только в молекулах, но и кристаллах. Она возникает между одинаковыми атомами (в молекулах Н 2 , Cl 2 , алмазе) и между разными атомами (в молекулах Н 2 О, NH 3 …)

Механизм возникновения ковалентной связи

Механизм рассмотрим на примере образования молекулы Н 2 .

Н+Н=Н 2 , ∆Н=-436 кДж/моль

Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным 1s-электроном. При сближении атомов до определенного расстояния, происходит частичное перекрывание их электронных облаков (орбиталей) (рис. 4).

Рис. 4. Механизм образования связи в молекуле водорода.

Если у сблизившихся до касания атомов водорода расстояние между ядрами 0,106 нм, то после перекрывания электронных облаков, это расстояние составляет 0,074 нм.

В результате между центрами ядер возникает молекулярное двухэлектронное облако, обладающее максимальной электронной плотностью в пространстве между ядрами. Увеличение плотности отрицательного заряда между ядрами благоприятствует сильному возрастанию сил притяжения между ядрами, что приводит к выделению энергии. Химическая связь тем прочнее, чем больше перекрывание электронных орбиталей. В результате возникновения химической связи между двумя атомами водорода каждый из них достигает электронной конфигурации атома благородного газа - гелия.

Существует два метода, объясняющих с квантово-механических позиций образование области перекрытия электронных облаков, и образования соответственно ковалентной связи. Один из них называется метод ВС (валентных связей), другой МО (молекулярных орбиталей).

В методе валентных связей рассматривается перекрывание атомных орбиталей выделенной пары атомов. В методе МО молекулу рассматривают как целое и распределение электронной плотности (от одного электрона) размазано по всей молекуле. С позиции МО 2Н в Н 2 связаны за счет притяжения ядер к электронному облаку, расположенному между этими ядрами.

Изображение ковалентной связи

Связи изображают по-разному:

1). С помощью электронов в виде точек

В этом случае образование молекулы водорода показывают схемой

Н∙ + Н∙ → Н: Н

2). С помощью квадратных ячеек (орбиталей), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке

Эта схема показывает, что молекулярный энергетический уровень ниже исходных атомных уровней, а значит молекулярное состояние вещества более устойчивое, чем атомное.

3). Ковалентную связь изображают чертой

Например, Н – Н. эта черта символизирует пару электронов.

Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной , если больше, то кратной двойной (две общие электронные пары), тройной (три общие электронные пары). Одинарная связь изображается одной чертой, двойная – двумя, тройная – тремя.

Черточка между атомами показывает, что у них пара электронов обобщена.

Классификация ковалентных связей

В зависимости от направления перекрывания электронных облаков различают σ-, π-, δ-связи. σ-связь возникает при перекрывании электронных облаков вдоль оси, соединяющей ядра взаимодействующих атомов.

Примеры σ-связи:

Рис. 5. Образование σ-связи между s-, p-, d- электронами.

Пример образования σ-связи при перекрывании s-s-облаков наблюдается в молекуле водорода.

π-связь осуществляется при перекрывании электронных облаков по обе стороны от оси, соединяющий ядра атомов.

Рис. 6. Образование π-связи между p-, d- электронами.

δ- связь возникает при перекрывании двух d-электронных облаков, расположенных в параллельных плоскостях. δ-связь менее прочная, чем π-связь, а π-связь менее прочная чем σ-связь.

Свойства ковалентной связи

а). Полярность.

Различают две разновидности ковалентной связи: неполярную и полярную.

В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, распределяется в пространстве симметрично относительно ядер атомов. Примером являются двухатомные молекулы, состоящие из атомов одного элемента: Н 2 , Cl 2 , О 2 , N 2 , F 2 . У них электронная пара в одинаковой мере принадлежит обоим атомам.

В случае полярной связи электронное облако, образующее связь, смещено к атому с большей относительной электроотрицательностью.

Примерами являются молекулы: НCl, Н 2 О, Н 2 S, N 2 S, NH 3 и др. Рассмотрим образование молекулы HCl, которое можно представить следующей схемой

Электронная пара смещена к атому хлора, т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1).

