Неорганические и органические природные полимеры. Не имеет определенной температуры плавления

Полимеры - это высокомолекулярные соединения, состоящие из множества повторяющихся различных или одинаковых по строению атомных групп - звеньев. Эти звенья соединяются между собой координационными или химическими связями в разветвленные или длинные линейные цепи и в пространственные трехмерные структуры.

Полимеры бывают:

  • синтетическими,
  • искусственными,
  • органическими.

Органические полимеры в природе образуются в животных и растительных организмах. Самые важные из них - это белки, полисахариды, нуклеиновые кислоты, каучук и другие природные соединения.

Человек давно и широко применяет органические полимеры в своей повседневной жизни. Кожа, шерсть, хлопок, шелк, меха - все это используется для производства одежды. Известь, цемент, глина, органическое стекло (плексиглас) - в строительстве.

Органические полимеры присутствуют и в самом человеке. Например, нуклеиновые кислоты (их называют еще ДНК), а также рибонуклеиновые кислоты (РНК).

Свойства органических полимеров

У всех органических полимеров есть особые механические свойства:

  • малая хрупкость кристаллических и стеклообразных полимеров (органическое стекло, пластмассы);
  • эластичность, то есть высокая обратимая деформация при небольших нагрузках (каучук);
  • ориентирование макромолекул под действием механического направленного поля (производство пленок и волокон);
  • при малой концентрации большая вязкость растворов (полимеры вначале набухают, а потом растворяются);
  • под действием небольшого количества реагента способны быстро изменить свои физико-механические характеристики (например, дубление кожи, вулканизация каучука).

Таблица 1. Характеристики горения некоторых полимеров.

Полимеры Поведение материала при внесении в пламя и горючесть Характер пламени Запах
Полиэтилен (ПЭ) Плавится течет по каплям, горит хорошо, продолжает гореть при удалении из пламени. Светящееся, вначале голубоватое, потом желтое Горящего парафина
Полипропилен (ПП) То же То же То же
Поликарбонат (ПК) То же Коптящее
Полиамид (ПА) Горит, течет нитью Синеватое снизу, с желтыми краями Паленых волос илигорелых растений
Полиуретан (ПУ) Горит, течет по каплям Желтое, синеватое снизу, светящееся, серый дым Резкий, неприятный
Полистирол (ПС) Самовоспламеняется, плавится Ярко-желтое, светящееся, коптящее Сладковатый цветочный,с оттенком запаха стирола
Полиэтилентерефталат(ПЭТФ) Горит, капает Желто-оранжевое, коптящее Сладкий, ароматный
Эпоксидная смола (ЭД) Горит хорошо, продолжает гореть при удалении из пламени Желтое коптящее Специфический свежий(в самом начале нагревания)
Полиэфирная смола (ПН) Горит, обугливается Светящееся, коптящее, желтое Сладковатый
Поливинилхлорид жесткий (ПВХ) Горит с трудом и разбрасыванием, при удалении из пламени гаснет, размягчается Ярко-зеленое Резкий, хлористого водорода
ПВХ пластифицированный Горит с трудом и при удалении из пламени, с разбрасыванием Ярко-зеленое Резкий, хлористого водорода
Фенолоформальдегидная смола (ФФС) Загорается с трудом, горит плохо, сохраняет форму Желтое Фенола, формальдегида

Таблица 2. Растворимость полимерных материалов.

Таблица 3. Окраска полимеров по реакции Либермана - Шторха - Моравского.

Статьи по теме

Среди большинства материалов наиболее популярными и широко известными являются полимерные композиционные материалы (ПКМ). Они активно применяются практически в каждой сфере человеческой деятельности. Именно данные материалы являются основным компонентом для изготовления различных изделий, применяемых с абсолютно разными целями, начиная от удочек и корпусов лодок, и заканчивая баллонами для хранения и транспортировки горючих веществ, а также лопастей винтов вертолетов. Такая широкая популярность ПКМ связана с возможностью решения технологических задач любой сложности, связанных с получением композитов, имеющих определенные свойства, благодаря развитию полимерной химии и методов изучения структуры и морфологии полимерных матриц, которые используются при производстве ПКМ.

