Почему не видно звезд. Знамение Невидимой Звезды (ЛП) Небо переходной местности между пригородами и городами

Экология познания. Наука и открытия: Вселенная бесконечна, и в ней нет числа звездам. В центре леса, который меньше Вселенной, и деревьев не так много как звезд, нельзя увидеть просветы - поле зрения закрывают стволы и листья. Почему же тогда ночное небо не переполнено звездами? В этом и заключается парадокс Ольберса, или же фотометрический парадокс. Сегодня мы найдем ему разгадку.

Вселенная бесконечна, и в ней нет числа звездам. В центре леса, который меньше Вселенной, и деревьев не так много как звезд, нельзя увидеть просветы - поле зрения закрывают стволы и листья.

Почему же тогда ночное небо не переполнено звездами? В этом и заключается парадокс Ольберса, или же фотометрический парадокс. Сегодня мы найдем ему разгадку.

Столько звезд на маленьком квадратике неба видит мощный телескоп. Соль в том, что их должно быть еще больше.

Наука vs. Логика

Загадка того, почему на ночном небе так мало звезд, мучила астрономов даже в научно-зрелом XIX веке. В телескопы, что правда, ученые видели куда больше светил - но меньше, чем горит в бескрайней Вселенной. Под сводами ученых лбов, логика твердила, что ночное небо должно выглядеть примерно так, как на анимации рядом.

Решение парадокса оказалось еще проще, чем формулировка.

Звезды-невидимки

Начнем с того, что звездочеты прошлого тысячелетия не так уже и ошибались. Фото ниже сделал орбитальный телескоп имени Хаббла (невероятно крутой аппарат). Изображен тут клочок размером 1/13,000,000 всей небесной сферы.

Небо по Парадоксу Ольберса

Все эти цветные звездочки - галактики, которые невидимы глазу. Для того чтобы сделать этот снимок, телескопу пришлось отправиться в космос, использовать сверхчувствительные матрицы и выдерживать кадр больше 11 суток! Такие технологии появились только в конце прошлого века.

Hubble Ultra Deep Field

Если бы человек видел все то же, что орбитальный телескоп, ночное небо было бы столь же ярким, как центр рукава нашего Млечного Пути! Однако все равно есть черные просветы, которые парадокс Ольберса отрицает. Разгадка этих пустот кроется в той же причине, по которой галактики скрыты от невооруженного глаза.

Вселенная расширяется слишком быстро

Мы уже разобрали вместе, как и почему мир вокруг нас раздувается. Вкратце, свет от далеких галактик преодолевает большее расстояние к нам, чем оно было в тот момент, когда он покинул дом. Это создает эффект красного смещения - частота и энергия лучей далеких звезд уменьшается.

Что из этого следует? Есть такие далекие звезды, лучи от которых угаснут еще до того, как долетят к Земле. Поэтому в черных пропастях космоса таки есть свет - просто мы его никогда не увидим.

Красное смещение

К слову, расстояние является главным источником фотометрического парадокса Об этом ниже.

Чтобы достичь Земли, свету требуется время. 149 600 000 километров от Солнца к нам он проходит за 8,3 минуты, а 81360544648396 километров от звезды Сириус - за 8,6 года. Чем больше расстояние - тем дольше свету идти, тут все ясно.

Возраст нашей Вселенной составляет около 13,8 миллиарда лет. Но размеры космоса ведь бесконечны! Самые мощные телескопы смогли засечь свет с расстояния-времени в 12-13 миллиардов лет. А значит, прорва галактик остается невидимой - они настолько далеко, что излучение физически не успело долететь даже в виде неуловимых нейтрино!

Горизонт событий имеет непосредственное отношение к тому, почему черные дыры - черные.

Так как Вселенная расширяется, то свету приходится преодолевать еще большее расстояние. И когда-то на задворках мира расширение сравняется со скоростью света - это установит так называемый горизонт событий. Он будет пододвигаться к нам все теснее, пока перестанут быть видны даже самые ближние звезды.

Это произойдет только если расширение не прекратится, и то через многие миллиарды лет. Недавно мы писали о масштабных космических катастрофах - даже их застать легче, чем дождаться горизонта событий у порога дома.

Напоследок

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций - важный фактор

Получается, что загадка Ольберса и не парадокс вовсе - просто законы физики не позволяют сразу всем звездам слепить нам глаза. Однако ученых этим не остановить, и они продолжают открывать новые звезды. опубликовано

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos

Подпишитесь -

Наша Вселенная состоит из нескольких триллионов галактик. Солнечная система находится внутри достаточно крупной галактики, общее количество которых во Вселенной ограничено несколькими десятками миллиардов единиц.