б). Насыщаемость.

Способность атомов участвовать в образовании ограниченного числа ковалентных связей называется насыщаемостью ковалентной связи. Насыщаемость ковалентных связей обусловлена тем, что в химическом взаимодействии участвуют электрона только внешних энергетических уровней, то есть ограниченное число электронов.

в). Направленность и гибридизация ковалентной связи.

Ковалентная связь характеризуется направленностью в пространстве. Это объясняется тем, что электронные облака имеют определенную форму и их максимальное перекрывание возможно при определенной пространственной ориентации.

Направленность ковалентной связи определяет геометрическое строение молекул.

Например, для воды она имеет треугольный вид.



Рис. 7. Пространственная структура молекулы воды.

Экспериментально установлено, что в молекуле воды H 2 O расстояние между ядрами водорода и кислорода составляет 0,096 нм (96 пм). Угол между линиями, проходящими через ядра, составляет 104,5 0 . Таким образом, молекула воды имеет угловую форму и ее строение можно выразить в виде представленного рисунка.

Гибридизация

Как показывают экспериментальные и теоретические исследования (Слейтер, Полинг) при образовании некоторых соединений, таких как BeCl 2 , BeF 2 , BeBr 2 состояние валентных электронов атома в молекуле описываются не чистыми s-, p-, d- волновыми функциями, а их линейными комбинациями. Такие смешанные структуры называются гибридными орбиталями, а процесс смешивания гибридизацией.

Как показывают квантово-химические расчеты смешивание s- и p- орбиталей атома – процесс благоприятный для образования молекулы. В этом случае выделяется больше энергии, чем при образовании связей с участием чистых s- и p- орбиталей. Поэтому гибридизация электронных орбиталей атома приводит к большому понижению энергии системы и соответственно повышению устойчивости молекулы. Гибридизированная орбиталь отличается большей вытянутостью по одну сторону от ядра, чем по другую. Поэтому электронная плотность в области перекрывания гибридного облака будет больше электронной плотности в области перекрывания отдельно s- и p- орбиталей, вследствие чего связь, образованная электронами гибридной орбитали, характеризуется большей прочностью.

Имеют место несколько типов гибридных состояний. При гибридизации s- и p- орбиталей (называется sp-гибридизация), возникают две гибридные орбитали, расположенные относительно друг друга под углом 180 0 . В этом случае образуется линейная структура. Такая конфигурация (структура) известна для большинства галогенидов щелочноземельных металлов (например, ВеX 2 , где X=Cl, F, Br), т.е. угол связи равен 180 0 С.

Рис. 8. sp-гибридизация

Другой тип гибридизации, называемый sp 2 -гибридизацией (образуется из одной s и двух p-орбиталей), приводит к образованию трех гибридных орбиталей, которые располагаются друг к другу под углом 120 0 . При этом в пространстве образуется тригональная структура молекулы (или правильного треугольника). Такие структуры известны для соединений ВX 3 (X=Cl, F, Br).

Рис. 9. sp 2 -гибридизация.

Не менее часто встречается sp 3 -гибридизация, которая образуется из одного s- и трех p- орбиталей. При этом образуется четыре гибридные орбитали ориентированные в пространстве симметрично четырем вершинам тетраэдра, то есть они расположены под углом 109 0 28 " . Такое пространственное положение называется тетраэдрическим. Такая структура известна для молекул NH 3 , Н 2 О и вообще для элементов II периода. Схематично её вид в пространстве можно отобразить следующим рисунком

Рис. 10. Пространственное расположение связей в молекуле аммиака,

спроецированное на плоскость.

Образование тетраэдрических связей за счет sp 3 -гибридизации можно представить в виде следующего (рис. 11):

Рис. 11. Образование тетраэдрических связей при sp 3 -гибридизации.

Образование тетраэдрических связей при sp 3 – гибридизации на примере молекулы CCl 4 представлено на рис. 12.