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры — химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы - обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н. п. (строгого деления по этому признаку нет).

Аналогично органическим полимерам Н. п. подразделяют по пространственной структуре на линейные, разветвленные, лестничные и сетчатые (двух- и трёхмерные), по составу главной цепи - на гомоцепные типа [-M-] n и гетероцепные типа [-M-M"-] n или [- М- M"- М"-] n (где М, M", М" - различные атомы). Например, полимерная сера [-S-] n - гомоцепной линейный Н. п. без боковых групп.

Многие неорганические вещества в твёрдом состоянии представляют собой единую макромолекулу, однако, для отнесения их к Н. п. необходимо наличие некоторой анизотропии пространственного строения (и, следовательно, свойств). Этим кристаллы Н. п. отличаются от полностью изотропных кристаллов обычных неорганических веществ (например, NaCI, ZnS). Большинство химических элементов не способно к образованию устойчивых гомоцепных Н. п., и лишь примерно 15 (S, Р, Se, Te, Si и др.) образуют не очень длинные (олигомерные) цепи, значительно уступающие по устойчивости гомоцепным олигомерам со связями С-С. Поэтому наиболее типичны гетероцепные Н. п., в которых чередуются электроположительные и электроотрицательные атомы, например В и N, Р и N, Si и О, образующие между собой и с атомами боковых групп полярные (частично ионные) химические связи.

Полярные связи обусловливают повышенную реакционную способность Н. п., прежде всего склонность к гидролизу. Поэтому многие Н. п. малоустойчивы на воздухе; кроме того, некоторые из них легко деполимеризуются с образованием циклических структур. На эти и др. химические свойства Н. п. можно отчасти влиять, направленно меняя боковое обрамление, от которого главным образом зависит характер межмолекулярного взаимодействия, определяющего эластичные и др. механические свойства полимера. Так, линейный эластомер Полифосфонитрилхлорид [-CI 2 PN-] n в результате гидролиза по связи Р-Сl (и последующей поликонденсации) превращается в трёхмерную структуру, не обладающую эластическими свойствами. Устойчивость к гидролизу этого эластомера можно повысить при замене атомов Cl на некоторые органические радикалы. Многие гетероцепные Н. п. отличаются высокой термостойкостью, значительно превышающей термостойкость органических и элементоорганических полимеров (например, полимерный оксонитрид фосфора n не изменяется при нагревании до 600 °С). Однако высокая термостойкость Н. п. редко сочетается с ценными механическими и электрическими свойствами. По этой причине число Н. п., нашедших практическое применение, сравнительно невелико. Однако Н. п. - важный источник получения новых термостойких материалов.

Е. М. Шусторович.

  • - соли борных к-т: метаборной НВО 2, ортоборной Н 3 ВО 3 и не выделенных в своб. состоянии полиборных Н 3m-2n В mO3m-n. По числу атомов бора в молекуле делятся на моно-, ди-, тетра-, гексабораты и т. д. Бораты называют также...

    Химическая энциклопедия

  • - соли угольной к-ты. Существуют средние карбонаты с анионом СО 32- и кислые, или гидрокарбонаты, с анионом HCO3-. К. - кристаллич...

    Химическая энциклопедия

  • - клеи на основе клеящих в-в неорг. природы. Минеральные клеи производят в виде порошков, р-ров и дисперсий...

    Химическая энциклопедия

  • - соли азотной к-ты HNO3. Известны почти для всех металлов; существуют как в виде безводных солей Mn , так и в виде кристаллогидратов Mn.x>H2O ...

    Химическая энциклопедия

  • - соли азотистой к-ты HNO2. Используют прежде всего нитриты щелочных металлов и аммония, меньше-щел.-зем. и 3d-металлов, Рb и Ag. О Н. остальных металлов имеются только отрывочные сведения...

    Химическая энциклопедия

  • - ярко-красные твердые соед. общей ф-лы Мn, где п заряд катиона М. Ион О -3 имеет симметричную треугольную конфигурацию; в молекуле RbO3 длина связи ОЧО 0,134 нм, угол ООО 114°...

    Химическая энциклопедия

  • - см. Гидроксиды, Кислоты и основания...

    Химическая энциклопедия

  • - см. Фосфаты конденсированные...