В нашей галактике содержится 200-400 миллиардов звезд. 75% из них тусклые красные карлики, и лишь несколько процентов звезд в галактике похожи на желтые карлики, спектральному типу звезд, к которому принадлежит и наше . Для земного наблюдателя наше Солнце находится в 270 тысяч раз ближе ближайшей звезды (). В тоже время светимость уменьшается прямо пропорционально убыванию расстояния, поэтому видимая яркость Солнца на земном небе на 25 звездных величин или в 10 миллиардов раз больше видимой светимости ближайшей звезды (). В связи с этим из-за ослепительного света Солнца на дневном небе не видны звезды. Похожая проблема встречается при попытках сфотографировать экзопланеты у близких звезд. Кроме Солнца днем можно увидеть , Международную космическую станцию (МКС) и вспышки спутников первого созвездия Иридиум. Это объясняется тем, что Луна, некоторые и ИСЗ (искусственные спутники Земли) на земном небе выглядят гораздо ярче самых ярких звезд. К примеру, видимый блеск Солнца равен -27 звездных величин, у Луны в полной фазе -13, у вспышек спутников первого созвездия Иридиум -9, у МКС -6, у Венеры -5, у Юпитера и Марса -3, у Меркурия -2, у Сириуса (ярчайшей звезды) -1.6.

Шкала звездных величин видимого блеска различных астрономических объектов является логарифмической: разница в видимом блеске астрономических объектов на одну звездную величину соответствует разнице в 2,512 раз, а разница в 5 звездных величин соответствует разнице в 100 раз.

Почему не видно звезд в городе?

Кроме проблем наблюдения звезд на дневном небе существует проблема наблюдения звезд на ночном небе в населенных пунктах (вблизи крупных городов и промышленных предприятий). Световое загрязнение в этом случае вызвано искусственным излучением. Примером такого излучения можно назвать уличное освещение, подсвеченные рекламные плакаты, газовые факелы промышленных предприятий, прожекторы развлекательных мероприятий.

В феврале 2001 года любитель астрономии из США Джон Э.Бортль создал световую шкалу для оценки светового загрязнения неба и опубликовал её в журнале Sky&Telescope. Эта шкала состоит из девяти делений:

1. Абсолютно темное небо

При таком ночном небе на нём не только отчетливо виден , но отдельные облака Млечного Пути отбрасывают ясные тени. Также в деталях виден и зодиакальной свет с противосиянием (отражение солнечного света от пылинок находящихся по другую сторону от линии Солнце-Земля). На небе невооруженным глазом видны звезды до 8 звездной величины, фоновая яркость неба составляет 22 звездных величины на квадратную угловую секунду.

2. Натуральное темное небо

При таком ночном небе на нем отлично виден Млечный Путь в деталях и зодиакальный свет вместе с противосиянием. Невооруженный глаз показывает звезды с видимой яркостью до 7.5 звездных величин, фоновая яркость неба близка к 21.5 звездной величине на квадратную угловую секунду.

3. Сельское небо

При таком небе зодиакальный свет и Млечный путь продолжает быть хорошо видимым с минимумом деталей. Невооруженный глаз показывает звезды до 7 звездной величины, фоновая яркость неба близка к 21 звездной величине на квадратную угловую секунду.

4. Небо переходной местности между деревнями и пригородами

При таком небе Млечный Путь и зодиакальный свет продолжает быть видимым с минимум деталей, но лишь частично – высоко над уровнем горизонта. Невооруженный глаз показывает звезды до 6.5 звездной величины, фоновая яркость неба близка к 21 звездной величине на квадратную угловую секунду.

5. Небо окрестностей городов

При таком небе, зодиакальный свет и Млечный Путь видны крайне редко, в идеальных погодных и сезонных условиях. Невооруженный глаз показывает звезды до 6 звездной величины, фоновая яркость неба близка к 20.5 звездной величине на квадратную угловую секунду.

6. Небо пригородов городов

При таком небе, зодиакальный свет не наблюдается ни при каких условиях, а Млечный путь с трудом просматривается только в зените. Невооруженный глаз показывает звезды до 5.5 звездной величины, фоновая яркость неба близка к 19 звездной величине на квадратную угловую секунду.

7. Небо переходной местности между пригородами и городами

На таком небе, ни при каких условиях не наблюдается ни зодиакальный свет, ни Млечный путь. Невооруженный глаз показывает звезды только до 5 звездной величины, фоновая яркость неба близка к 18 звездной величине на квадратную угловую секунду.

8. Городское небо

На таком небе невооруженным глазом можно заметить лишь несколько самых ярких рассеянных звездных скоплений. Невооруженный глаз показывает звезды только до 4.5 звездной величины, фоновая яркость неба меньше 18 звездных величин на квадратную угловую секунду.

9. Небо центральной части городов

На подобном небе из звездных скоплений можно увидеть лишь . Невооруженный глаз в лучшем случае показывает звезды до 4 звездной величины.