Рис.12. Образование тетраэдрических связей при sp 3 – гибридизации в молекулы CCl 4

Гибридизация касается не только s- и p-орбиталей. Для объяснения стереохимических элементов III и последующих периодов возникает необходимость в построении гибридных орбиталей одновременно включающих s-, p-, d- орбитали.

К веществам с ковалентной связью относятся:

1. органические соединения;

2. твердые и жидкие вещества, у которых связи образуются между парами атомов галогенов, а также между парами атомов водорода, азота и кислорода, например, Н 2 ;

3. элементы VI группы (например, спиральные цепочки теллура), элементы V группы (например, мышьяк), элементы IV группы (алмаз, кремний, германий);

4. соединения, подчиняющиеся правилу 8-N (такие как InSb, CdS, GaAs, CdTe), когда образующие их элементы расположены в периодической таблице Менделеева в II-VI, III-V группах.

В твердых телах с ковалентной связью могут для одного и того же вещества образовываться различные кристаллические структуры, энергия связи которых практически одинакова. Например, структура ZnS может быть кубической (цинковая обманка) или гексагональной (вюрцит). Расположение ближайших соседей в цинковой обманке и вюрците одинаково, а единственное и небольшое отличие в энергиях этих двух структур определяется расположением атомов, следующих за ближайшими. Подобная способность некоторых веществ называется аллотропией или полиморфизмом. Другим примером аллотропии является карбид кремния, который имеет целый ряд полититпов различной структуры от чисто кубической до гексагональной. Эти многочисленные кристаллические модификации ZnS, SiC существуют при комнатной температуре.

Ионная связь

Ионная связь представляет собой электростатическую силу притяжения между ионами с зарядами противоположного знака (т.е. + и −).

Представление об ионной связи сформировалось на основе идей В.Косселя. Он предположил (1916 г.), что при взаимодействии двух атомов один их них отдает, а другой принимает электроны. Таким образом, ионная связь образуется в результате переноса одного или нескольких электронов от одного атома к другому. Например, в хлориде натрия ионная связь образуется в результате переноса электрона от атома натрия к атому хлора. Вследствие такого переноса образуется ион натрия с зарядом +1 и ион хлора с зарядом -1. Они притягиваются друг к другу электростатическими силами, образуя устойчивую молекулу. Модель электронного переноса, предложенная Косселем, позволяет объяснить образование таких соединений как фторид лития, оксид кальция, оксид лития.

Наиболее типичные ионные соединения состоят из катионов металлов, принадлежащих к I и II группам периодической системы, и анионов неметаллических элементов, принадлежащих к VI и VII группам.

Легкость образования ионного соединения зависит от легкости образования входящих в него катионов и анионов. Легкость образования тем выше, чем меньшую энергию ионизации имеет атом, отдающий электроны (донор электронов), а атом, присоединяющий электроны (акцептор электронов), обладает большим сродством к электрону. Сродство к электрону – это мера способности атома присоединять электрон. Её количественно определяют как изменение энергии, происходящее при образовании одного моля однозарядных анионов из одного моля атомов. Это так называемое понятие «первое сродство к электрону». Второе сродство к электрону – это изменение энергии, происходящее при образовании одного моля двухзарядных анионов из одного моля однозарядных анионов. Данные понятия, то есть энергия ионизации и сродство к электрону, относятся к газообразным веществам и являются характеристиками атомов и ионов в газообразном состоянии. Но следует иметь в виду, что большинство ионных соединений наиболее устойчивы в твердом состоянии. Данное обстоятельство объясняется существованием у них в твердом состоянии кристаллической решетки. Возникает вопрос. Почему же все-таки ионные соединения более устойчивы в виде кристаллических решеток, а не в газообразном состоянии? Ответом на этот вопрос служит расчет энергии кристаллической решетки, основанный на электростатической модели. В дополнении к этому данный расчет является и проверкой теории ионной связи.