    Химическая энциклопедия

  • - соли серной к-ты. Известны средние сульфаты с анионом, кислые, или гидросульфаты, с анионом, основные, содержащие наряду с анионом группы ОН, напр. Zn22SO4...

    Химическая энциклопедия

  • - соед. серы с металлами, а также с более электроположит. неметаллами. Бинарные сульфиды могут рассматриваться как соли сероводородной к-ты H2S -средние, напр. , и кислые, или гидросульфиды, MHS, M2...

    Химическая энциклопедия

  • - соли сернистой к-ты H2SO3. Различают средние сульфиты с анионом и кислые с анионом. Средние С.-кристаллич. в-ва. С. аммония и щелочных металлов хорошо раств. в воде; р-римость: 2SO3 40,0 , K2SO3 106,7 ...

    Химическая энциклопедия

  • - ...

    Энциклопедический словарь нанотехнологий

  • - см. Органические вещества...

    Энциклопедический словарь Брокгауза и Евфрона

  • - К неорганическим относятся соединения всех химических элементов, за исключением большинства соединений углерода...

    Энциклопедия Кольера

  • - неорганические вещества с функциональными свойствами. Различают металлические, неметаллические и композиционные материалы. Примеры - сплавы, неорганические стекла, полупроводники, керамика, керметы, диэлектрики...
  • - НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов...

    Большой энциклопедический словарь

"Неорганические полимеры" в книгах

Глава 9 Полимеры вечны

Из книги Земля без людей автора Вейсман Алан

Глава 9 Полимеры вечны Портовый город Плимут в юго-западной Англии уже не входит в число живописных городов Британских островов, хотя до Второй мировой войны он им являлся. За шесть ночей в марте и апреле 1941 года бомбы нацистов разрушли 75 тысяч зданий во время того, что

Полимеры

Из книги Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры автора Онищенко Владимир

Полимеры В технологии производства строительных пластмасс полимеры, получаемые синтезом из простейших веществ (мономеров), по способу производства подразделяются на два класса: класс А – полимеры, получаемые цепной полимеризацией, класс Б – полимеры, получаемые

Карбоцепные полимеры

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Гетероцепные полимеры

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

Полимеры

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Кремнийорганические полимеры

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ИЗ) автора БСЭ

Синдиотактические полимеры

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

ПОЛИМЕРЫ

Из книги Эксперимент в хирургии автора Кованов Владимир Васильевич

ПОЛИМЕРЫ В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь

52. Полимеры, пластмассы

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

52. Полимеры, пластмассы Полимеры – это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.В молекулах полимеров различают

В природе существуют элементоорганические, органические и неорганические полимеры. К неорганическим относят материалы, главная цепь которых неорганическая, а боковые ответвления не являются углеводородными радикалами. К формированию полимеров неорганического происхождения наиболее склонны элементы III-VI групп периодической системы химических элементов.

Классификация

Органические и неорганические полимеры активно исследуются, определяются их новые характеристики, поэтому четкой классификации этих материалов еще не выработано. Впрочем, можно выделить определенные группы полимеров.

В зависимости от структуры:

  • линейные;
  • плоские;
  • разветвленные;
  • полимерные сетки;
  • трехмерные и другие.

В зависимости от атомов главной цепи, образующих полимер:

  • гомоцепные типа (-M-)n - состоят из одного вида атомов;
  • гетероцепные типа (-M-L-)n - состоят из различных видов атомов.

В зависимости от происхождения:

  • природные;
  • искусственные.

Для отнесения к неорганическим полимерам веществ, которые в твердом состоянии представляют собой макромолекулы, необходимо также наличие в них определенной анизотропии пространственного строения и соответствующих свойств.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов - в щелочной. Поликонденсация может быть проведена как в растворе, так и в при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Неорганические полимеры: примеры и применение

Специфика НП заключается в образовании полимерных с регулярной трехмерной структурой макромолекул. Наличие жесткого каркаса химических связей предоставляет таким соединениям значительную твердость.

Указанное свойство позволяет использовать в качестве неорганические полимеры. Применение этих материалов нашло широчайшее применение в промышленности.