Световое загрязнение от жилых, индустриальных, транспортных и других объектов экономики современной человеческой цивилизации приводит к необходимости создания крупнейших астрономических обсерваторий в высокогорных районах, которые максимально отдалены от объектов экономики человеческой цивилизации. В этих местах соблюдаются специальные правила по ограничению уличного освещения, минимальному движению транспорта ночью, строительству жилых домов и транспортной инфраструктуры. Похожие правила действуют в специальных охранных зонах старейших обсерваторий, которые расположены вблизи крупных городов. К примеру, в 1945 году в радиусе 3 км вокруг Пулковской обсерватории вблизи Санкт-Петербурга была организована защитная парковая зона, в которой было запрещено крупное жилищное или промышленное производство. В последние годы участились попытки организации строительства жилых зданий в этой защитной зоне в связи с высокой стоимостью земли вблизи одного из крупнейших мегаполисов России. Похожая ситуация наблюдается вокруг астрономических обсерваторий в Крыму, которые находятся в регионе крайне привлекательном для туризма.

На изображении от NASA хорошо видно, что наиболее сильно освещены районы Западной Европы, восточной части континентальной части США, Японии, прибрежной части Китая, Ближнего Востока, Индонезии, Индии, южного побережья Бразилии. С другой стороны минимальное количество искусственного света характерно для полярных областей (особенно Антарктиды и Гренландии), районов Мирового океана, бассейнов тропических рек Амазонка и Конго, высокогорного Тибетского плато, пустынных районов северной Африки, центральной части Австралии, северных районов Сибири и Дальнего Востока.

В июне 2016 года в журнале Science было опубликовано подробное исследование по теме светового загрязнения различных регионов нашей планеты (“The new world atlas of artificial night sky brightness“). Исследование показало, что более 80% жителей планеты и более 99% жителей США и Европы живут в условиях сильного светового загрязнения. Больше трети жителей планеты лишены возможности наблюдать Млечный Путь, среди них 60% европейцев и почти 80% североамериканцев. Экстремальное световое загрязнение характерно для 23% земной поверхности между 75 градусами северной широты и 60 градусами южной широты, а также для 88% поверхности Европы и почти половины поверхности США. Кроме того в исследование отмечается, что энергосберегающие технологии по переводу уличного освещения с ламп накаливания на светодиодные лампы приведет к росту светового загрязнения примерно в 2.5 раза. Это связано с тем, что максимум светового излучения светодиодных ламп с эффективной температурой в 4 тысячи Кельвинов приходится на синие лучи, где сетчатка человеческого глаза обладает максимальной светочувствительностью.

Согласно исследованию максимальное световое загрязнение наблюдается в дельте Нила в районе Каира. Это обусловлено чрезвычайно высокой плотностью населения египетского мегаполиса: 20 миллионов жителей Каира живут на площади в половину тысячи квадратных километров. Это означает среднюю плотность населения в 40 тысяч человек на квадратный километр, что примерно в 10 раз больше средней плотности населения в Москве. В некоторых районах Каира средняя плотность населения превышает 100 тысяч человек на квадратный километр. Другие области с максимальной засветкой находятся в областях городских агломераций Бонн-Дортмунд (вблизи границы между Германией, Бельгией и Нидерландами), на Паданской равнине в северной Италии, между городами США Бостон и Вашингтон, вокруг английских городов Лондон, Ливерпуль и Лидс, а также в районе азиатских мегаполисов Пекин и Гонконг. Для жителей Парижа необходимо проехать как минимум 900 км до Корсики, центральной Шотландии или провинции Куэнка в Испании, чтобы увидеть темное небо (уровень светового загрязнения меньше 8% от естественного освещения). А чтобы жителю Швейцарии увидеть чрезвычайно темное небо (уровень светового загрязнения меньше 1% от естественного освещения), то ему придется преодолеть уже более 1360 км до северо-западной части Шотландии, Алжира или Украины.

Максимальная степень отсутствия темного неба характерна для 100% территории Сингапура, 98% территории Кувейта, 93% Объединенных Арабских Эмиратов (ОАЭ), 83% Саудовской Аравии, 66% Южной Кореи, 61% Израиля, 58% Аргентины, 53% Ливии и 50% Тринидад и Тобаго. Возможность наблюдать Млечный Путь отсутствует у всех жителей небольших государств Сингапур, Сан-Марино, Кувейт, Катар и Мальта, а также у 99%, 98% и 97% жителей ОАЭ, Израиля и Египта соответственно. Странами с наибольшей долей территории, где отсутствует возможность наблюдать Млечный Путь, являются Сингапур и Сан-Марино (по 100%), Мальта (89%), Западный берег (61%), Катар (55%), Бельгия и Кувейт (по 51%), Тринидад и Тобаго, Нидерланды (по 43%) и Израиль (42%).

С другой стороны минимальным световым загрязнением отличаются Гренландия (лишь 0.12% её территории обладает засвеченным небом), Центральноафриканская Республика (ЦАР) (0.29%), тихоокеанская территория Ниуэ (0.45%), Сомали (1.2%) и Мавритания (1.4%).