Для расчета энергии кристаллической решетки необходимо определить работу, которую нужно затратить на разрушение кристаллической решетки с образованием газообразных ионов. Для проведения расчета используется представление о силах притяжения и отталкивания. Выражение для потенциальной энергии взаимодействия однозарядных ионов получается суммированием энергии притяжения и энергии отталкивания

Е = Е прит + Е отт (1).

В качестве Е прит берется энергия кулоновского притяжения ионов разноименных знаков, например, Na + и Cl - для соединения NaCl

Е прит = -е 2 /4πε 0 r (2),

поскольку распределение электронного заряда в заполненной электронной оболочке сферически-симметрично. Благодаря отталкиванию, возникающему вследствие принципа Паули при перекрытии заполненных оболочек аниона и катиона, расстояние, на которое могут сблизиться ионы, ограниченно. Энергия отталкивания быстро изменяется с межъядерным расстоянием, и её можно записать в виде следующих двух приближенных выражений:

Е отт = А/r n (n≈12) (3)

Е отт = В∙ехр(-r/ρ) (4),

где А и В – константы, r-расстояние между ионами, ρ - параметр (характерная длина).

Следует заметить, что ни одно из этих выражений не соответствует сложному квантово-механическому процессу, который приводит к отталкиванию.

Несмотря на приближенность данных формул, они позволяют достаточно точно рассчитать и соответственно описать химическую связь в молекулах таких ионных соединений, как NaCl, KCl, CaO.

Так как электрическое поле иона имеет сферическую симметрию (рис. 13), то ионная связь в отличие от ковалентной не обладает направленностью. Взаимодействие двух противоположно заряженных ионов компенсируется силами отталкивания только в направлении, соединяющим центры ядер ионов, в других направлениях компенсация электрических полей ионов не происходит. Поэтому они способны взаимодействовать и с другими ионами. Таким образом, ионная связь не обладает насыщаемостью.

Рис. 13. Сферическая симметрия электростатического поля

разноименнозаряженных зарядов.

Вследствие ненаправленности и ненасыщаемости ионной связи энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Благодаря этому наиболее предпочтительная форма существования ионного соединения – кристалл. Например, в кристалле NaCl каждый катион имеет в качестве ближайших соседей шесть анионов.

Только при высоких температурах в газообразном состоянии ионные соединения существуют в виде неассоциированных молекул.

В ионных соединениях координационное число не зависит от специфики электронной структуры атомов, как в ковалентных соединениях, а определяется соотношением размеров ионов. При соотношении ионных радиусов в пределах 0,41 – 0,73 наблюдается октаэдрическая координация ионов, при соотношении 0,73-1,37 – кубическая координация и т.д..

Таким образом, в обычных условиях ионные соединения представляют собой кристаллические вещества. Понятие двухионных молекул, например, NaCL, CsCl к ним не применимо. Каждый кристалл состоит из большого числа ионов.

Ионную связь можно представить как предельную полярную связь, для которой эффективный заряд атома близок к единице. Для чисто ковалентной неполярной связи эффективный заряд атомов равен нулю. В реальных веществах чисто ионных и чисто ковалентных связей встречается мало. Большинство соединений имеет характер связи промежуточный между неполярной ковалентной и полярной ионной. То есть в данных соединениях ковалентная связь имеет частично ионный характер. Характер ионной и ковалентной связи в реальных веществах представлен на рисунке 14.

Рис. 14. Ионный и ковалентный характер связи.

Долю ионного характера связи называют степенью ионности. Она характеризуется эффективными зарядами атомов в молекуле. Степень ионности возрастает с увеличением разности электроотрицательностей образующих её атомов.

Металлическая связь

В атомах металлов внешние валентные электроны удерживаются значительно слабее, чем в атомах неметаллов. Это обуславливает потерю связи электронов с отдельными атомами на достаточно большой промежуток времени и их обобществление. Образуется обобществленный ансамбль из внешних электронов. Существование подобной электронной системы приводит к возникновению сил, которые удерживают положительные ионы металла в сближенном состоянии, несмотря на их одноименную заряженность. Такая связь называется металлической. Подобная связь характерна только для металла и существует в твердом и жидком состоянии вещества. Металлическая связь является одним из видов химической связи. Она основана на обобществлении внешних электронов, которые теряют связь с атомом и поэтому называются свободными электронами (рис. 15).