Исключительная химическая и термическая стойкость НП является также ценным свойством. Например, армирующие волокна, изготовленные из органических полимеров, устойчивы на воздухе до температуры 150-220 ˚С. Между тем борное волокно и его производные остаются устойчивыми до температуры 650 ˚С. Именно поэтому неорганические полимеры являются перспективными для создания новых химически и термостойких материалов.

Практическое значение также имеют НП, которые одновременно являются и приближающимися по свойствам к органическим, и сохраняющими свои специфические свойства. К таким относят фосфаты, полифосфазены, силикаты, полимерные с различными боковыми группами.

Полимеры углерода

Задание: «Приведите примеры неорганических полимеров», - часто встречается в учебниках по химии. Целесообразно его выполнять с упоминанием самых выдающихся НП - производных углерода. Ведь сюда входят материалы с уникальными характеристиками: алмазы, графит и карбин.

Карбин - искусственно созданный, малоизученный линейный полимер с непревзойденными показателями прочности, не уступающими, а согласно ряду исследований и превосходящими графен. Впрочем, карбин - вещество таинственное. Ведь не все ученые признают его существование как самостоятельного материала.

Внешне выглядит как металло-кристаллический черный порошок. Имеет полупроводниковые свойства. Электропроводность карбина значительно увеличивается под действием света. Он не теряет этих свойств даже при температуре до 5000 ˚С, что намного выше, чем для других материалов подобного назначения. Получен материал в 60-х В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным и Ю.П. Кудрявцевым путем каталитического окисления ацетилена. Самое сложное было определить вид связей между атомами углерода. Впоследствии было получено вещество только с двойными связями между атомами углерода в Институте элементоорганических соединений АН СССР. Новое соединение назвали поликумулен.

Графит - в этом упорядоченность распространяется только в плоскости. Его слои соединены не химическими связями, а слабыми межмолекулярными взаимодействиями, поэтому он проводит тепло и ток и не пропускает свет. Графит и его производные - достаточно распространенные неорганические полимеры. Примеры их использования: от карандашей до атомной промышленности. Окисляя графит, можно получить промежуточные продукты окисления.

Алмаз - его свойства принципиально другие. Алмаз является пространственным (трехмерным) полимером. Все атомы углерода скрепляются между собой прочными ковалентными связями. Потому этот полимер является чрезвычайно прочным. Алмаз не проводит ток и тепло, имеет прозрачную структуру.

Полимеры бора

Если вас спросят о том, какие неорганические полимеры вам известны, смело отвечайте - полимеры бора (-BR-). Это достаточно обширный класс НП, широко применяемый в промышленности и науке.

Карбид бора - его формула правильнее выглядит так (B12C3)n. Его элементарная ячейка - ромбоэдрическая. Каркас образуют двенадцать ковалентно связанных атомов бора. А в середине его - линейная группа из трех ковалентно связанных атомов углерода. В результате образуется очень прочная конструкция.

Бориды - их кристаллы образованы подобно вышеописанному карбиду. Наиболее стойкий из них HfB2, который плавится только при температуре 3250 °C. Наибольшей химической стойкостью отмечается TaB2 - на него не действуют ни кислоты, ни их смеси.

Нитрид бора - его часто называют белым тальком за сходство. Это сходство действительно лишь внешнее. Структурно он аналогичен графиту. Получают его, нагревая бор или его оксид в атмосфере аммиака.

Боразон

Эльбор, боразон, киборит, кингсонгит, кубонит - сверхтвердые неорганические полимеры. Примеры их применения: изготовление абразивных материалов, обработка металлов. Это химически инертные вещества на основе бора. По твердости ближе прочих материалов к алмазам. В частности, боразон оставляет царапины на алмазе, последний тоже оставляет царапины на кристаллах боразона.

Впрочем, эти НП имеют несколько преимуществ перед натуральными алмазами: у них большая термостойкость (выдерживают температуру до 2000 °C, алмаз же разрушается при показателях в пределах 700-800 °C) и высокая устойчивость к механическим нагрузкам (они не такие хрупкие). Боразон был получен при температуре 1350 °C и давлении 62000 атмосфер Робертом Венторфом в 1957 году. Аналогичные материалы ленинградскими учеными были получены в 1963 году.