Несмотря на продолжающийся рост мировой экономики вместе с увеличением энергопотребления наблюдается и рост астрономической образованности населения. Ярким примером этого стала ежегодная международная акция “Час Земли” по выключению света большинством населения в последнюю субботу марта. Первоначально эта акция была задумана Всемирным фондом дикой природы (WWF), как попытка популяризации энергосбережения и снижения выбросов парниковых газов (борьба с глобальным потепление). Однако вместе с тем приобрел популярность и астрономический аспект акции – стремление сделать небо мегаполисов более приспособленным для любительских наблюдений хотя бы на непродолжительное время. Впервые акция была осуществлена в Австралии в 2007 году, а уже в следующем году она получила распространение во всём мире. С каждым годом в акции принимает всё большее число участников. Если в 2007 году в акции участвовало 400 городов 35 стран мира, то в 2017 году участвовали уже более 7 тысяч городов 187 стран мира.

Вместе с тем можно отметить минусы акции, которые заключаются в повышенном риске аварий в энергосистемах мира по причине резкого одновременного выключения и включения огромного количества электроприборов. Кроме того статистика говорит о сильной корреляции отсутствия уличного освещения с ростом травматизма, уличной преступности и другими чрезвычайными происшествиями.

Почему не видно звезд на снимках с МКС?

На снимке хорошо видны огни Москвы, зеленоватое свечение полярного сияния на горизонте, и отсутствие звезд на небе. Огромная разница между яркостью Солнца и даже наиболее яркими звездами приводит к невозможности наблюдения звезд не только на дневном небе с поверхности Земли, но и из космоса. Этот факт хорошо показывает, насколько велика роль “светового загрязнения” от Солнца по сравнению с влиянием земной атмосферы на астрономические наблюдения. Тем не менее, факт отсутствия звезд на снимках неба при пилотируемых полетах к Луне стал одним из ключевых “доказательств” конспирологической теории об отсутствии полетов астронавтов NASA на Луну.

Почему не видно звезд на снимках Луны?

Если разница между видимой светимостью Солнца и ярчайшей звезды – Сириус на земном небе составляет около 25 звездных величин или 10 миллиардов раз, то разница между видимой светимостью полной Луны и яркостью Сириуса уменьшается до 11 звездных величин или примерно в 10 тысяч раз.

В связи с этим наличие полной Луны не приводит к исчезновению звезд на всём ночном небе, а лишь затрудняет их видимость вблизи лунного диска. Тем не менее, одним из первых способов измерения диаметра звезд стало измерение длительности покрытия лунным диском ярких звезд зодиакальных созвездий. Естественно такие наблюдения стремятся проводить при минимальной фазе Луны. Похожая проблема обнаружения тусклых источников вблизи яркого источника света существует при попытках сфотографировать планеты у близких звезд (видимая яркость аналога Юпитера у близких звезд за счет отраженного света составляет примерно 24 звездных величин, а у аналога Земли лишь около 30 звездных величин). В связи с этим пока астрономам удается сфотографировать лишь молодые массивные планеты при наблюдениях в инфракрасном диапазоне: молодые планеты сильно разогреты после процесса планетообразования. Поэтому, чтобы научиться обнаруживать экзопланеты у близких звезд, для космических телескопов разрабатываются две технологии: коронография и нуль-интерферометрия. По первой из технологий яркий источник закрывается затменнным диском (искусственное затмение), по второй технологии свет яркого источника “обнуляется” с помощью специальных методик интерференции волн. Ярким примером первой технологии стала , которая с 1995 года из первой точки либрации занимается мониторингом солнечной активности. На снимках 17-градусной коронографической камеры этой космической обсерватории видны звезды до 6 звездной величины (разница в 30 звездных величин или в триллион раз).

Черная дыра является порождением тяготения. Поэтому предысторию открытия черных дыр можно начать со времен И. Ньютона, открывшего закон всемирного тяготения - закон, управляющий силой, действию которой подвержено абсолютно все. Ни во времена И. Ньютона, ни сегодня, спустя века, не обнаружена иная столь универсальная сила. Все другие виды физического взаимодействия связаны с конкретными свойствами материи. Например, электрическое поле действует только на заряженные тела, а тела нейтральные совершенно к нему безразличны. И только тяготение абсолютно царствует в природе. Поле тяготения действует на все: на легкие частицы и тяжелые (причем при одинаковых начальных условиях совершенно одинаково), даже на свет. То, что свет притягивается массивными телами, предполагал еще И. Ньютон. С этого факта, с понимания того, что свет также подчинен силам тяготения, и начинается предыстория черных дыр, история предсказаний их поразительных свойств.

Одним из первых это сделал знаменитый французский математик и астроном П. Лаплас.

Имя П. Лапласа хорошо известно в истории науки. Прежде всего он является автором огромного пятитомного труда «Трактат о небесной механике». В этой работе, публиковавшейся с 1798 по 1825 год, им была представлена классическая теория движения тел Солнечной системы, основанная только на законе всемирного тяготения Ньютона. До этой работы некоторые наблюдаемые особенности движения планет, Луны, других тел Солнечной системы не были полностью объяснены. Казалось даже, что они противоречат закону Ньютона. П. Лаплас тонким математическим анализом показал, что все эти особенности объясняются взаимным притяжением небесных тел, влиянием тяготения планет друг на друга. Только одна сила царит в небесах, провозглашал он, - это сила тяготения. «Астрономия, рассматриваемая с наиболее общей точки зрения, есть великая проблема механики», - писал П. Лаплас в предисловии к своему «Трактату». Кстати, сам термин «небесная механика», так прочно вошедший в науку, был впервые употреблен им.