Рис. 15. Металлическая связь.

Подтверждением существования металлической связи являются следующие факты. Все металлы имеют высокую теплопроводность и высокую электропроводность, которая обеспечивается за счет наличия свободных электронов. Кроме того, это же обстоятельство определяет хорошую отражательную способность металлов к световому облучению, их блеск и непрозрачность, высокую пластичность, положительный температурный коэффициент электросопротивления.

Стабильность кристаллической решетки металлов невозможно объяснить такими видами связи как ионная и ковалентная. Ионная связь между атомами металла, находящихся в узлах кристаллической решетки, невозможна, так как они имеют один и тот же заряд. Ковалентная связь между атомами металла также маловероятна, поскольку каждый атом имеет от 8 до 12 ближайших соседей, а образование ковалентных связей с таким количеством обобществленных пар электронов неизвестно.

Металлические структуры характеризуются тем, что они имеют довольно редкое расположение атомов (межъядерные расстояния большие) и большое число ближайших соседей у каждого атома в кристаллической решетке. В таблице 1 указаны три типичные металлические структуры.

Таблица 1

Характеристики структур трех наиболее распространенных металлов

Видим, что каждый атом участвует в образовании большого числа связей (например, с 8 атомами). Столь большое число связей (с 8 или с 12 атомами) не может быть одновременно локализованы в пространстве. Связь должна осуществляться за счет резонанса колебательного движения внешних электронов каждого атома, в результате которого происходит коллективизация всех внешних электронов кристалла с образованием электронного газа. Во многих металлах для образования металлической связи достаточно взять по одному электрону от каждого атома. Именно это наблюдается для лития, у которого на внешней оболочке имеется всего один электрон. Кристалл лития представляет собой решетку ионов Li + (шаров радиусом 0,068 нм), окруженных электронным газом.

Рис. 16. Различные типы кристаллической упаковки: а-гексагональная плотная упаковка; б- гранецентрированная кубическая упаковка; в-объёмноцентрированная кубическая упаковка.

Между металлической и ковалентной связью имеется сходство. Оно заключается в том, что оба типа связи основаны на обобществлении валентных электронов. Однако ковалентная связь соединяет только два соседних атома, и общие электроны находятся в непосредственной близости от соединенных атомов. В металлической связи несколько атомов участвуют в обобществлении валентных электронов.

Таким образом, понятие металлической связи неразрывно связано с представлением о металлах как совокупности положительно заряженных ионных остовов с большими промежутками между ионами, заполненными электронным газом, при этом на макроскопическом уровне система остается электрически нейтральной.

Кроме вышерассмотренных типов химической связи существуют и другие типы связи, которые являются межмолекулярными: водородная связь, вандерваальсово взаимодействие, донорно-акцепторное взаимодействие.

Донорно-акцепторное взаимодействие молекул

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и свободной орбитали другого называется донорно-акцепторным. Атом или частица, предоставляющие для связи двухэлектронное облако называется донором. Атом или частица со свободной орбиталью, принимающие эту электронную пару называется акцептором.

Основные виды межмолекулярного взаимодействия. Водородная связь

Между молекулами, валентно-насыщенными, на расстояниях, превышающих размеры частиц, могут проявляться электростатические силы межмолекулярного притяжения. Их называют силы Ван-дер-Ваальса. Вандерваальсово взаимодействие всегда существует между близко расположенными атомами, но играет важную роль лишь в отсутствие более сильных механизмов связи. Это слабое взаимодействие с характерной энергией 0,2 эВ/атом имеет место между нейтральными атомами и между молекулами. Название взаимодействия связывается с именем Ван-дер-Ваальса, поскольку именно он впервые предположил, что уравнение состояния с учетом слабого взаимодействия между молекулами газа описывает свойства реальных газов много лучше, чем уравнение состояния идеального газа. Однако природа этой силы притяжения была объяснена лишь в 1930 году Лондоном. В настоящее время к Ван-дер-Ваальсову притяжению относят следующие три типа взаимодействий: ориентационное, индукционное, дисперсион-ное(эффект Лондона). Энергия Ван-дер-Ваальсова притяжения определяется суммой ориентационного, индукционного и дисперсионного взаимодействий.