Неорганические полимеры серы

Гомополимер - эта модификация серы имеет линейную молекулу. Вещество не является устойчивым, при колебаниях температуры распадается на октаэдрические циклы. Образуется в случае резкого охлаждения расплава серы.

Полимерная модификация сернистого ангидрида. Очень похожа на асбест, имеет волокнистую структуру.

Полимеры селена

Серый селен - полимер со спиралевидными линейными макромолекулами, вложенными параллельно. В цепях атомы селена связаны ковалентно, а макромолекулы связаны молекулярными связями. Даже расплавленный или растворенный селен не распадается на отдельные атомы.

Красный или аморфный селен тоже полимер цепной, но малоупорядоченной структуры. В температурном промежутке 70-90 ˚С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние, чем напоминает органические полимеры.

Карбид селена, или горный хрусталь. Термически и химически устойчивый, достаточно прочный пространственный кристалл. Пьезоэлектрик и полупроводник. В искусственных условиях его получили при реакции и угля в электропечи при температуре около 2000 °C.

Прочие полимеры селена:

  • Моноклинный селен - более упорядоченный, чем аморфный красный, но уступает серому.
  • Диоксид селена, или (SiO2)n - представляет собой трехмерный сетчатый полимер.
  • Асбест - полимер оксида селена волокнистой структуры.

Полимеры фосфора

Существует много модификаций фосфора: белый, красный, черный, коричневый, фиолетовый. Красный - НП мелкокристаллического строения. Получается нагревом белого фосфора без доступа воздуха при температуре 2500 ˚С. Черный фосфор получен П. Бриджменом при следующих условиях: давление 200000 атмосфер при температуре 200 °C.

Фосфорнитридхлориды - соединения фосфора с азотом и хлором. Свойства этих веществ меняются с ростом массы. А именно уменьшается их растворимость в органических веществах. Когда молекулярная масса полимера достигает нескольких тысяч единиц, образуется каучукоподобное вещество. Это единственный достаточно термостойкий безуглеродный каучук. Он разрушается только при температуре свыше 350 °C.

Вывод

Неорганические полимеры в большинстве своем - вещества с уникальными характеристиками. Их применяют на производстве, в строительстве, для разработки инновационных и даже революционных материалов. По мере изучения свойств известных НП и создания новых, сфера их применения расширяется.

К неорганическим относятся полимеры, макромолекулы
которых имеют неорганические главные цепи и не содер­жат органических боковых радикалов (обрамляющих групп).

Неорганические полимеры классифицируются по про­исхождению (синтетические и природные), конфигура­ции макромолекул (линейные, разветвленные, лестнич­ные, регулярные и нерегулярные плоскосетчатые, регу­лярные и нерегулярные пространственно-сетчатые и т. д.), химической структуре главной цепи - гомоцепные (гомоатомные) и гетероцепные (гетероатомные). Природные неорганические полимеры, относящиеся к группе сетчатых, чрезвычайно распространены и в виде минералов входят в состав земной коры.

Неорганические полимеры отличаются по химиче­ским и физическим свойствам от органических или элементоорганических полимеров главным образом различ­ной электронной структурой главной цепи и отсутствием органических обрамляющих групп. Область существова­ния неорганических полимеров ограничена элементами III-IV групп Периодической системы. Большинство не­органических полимеров относится к категории минера­лов и кремнийсодержащих материалов.

БЕНТОНИТЫ

Бен­тонитовые глины - дешевое природное сырье. Благода­ря своим физико-химическим свойствам они привлекли большое внимание исследователей всего мира. Бентониты являются дисперсными системами с размером час­тиц менее 0,01 мм.

Глинистые минералы имеют сложный состав и пред­ставляют в основном алюмогидросиликаты.

Различие в строении кристаллических решеток обусловливает неодинаковую степень дисперсности глинистых минералов. Степень дис­персности каолинитовых частиц невелика и определяет­ся порядком нескольких микрон, в то время как монт­мориллониты при распаде диспергируются до элемен­тарных ячеек.

Бентониты характеризуются активным физико-хими­ческим взаимодействием с водой. Вследствие образова­ния гидратной оболочки частицы глинистых минералов способны прочно удерживать воду.