П. Лаплас был также одним из первых, кто понял необходимость исторического подхода к объяснению свойств систем небесных тел. Он вслед за И. Кантом предложил гипотезу происхождения Солнечной системы из первоначально разреженной материи.

Главная идея гипотезы Лапласа о конденсации Солнца и планет из газовой туманности и до сих пор служит основой современных теорий происхождения Солнечной системы…

Обо всем этом много писалось в литературе и в учебниках точно так же, как и о гордых словах П. Лапласа, который в ответ на вопрос Наполеона: почему в его «Небесной механике» не упоминается бог? - сказал: «Я не нуждаюсь в этой гипотезе».

А вот о чем до последнего времени было мало известно, - это о предсказании им возможности существования невидимых звезд.

Предсказание было сделано в его книге «Изложение систем мира», вышедшей в 1795 году. В этой книге, которую мы бы сегодня назвали популярной, знаменитый математик ни разу не прибегнул к формулам и чертежам. Глубокое убеждение П. Лапласа в том, что тяготение действует на свет точно так же, как и на другие тела, позволило ему написать следующие знаменательные слова: «Светящаяся звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми».

В книге не приводилось доказательств этого утверждения. Оно было опубликовано им несколько лет спустя.

Как рассуждал П. Лаплас? Он рассчитал, пользуясь теорией тяготения Ньютона, величину, которую мы теперь называем второй космической скоростью, на поверхности звезды. Это та скорость, которую надо придать любому телу, чтобы оно, поборов тяготение, навсегда улетело от звезды или планеты в космическое пространство. Если начальная скорость тела меньше второй космической, то силы тяготения затормозят и остановят движение тела и заставят его снова падать к тяготеющему центру. В наше время космических полетов каждый знает, что вторая космическая скорость на поверхности Земли равна 11 километрам в секунду. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. Это понятно: ведь с ростом массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает.

На поверхности Луны вторая космическая скорость равна 2,4 километра в секунду, на поверхности Юпитера 61, на Солнце - 620, а на поверхности так называемых нейтронных звезд, которые по массе примерно такие же, как Солнце, но имеют радиус всего в десять километров, эта скорость достигает половины скорости света - 150 тысяч километров в секунду.

Представим себе, рассуждал П. Лаплас, что мы возьмем небесное тело, на поверхности которого вторая космическая скорость уже превышает скорость света. Тогда свет от такой звезды не сможет улететь в космос из-за действия тяготения, не сможет достичь далекого наблюдателя и мы не увидим звезду, несмотря на то, что она излучает свет!

Если увеличивать массу небесного тела, добавляя к нему вещество с той же самой средней плотностью, то вторая космическая скорость увеличивается во столько же раз, во сколько возрастает радиус или диаметр.

Теперь понятен вывод, сделанный П. Лапласом: чтобы тяготение задержало свет, надо взять звезду с веществом той же плотности, что и Земля, а диаметром в 250 раз больше солнечного, то есть в 27 тысяч раз больше земного. Действительно, вторая космическая скорость на поверхности такой звезды будет тоже в 27 тысяч раз больше, чем на поверхности Земли, и примерно сравняется со скоростью света: звезда перестанет быть видимой.

Это было блестящим предвидением одного из свойств черной дыры - не выпускать свет, быть невидимой. Справедливости ради надо отметить, что П. Лаплас был не единственным ученым и формально даже не самым первым, кто сделал подобное предсказание. Сравнительно недавно выяснилось, что в 1783 году с аналогичным утверждением выступал английский священник и геолог, один из основателей научной сейсмологии, Дж. Мичелл. Его аргументация была очень похожа на аргументацию П. Лапласа.

Сейчас между французами и англичанами идет иногда полушутливая, а иногда серьезная полемика: кого следует считать первооткрывателем возможности существования невидимых звезд - француза П. Лапласа или англичанина Дж. Мичелла? В 1973 году известные английские физики-теоретики С. Хоукинг и Г. Эллис в книге, посвященной современным специальным математическим вопросам структуры пространства и времени, приводили работу француза П. Лапласа с доказательством возможности существования черных звезд; тогда о работе Дж. Мичелла еще не было известно. Осенью 1984 года известный английский астрофизик М. Рисс, выступая на конференции в Тулузе, сказал, что хотя это не очень удобно говорить на территории Франции, но он должен подчеркнуть, что первым предсказал невидимые звезды англичанин Дж. Мичелл, и продемонстрировал снимок первой страницы соответствующей его работы. Это историческое замечание было встречено и аплодисментами и улыбками присутствующих.