Е прит = Е ор +Е инд + Е дисп (5).

Ориентационное взаимодействие (или диполь-дипольное взаимодействие) проявляется между полярными молекулами, которые при приближении поворачиваются (ориентируются) друг к другу разноименными полюсами так, чтобы потенциальная энергия системы молекул стала минимальной. Энергия ориентационного взаимодействия тем существеннее, чем больше дипольный момент молекул μ и меньше расстояние l между ними:

Е ор = -(μ 1 μ 2) 2 / (8π 2 ∙ε 0 ∙l 6) (6),

где ε 0 – электрическая постоянная.

Индукционное взаимодействие связано с процессами поляризации молекул окружающими диполями. Оно тем значительнее, чем выше поляризуемость α неполярной молекулы и больше дипольный момент μ полярной молекулы

Е инд = -(αμ 2)/ (8π 2 ∙ε 0 ∙l 6) (7).

Поляризуемость α неполярной молекулы называется деформационной, так как она связана с деформацией частицы, при этом μ характеризует смещение электронного облака и ядер относительно прежних положений.

Дисперсионное взаимодействие (эффект Лондона) возникает у любых молекул независимо от их строения и полярности. Вследствие мгновенного несовпадения центров тяжести зарядов электронного облака и ядер образуется мгновенный диполь, который индуцирует мгновенные диполи в других частицах. Движение мгновенных диполей становится согласованным. В результате соседние частицы испытывают взаимное притяжение. Энергия дисперсионного взаимодействия зависит от энергии ионизации Е I и поляризуемости молекул α

Е дисп = - (Е I 1 ∙Е I 2)∙ α 1 α 2 /(Е I 1 +Е I 2) l 6 (8).

Промежуточный характер между валентным и межмолекулярным взаимодействием имеет водородная связь. Энергия водородной связи невелика 8 – 80 кДж/моль, но больше энергии взаимодействия Ван-дерВаальса. Водородная связь характерна для таких жидкостей как вода, спирты, кислоты и обусловлена положительно поляризованным атомом водорода. Малые размеры и отсутствие внутренних электронов позволяют атому водорода, присутствующему в жидкости в каком-либо соединении, вступать в дополнительное взаимодействие с ковалентно с ним не связанным отрицательно поляризованным атомом другой или той же самой молекулы

А δ- - Н δ+ …. А δ- - Н δ+ .

То есть происходит ассоциация молекул. Ассоциация молекул приводит к уменьшению летучести, повышению температуры кипения и теплоты испарения, увеличению вязкости и диэлектрической проницаемости жидкостей.

Вода особенно подходящее вещество для образования водородной связи, так как её молекула имеет два атома водорода и две неподелённые пары у атома кислорода. Это обуславливает высокий дипольный момент молекулы (μ D = 1,86 D) и способность образовывать четыре водородные связи: две – как донор протонов и две – как акцептор протонов

(Н 2 О….Н – О…Н 2 О) 2 раза.

Из экспериментов известно, что с изменением молекулярной массы в ряду водородных соединений элементов третьего и последующего периодов температура кипения растет. Если данную закономерность применить к воде, то температура кипения у неё должна быть не 100 0 С, а 280 0 С. Данное противоречие подтверждает существование водородной связи в воде.

Эксперименты показали, что в воде формируются молекулярные ассоциаты в жидкой и особенно в твердой воде. Лед имеет тетраэдрическую кристаллическую решетку. В центре тетраэдра расположен атом кислорода одной молекулы воды, в четырех вершинах находятся атомы кислорода соседних молекул, которые соединены водородными связями с ближайшими соседями. В жидкой воде водородные связи частично разрушены, в её структуре наблюдается динамическое равновесие между ассоциатами молекул и свободными молекулами.