Широкое применение нашли бентониты в производстве зубных паст. По существу­ющим рецептурам в зубные пасты входят до 50% глицерина. Однако производство глицерина ограничено дефи­цитностью сырья, поэтому необходимо найти более де­шевый и доступный заменитель глицерина.

Глицерин в зубных пастах способствует стабилиза­ции твердых нерастворимых в воде веществ, предохра­нению пасты от высыхания, укреплению зубной эмали и в больших концентрациях консервирует их. Для стаби­лизации твердых нерастворимых веществ в последнее время широко используются монтмориллонитовые гли­ны. Предложено также использовать в зубных пастах вместо карбонита кальция в качестве абразивного сред­ства каолинит. Использование глинистых минералов (монтмориллонита в виде 8% геля и каолинита) в зуб­ных пастах позволяет освободить значительные количе­ства глицерина (до 27%) без ухудшения их свойств, осо­бенно при длительном хранении.



Монтморил­лониты могут быть использованы для повышения вязко­сти суппозиторных основ в суппозиториях, содержащих большие количества лекарственных препаратов. Уста­новлено, что добавление 5-15% монтмориллонита по­вышает вязкость суппозиторной основы, что обеспечивает равномерное распределение суспендированных лекар­ственных веществ в основе. Благодаря их адсорбционным свойствам глинистые минералы используются для очи­стки различных антибиотиков, ферментов, белков, ами­нокислот, витаминов.

АЭРОСИЛЫ

Аэросилы, так же как и бентониты, относятся к неорга­ническим полимерам. В противоположность бентонитам, которые являются природным сырьем, аэросилы отно­сятся к синтетическим продуктам.

Аэросилколлоидальная двуокись кремния, представляющая собой очень легкий белый по­рошок, который в тонком слое кажется прозрачным, го­лубоватым. Это высокодисперсный, микронизированный порошок с размером частиц от 4 до 40 мкм (в основном 10-30 мкм), плотностью 2,2 г/см3. Особенность аэросила состоит в его большой удельной поверхности - от 50 до 400м2/г.

Существует несколько марок аэросила, которые раз­личаются в основном по величине удельной поверхности, степени гидрофильности или гидрофобности, а также сочетаний аэросила с другими веществами. Стандарт­ный аэросил марок 200, 300, 380 имеет гидрофильную поверхность.

Аэросил получают в результа­те парофазного гидролиза четыреххлористого коемния в пламени водорода при температуре 1100-1400°С.

Многочисленными ис­следованиями установлено, что аэросил при применении внутрь хорошо переносится больными и является эффек­тивным средством при лечении заболеваний желудочно-кишечного тракта и других воспалительных процессов. Имеются сведения, что аэросил способствует сокращению гладкой мускулатуры и сосудов и обладает бактерицид­ными свойствами.

Благодаря фармакологи­ческой активности аэросила он нашел широкое примене­ние в фармации в различных лекарственных формах как при создании новых, так и при совершенствовании су­ществующих.

Аэросил широко применя­ется для стабилизации суспензий с различной дисперси­онной средой и суспензионных масляных линиментов. Введение аэросила в состав масляных и водно-спиртово-глицериновых суспензионных линиментов способствует повышению седиментационной и агрегативной устойчи­вости этих систем созданию достаточно прочной прост­ранственной структуры, способной удержать в ячейках иммобилизированную жидкую фазу с суспендированны­ми частицами. Установлено, что осаждение частиц твердой фазы в стабилизированных аэросилом масляных ли­ниментах происходит в 5 раз медленнее, чем в нестабилизированных.

В водных и водно-спиртовых суспензиях стабилизи­рующее действие аэросила обусловлено, в основном, электростатическими силами.

Одним из свойств аэросила является его заглушаю­щая способность. Это свойство используется для полу­чения аэросилсодержащих гелей с целью использова­ния их в качестве мазевых основ, или являются самостоятельными лекарственными препаратами при лечении ран, язв, ожогов.

Изучение биологических свойств аэросилсодержащих гелей показало, что они не оказывают раздражающего и общетоксичеокого действия.