Как тут не вспомнить дискуссии между французами и англичанами о том, кто предсказал положение планеты Нептун по возмущениям в движении Урана: француз У. Леверье или англичанин Дж. Адамс? Как известно, оба ученых независимо правильно указали положение новой планеты. Тогда больше повезло французу У. Леверье. Такова участь многих открытий. Часто их делают почти одновременно и независимо разные люди. Обычно приоритет признается за тем, кто глубже проник в суть проблемы, но иногда это просто капризы фортуны.

Но предвидение П. Лапласа и Дж. Мичелла еще не было настоящим предсказанием черной дыры. Почему?

Дело в том, что во времена П. Лапласа еще не было известно, что быстрее света в природе ничто не может двигаться. Обогнать свет в пустоте нельзя! Это было установлено А. Эйнштейном в специальной теории относительности уже в нашем веке. Поэтому для П. Лапласа рассматриваемая им звезда была только черной (несветящейся), и он не мог знать, что такая звезда теряет способность вообще как-либо «общаться» с внешним миром, что-либо «сообщать» далеким мирам о происходящих на ней событиях. Иными словами, он еще не знал, что это не только «черная», но и «дыра», в которую можно упасть, но невозможно выбраться. Теперь мы знаем, что если из какой-то области пространства не может выйти свет, то, значит, и вообще ничто не может выйти, и такой объект мы называем черной дырой.

Другая причина, из-за которой рассуждения П. Лапласа нельзя считать строгими, состоит в том, что он рассматривал гравитационные поля огромной силы, в которых падающие тела разгоняются до скорости света, а сам выходящий свет может быть задержан, и применял при этом закон тяготения Ньютона.

А. Эйнштейн показал, что для таких полей теория тяготения Ньютона неприменима, и создал новую теорию, справедливую для сверхсильных, а также для быстроменяющихся полей (для которых ньютоновская теория также неприменима!), и назвал ее общей теорией относительности. Именно выводами этой теории надо пользоваться для доказательства возможности существования черных дыр и для изучения их свойств.

Общая теория относительности - это изумительная теория. Она настолько глубока и стройна, что вызывает чувство эстетического наслаждения у всякого, кто знакомится с ней. Советские физики Л. Ландау и Е. Лифшиц в своем учебнике «Теория поля» назвали ее «самой красивой из всех существующих физических теорий». Немецкий физик Макс Борн сказал об открытии теории относительности: «Я восхищаюсь им как творением искусства». А советский физик В. Гинзбург писал, что она вызывает «…чувство… родственное тому, которое испытывают, глядя на самые выдающиеся шедевры живописи, скульптуры или архитектуры».

Многочисленные попытки популярного изложения теории Эйнштейна, конечно, могут дать общее впечатление о ней. Но, честно говоря, оно столь же мало похоже на восторг от познания самой теории, как знакомство с репродукцией «Сикстинской мадонны» отличается от переживания, возникающего при рассмотрении подлинника, созданного гением Рафаэля.

И тем не менее, когда нет возможности любования подлинником, можно (и нужно!) знакомиться с доступными репродукциями, лучше хорошими (а бывают всякие).

Для понимания невероятных свойств черных дыр нам необходимо сказать кратко о некоторых следствиях общей теории относительности Эйнштейна.

<<< Назад
Вперед >>>

Считается, что самые первые звезды питались темной материей. Не исключено, что эти невидимые гиганты, зародившиеся почти 13 миллиардов лет назад, существуют во Вселенной до сих пор. Возможно, они просто не излучают видимого света, что затрудняет их обнаружение.

Первоначально исследователь Паоло Гондоло, профессор астрофизики частиц в университете Юты (США), который занимается этой проблемой, хотел назвать новый, теоретически существующий тип невидимых звезд — "коричневые гиганты", подобно коричневым карликам, имеющим приблизительный размер Юпитера, но, соответственно, гораздо более массивным. Однако его коллеги настояли на том, чтобы обозначить их как "темные звезды", в честь одноименной песни, которая впервые была исполнена в 1967 году всеми любимой рок-группой "Grateful Dead".

По предположениям ученых, "темные звезды" должны быть в 200-400 тысяч раз больше в диаметре, чем наше Солнце, и в 500-1000 раз больше сверхмассивных черных дыр.

Зародившиеся почти 13 миллиардов лет назад, "темные звезды" могут существовать и по сей день, хотя и не излучая видимого света. Дело в том, что астрономам сложно обнаружить эти таинственные гиганты, так как для того, чтобы стать видимыми, они должны источать гамма-лучи, нейтроны и антивещество. Мало того, они должны быть окутаны облаками холодного молекулярного водородного газа, которого сейчас недостаточно, чтобы питать энергичные частицы таких объектов.

Если ученым удастся обнаружить их, то это поможет найти и идентифицировать темную материю. Тогда можно будет выяснить, почему черные дыры формируются так быстро.

Ученые полагают, что невидимая и пока еще неопознанная темная материя составляет приблизительно 95 процентов всего содержимого Вселенной. Они убеждены, что она существует — этому есть множество доказательств. Например, галактики вращаются гораздо быстрее, чем это должно было быть, если учесть только те объекты, которые обнаружены на сегодняшний день в пределах нашей видимости.