Водородная связь (Н-связь) – это связь, образуемая протонированным атомом водорода с сильноэлектроотцательным атомом той же или другой молекулы. В обычных условиях валентность водорода равна 1, и он способен обобществлять с другими атомами одну электронную пару, образуя ковалентную связь: атом водорода может присоединять электрон, образуя гидрид-ион Н + .

Атом водорода обладает особенностью, отличающей его от всех остальных атомов: отдавая свой электрон, он остается в виде ядра без электронов, т.е. в виде частицы, диаметр, которой в тысячи раз меньше диаметра остальных атомов. При отсутствии электронов ион Н + не отталкивается электронными оболочками других атомов или ионов, а наоборот, притягивается; он может близко подходить к другим атомам, взаимодействовать с их электронами и даже внедряться в их электронные оболочки. В жидкостях Н + -ионы большей частью не сохраняется в виде самостоятельной частицы, а связываются с молекулами двух веществ: в воде с молекулами воды, образуя ион Н 3 О + -ион гидроксония; с молекулой аммиака – NH 4 + -ион аммония.

Будучи связанным с атомом одного из наиболее электроотрицательных элементов: с атомом фтора, кислорода, хлора и азота, атом водорода приобретает относительно высокий положительный заряд, не превышающий единицу. Так как этот заряд сосредоточен на чрезвычайно малом атомном остове, он сильно приближается к другому атому, несущему отрицательный заряд. Это вызывает образование довольно сильной диполь-дипольной связи с энергией 20-30 кДж/моль и больше. Водородная связь возникает в результате междипольного взаимодействия двух сильно полярных связей, принадлежащих различным молекулам или одной и той же молекуле. Она слабее обычной ковалентной связи, энергия которой составляет приблизительно 125-420 кДж/моль и может усиливаться вследствие взаимной поляризации связей, обусловленной указанными особенностями водородного атома. Водородная связь (Н-связь) обозначается Х-Н××××Х.

Атом водорода, участвующий в водородной связи, может располагаться точно посередине между двумя сильноотрицательными атомами – симметричное расположение или же смещаться ближе к тому из них, который имеет большую электроотрицательность – несимметричное расположение.

Энергии водородной связи достаточно, чтобы при обычных и пониженных температурах вызывать заметную диссоциацию молекул. Фтористый водород даже вблизи температуры кипения имеет средний состав (HF) 4 . Ассоциация приводит к аномально высоким температурам плавления и кипения фтороводорода. Существование димера H 2 F 2 объясняет образование кислых солей типа KHF 2 ×NaHF 2 . Тот факт, что фтористоводородная кислота, в отличие от хлористоводородной, бромистоводородной и иодистоводородной, представляет собой слабую кислоту (К д = 7×10 -4) – тоже является следствием ассоциации молекул HF из-за водородных связей.

При наличии несимметричной водородной связи, которая возникает в соединениях кислорода и азота, водород располагается немного ближе к одному из двух соседствующих атомов, здесь межмолекулярная Н-связь . Каждая молекула Н 2 О участвует в образовании двух Н-связей, так что атом кислорода оказывается связанным с четырьмя атомами водорода. Ассоциированные молекулы воды образуют ажурную пространственную структуру, где каждый атом кислорода располагается в центре тетраэдра, а в углах находятся атомы водорода.

Ажурная пространственная структура воды

Ажурной структурой льда объясняется его меньшая плотность, чем воды. При плавлении часть Н-связей рвется и увеличивается плотность воды, т.к. молекулы располагаются более плотно. Рентгеновское исследование показало, что для большей части молекул в жидкой воде сохраняется также тетраэдрическое окружение: расположение соседних молекул почти такое же, как и в кристалле льда, а в последующем слое повторяется

некоторое отклонение от указанной упорядоченности; отклонение увеличивается по мере удаления от взятой молекулы. Для воды характерно наличие «ближнего порядка» как и для других жидкостей, и в меньшей степени, по сравнению с другими жидкостями, наличие «дальнего порядка». Этим объясняется наличие кристаллической структуры в воде.

Свойства воды такие как, большие значения теплоемкости и теплоты испарения, аномально высокие температуры плавления и кипения, высокая диэлектрическая проницаемость – из-за связанности молекул воды водородными связями. Без Н-связей t пл.воды = -100 о С, t кип.воды = -80 о С.

Водородные связи присутствуют в жидком аммиаке. Водородный атом, связанный с углеродом, может приобрести способность образовывать водородную связь, если остальные валентности углерода насыщаются сильно электроотрицательными атомами или соответствующими атомными группами, например, хлороформ (СНСl 3), пентахлорэтан (CCl 3 -CHCl 2), т.е. соседство электроотрицательных атомов может активировать образование водородной связи у атомов СН-групп, хотя электроотрицательность атомов С и Н почти одинакова. Этим объясняется возникновение Н-связей между молекулами в жидких HCN, CHF 3 и др.

Водородная связь свойственна любым агрегатным состояниям вещества. Она образуется между одинаковыми и между различными молекулами, между различными частями одной и той же молекулы – внутримолекулярная водородная связь . Наиболее распространенной является Н-связь между молекулами, содержащими гидроксильные группы ОН - .

Простые эфиры даже с большей молярной массой более летучи, чем спирты, так как в эфирах все атомы водорода связаны с атомами углерода и не способны образовывать Н-связи.

Велика роль Н-связи в биохимических системах. Свойства белков и нуклеиновых кислот в значительной степени обусловлены наличием водородной связи. Н-связь играет большую роль в процессах растворения. Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, поэтому эти связи играют важную роль в химии процессов жизнедеятельности.

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается.
Ионная связь ненаправленная и не насыщаемая.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H 2 (одна общая пара электронов; H одновалентен);
б) NN N 2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH 4 + (четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную . Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.
Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3 -гибридизация. Например:
sp -гибридизация - в молекулах C 2 H 2 , BeH 2 , CO 2 (линейное строение);
sp 2 -гибридизация - в молекулах C 2 H 4 , C 6 H 6 , BF 3 (плоская треугольная форма);
sp 3 -гибридизация - в молекулах CCl 4 , SiH 4 , CH 4 (тетраэдрическая форма); NH 3 (пирамидальная форма); H 2 O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr 2 , Ca 2 Cu, Cu 5 Zn 8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.

Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH 2 , H—O—H ··· NH 3 , H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.
Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные . Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H 2 , O 2 , N 2 , Cl 2 , Br 2 , S 8 , P 4 и другие простые вещества; CO 2 , SO 2 , N 2 O 5 , H 2 O, HCl, HF, NH 3 , CH 4 , C 2 H 5 OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO 2 , SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na +) 2 (SO 4 2-), (K +) 3 (PO 4 3-), (NH 4 +)(NO 3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).

Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Задачи и тесты по теме "Тема 10. "Химическая связь. Строение вещества"."

  • Типы химической связи - Строение вещества 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Заданий: 9 Тестов: 1

Проработав эту тему, Вы должны усвоить следующие понятия: химическая связь, межмолекулярная связь, ионная связь, ковалентная связь, металлическая связь, водородная связь, простая связь, двойная связь, тройная связь, кратные связи, неполярная связь, полярная связь, электроотрицательность, поляризация связи, - и -связь, гибридизация атомных орбиталей, энергия связи.

Вы должны знать классификацию веществ по типу строения, по типу химической связи, зависимость свойств простых и сложных веществ от типа химической связи и типа "кристаллической решетки".

Вы должны уметь: определять тип химической связи в веществе, тип гибридизации, составлять схемы образования связей, пользоваться понятием электроотрицательность, рядом электроотрицательностей; знать как меняется электроотрицательность у химических элементов одного периода, и одной группы для определения полярности ковалентной связи.

Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


Рекомендованная литература:
  • О. С. Габриелян, Г. Г. Лысова. Химия 11 кл. М., Дрофа, 2002.
  • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.