По мнению ученых, частицами темной материи могут быть так называемые WIMP, или слабо взаимодействующие массивные частицы. Одной из изученных разновидностей WIMP исследователи считают нейтрино, участвующие в гравитационном взаимодействии. Подобные частицы могут уничтожить друг друга, производя при этом высокую температуру.

Частицы темной материи также вырабатывают кварки (гипотетические фундаментальные элементы, из которых, по современным представлениям, состоят все элементарные частицы, участвующие в сильном взаимодействии), а также копии антивещества — антикварки, которые при столкновении испускают гамма-лучи, нейтрино и антивещества, такие как позитроны и антипротоны.

Исследователи вычислили, что в новорожденной Вселенной, приблизительно 80-100 миллионов лет после того, как произошел Большой взрыв, уничтожавшиеся прото-звездные облака водорода и гелия охлаждались и сжимались, при этом оставаясь горячими и массивными.

В результате этих процессов могли сформироваться темные звезды, питаемые темной материей вместо ядерной энергии (как в обычных звездах). Они состояли в значительной степени из обычной материи, главным образом водорода и гелия, но были значительно массивнее и больше по объему, чем Солнце и большинство других современных звезд.

"Это абсолютно новый тип звезды, которая обладает новым источником энергии", — уверена исследователь Кэтрин Фриз, физик-теоретик из Мичиганского Университета.

Невидимка стояла на самом краю скалы и смотрела как мутно-бурая, грязная вода с плавающими в ней прутиками, увядшими листьями и корнями плещется, извиваясь, вокруг ее лап. И как ни вглядывалась в нее кошка, она не могла различить даже камней на дне реки, что уж говорить о бликах на спинках рыб, которые раньше всегда выдавали присутствие добычи. Она наклонилась, чтобы дотронуться до поверхности воды языком. Горькая и грязная.

Совсем не так, как прежде, верно? - с тоской отметила стоящая рядом Пятнистая Звезда. Невидимка подняла голову, чтобы взглянуть на свою предводительницу. Прежде сиявшая золотом шерсть померкла в серых рассветных сумерках, а темные пятна, давшие ей имя, так потускнели в последнюю луну, что различить их было уже невозможно. - Когда вода вернулась, я решила, что теперь все будет совсем как раньше. - Пятнистая Звезда вздохнула и, опустив лапу в воду, немного поводила ей из стороны в сторону. Потом выпрямила, наблюдая как с когтей на камень капает грязь.

Рыба скоро вернется, - мяукнула Невидимка. - Ведь ручьи снова полны. С чего бы рыбам их сторониться?

Но Пятнистая Звезда смотрела на рябящую воду и как будто не слышала слов глашатаи.

Так много рыбы погибло в засуху, - снова вздохнула она. - Что, если озеро так и останется пустым? Что мы будем есть?

Невидимка придвинулась к ней, коснулась плечом, и с ужасом почувствовала острые ребра, выпирающие из-под шкуры.

Все будет хорошо, - пробормотала она. - Жилище бобров разрушено, а после дождя окончилась и засуха. Это был тяжелый сезон, но мы уже пережили его.

Черный Коготь, Зубатка и Первоцветик - нет, - оскалилась в ответ предводительница. - Трое умерших старейшин за одни Зеленые Листья! Я вынуждена наблюдать, как умирают мои соплеменники. А все из-за того, что в озере больше не осталось ничего, кроме грязи! А Чешуйник? Он был смелым, как и остальные коты, отправившиеся вверх по реке - так почему же он не заслужил возможности вернуться? Может, только потому, что ушел слишком далеко, туда, где Звездное племя ничего не видит?

Невидимка беспомощно погладила ее по спине хвостом.

Чешуйник погиб спасая озеро, племена и всех нас. Мы всегда будем чтить его память.

Пятнистая Звезда раздраженно развернулась и начала подниматься вверх по берегу.

Он слишком дорого заплатил, - рыкнула кошка, не оборачиваясь. - А если рыба не вернется в озеро, его жертва будет напрасной.

Предводительница оступилась, и Невидимка рванулась вперед, готовая ее поддержать. Но та только раздраженно зашипела и продолжила карабкаться вверх, спотыкаясь и пошатываясь.

Невидимка пристроилась сзади, в нескольких хвостах, не желая суетиться вокруг гордой золотистой кошкой. Она знала, что теперь Пятнистая Звезда постоянно испытывает боль, заглушить которую не в силах даже все травы Мотылинки, несмотря на то, что болезнь эта вовсе не была необычной - всего лишь иссушающая жажда, резкая потеря веса, постоянный голод и растущая слабость, притупляющая слух и зрение. Невидимка почувствовала облегчение, только когда ее предводительница протиснулась сквозь папоротники, окружавшие лагерь Речного племени, и скрылась внутри.

И вдруг оттуда, из глубины, послышался сдавленный крик.

Пятнистая Звезда? - внутренне холодея, кошка бросилась наверх. Предводительница лежала на земле, широко распахнув глаза от боли и отчаянно пытаясь вдохнуть.

Не двигайся, - приказала Невидимка. - Я приведу помощь.

Она проломилась сквозь папоротники и вывалилась на поляну в центре лагеря.

Мотылинка, быстрее! Пятнистая Звезда упала!

Послышался тяжелый стук лап по земле, потом мелькнула песочная шерстка Мотылинки, и, наконец, она сама появилась на пороге палатки. Затем остановилась и закрутила головой, не зная куда идти.

Сюда! - крикнула ей Невидимка.

Бок о бок, кошки протиснулись между зеленых стеблей к своей предводительнице. Пятнистая Звезда устало прикрыла глаза, воздух клокотал в ее горле с каждым вздохом. Мотылинка склонилась над ней, обнюхивая шерсть. Невидимка тоже подошла ближе, но отпрянула, почувствовав несвежий запах, шедший от больной кошки. Вблизи она увидела грязь на шерсти Пятнистой Звезды, как будто та не вылизывалась целую луну.

Приведи Мятника и Камышинника, - тихо попросила ее целительница, обернувшись через плечо. - Они еще не ушли в патруль и помогут отнести Пятнистую Звезду в ее палатку.

Чувствуя облегчение, что теперь у нее есть повод уйти, и вину за желание это сделать, Невидимка молча кивнула, попятилась и бросилась обратно на поляну. Она вернулась уже с Мятником и Камышинником. Мотылинка помогла предводительница подняться, та тяжело оперлась о воинов. Глашатая пошла впереди, раздвигая папоротники и слегка придерживая их листья перед то ли ведущими, то ли тащившими больную кошку соплеменниками.

Пятнистая Звезда что, умерла? - послышался звонкий голосок кого-то из котят Сумрачки.

Конечно, нет, милый, - шепотом ответила королева. - Просто она очень устала.

Невидимка осталась стоять на пороге палатки предводительницы, наблюдая, как Камышинник подгребает мох под голову лежащей кошке. Это уже больше чем истощение. В пещерке как будто помрачнело, по углам собрались тени, словно Звездные предки уже были готовы появиться и поприветствовать уходящую предводительницу Речного племени. Мятник протиснулся мимо глашатаи, благоухая ароматом папоротников.

Дай мне знать, если я могу сделать для нее еще что-нибудь, - тихо произнес он, и Невидимка кивнула. Камышинник тоже вышел, опустив голову и волоча за собой хвост, оставляющий в пыли длинный след.

Мотылинка чуть сдвинула лапу Пятнистой Звезды в более удобную позу и выпрямилась.

Мне нужно взять травы из своей палатки, - объявила она. - Оставайся тут, так, чтобы она понимала, что ты рядом, - целительница оглянулась на неподвижно лежащую кошку, потом подошла ближе и шепнула в самое ухо, - Будь сильной, друг мой.

После ее ухода в палатке воцарилась мертвая тишина. Дыхание Пятнистой Звезды стало поверхностным, ее хрипы едва колыхали мох рядом с мордочкой. Невидимка опустилась рядом с ней и погладила хвостом костлявый бок предводительницы.

Спи спокойно, - мягко промурлыкала она. - Теперь все будет в порядке. Мотылинка скоро принесет травы, и тебе станет лучше.

К ее удивлению Пятнистая Звезда зашевелилась.

Уже поздно, - проскрежетала она, не открывая глаз. - Звездные предки близко, я чувствую их рядом с собой. Пришло время и мне уходить.

Не говори так! - зашипела на нее Невидимка. - Твоя девятая жизнь только началась! Мотылинка вылечит тебя, вот увидишь!

Мотылинка - хорошая целительница, но и она не всегда может помочь. Дай мне спокойно уйти. Я не буду сражаться в этой последней битве, и не хочу, чтобы ты пыталась, - Пятнистая Звезда попыталась усмехнуться, но издала только хрип.

Но я не хочу терять тебя! - возмутилась Невидимка.

Правда? - прохрипела предводительница, приоткрыв один глаз. Испытывающий янтарный взгляд окинул ее с головы до пят. - После всего, что я сделала с твоим братом? Со всеми полукровками?

На какое-то мгновение Невидимка снова почувствовала себя зажатой в той страшной черной норе, насквозь провонявшей кроликом, возле старого лагеря Речного племени. Тогда Пятнистая Звезда и Звездоцап объединились, чтобы создать Тигриное Племя, и, пытаясь очистить кровь воинов, взяли в плен всех полукровок. Невидимка и Камень, который был тогда глашатаем Речного племени, только что узнали, что их матерью была Синяя Звезда. В глазах предводителей этого было достаточно для приговора, и Пятнистая Звезда позволила Чернопяту хладнокровно убить Камня. Его сестру спас Огнезвезд, он же привел ее в Грозовое племя, где она и оставалась, пока в битве с Кровавым племенем вместе с девятью жизнями Звездоцапа не кончилась его власть.