Для мазей неомициновых и неомицин-преднизолоновых (с содержанием неомицина сульфата и преднизолона ацетата соответственно 2 и 0,5%) предложена эсилон-аэросильная основа. Мази, содержащие аэросил, гидрофобны, легко выдавливаются из туб, хорошо удержива­ются на коже и обладают пролонгирующим действием.

Аэросил находит широкое применение в качестве вспомогательного вещества в производстве таб­леток: он сокращает время распадаемости таблеток, об­легчает гранулирование и гидрофилирование липофильных лекарственных веществ, улучшает текучесть, позво­ляет вводить несовместимые и химически нестойкие лекарственные вещества.

Введение аэросила в суппозиторную массу способст­вует повышению вязкости, регуляции интервала плава­ния, придает массе гомогенный характер и уменьшает расслоение, обеспечивает равномерное распределение лекарственных веществ и более высокую точность дози­ровки, позволяет вводить жидкие и гигроскопические ве­щества. Суппозитории, содер­жащие аэросил, не раздражают слизистую оболочку прямой кишки. В пилюлях аэросил используется для со­хранности их в сухом виде.

Аэросил входит в состав зубоврачебного пломбировочного материала как наполнитель, обеспечивающий хорошие структурно-механические свойства пломбиро­вочного материала. Он используется также в различных лосьонах, применяемых в парфюмерии и косметике.


Заключение

При подведении итогов курсовой работы, можно сделать вывод о существенной роли высокомолекулярных соединений в технологии лекарственных препаратов. Из приведенной классификации видно, насколько широк спектр использования рассматриваемых соединений, а отсюда вытекает вывод об эффективности их использования в фармацевтическом производстве. Во многих случаях нам не обойтись без их использования. Это имеет место в использовании пролонгированных лекарственных формах, для сохранения стабильности препарата при его хранении, упаковки готовых препаратов. Немаловажную роль высокомолекулярные вещества играют при получении новых лекарственных форм (напр. ТДС).

Но не только в фармации высокомолекулярные соединения нашли свое применение. Эффективно использование их в таких отраслях как пищевая, при производстве СМС, в химическом синтезе, а также других отраслях.

На сегодняшний день, я считаю, рассматриваемые мною соединения в полной мере используются в фарм производстве, но все же, хотя методы и способы их использования давно известны и зарекомендовали себя с положительной стороны, все глубже продолжают изучать их роль и цели при производстве лекарственных препаратов.


Список литературы

1. Биофармация: Учеб. для студ. фармац. вузов и фак./ А.И. Тихонов, Т.Г. Ярных, И.А. Зупанец и др.; Под ред. А.И. Тихонова. – Х.: Изд-во НФаУ; Золотые страницы, 2003.– 240 с. ;

2. Гельфман М.И. Коллоидная химия / Гельфман М.И., Ковалевич О.В., Юстратов В.П. – С.Пб. и др.: Лань, 2003. - 332 с.;

3. Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия: Учеб. для фармац. вузов и факультетов / Под ред. К.И. Евстратовой. – М.: Высш. шк., 1990. – 487 с.;

4. Машковский М.Д. Лекарственные средства: В 2 т.– 14-е изд., перераб., испр. и доп. – М.: ООО «Издательство Новая Волна», 2000. – Т. 1.– 540 с.;

5. Полимеры медицинского назначения /Под ред. Сэноо Манабу. – М.: Медицина, 1991. – 248 с.;

6. Тихонов А.И., Ярных Т.Г. Технология лекарств: Учеб. для фармац. вузов и фак.: Пер. с укр. / Под ред. А.И. Тихонова. – Х.: Изд-во НФаУ; Золотые страницы, 2002. – 704 с.;

7. Фридрихсберг Д.А. Курс коллоидной химии: Учебник для вузов. - 2-е изд., перераб. и доп. - Л.: Химия, 1984. - 368 с.;

8. Фармацевтическая технология: технология лекарственных форм. Под ред. И.И. Краснюка и Г. В. Михайловой, - М: «Академия», 2004г., 464с.;

9. Энциклопедии полимеров, т. 1, ред. В. А. Каргин, М., 1972 – 77с;

10. Шур А.М., Высокомолекулярные соединения, 3 изд., М., 1981;

11. Алюшин М.Т. Силиконы в фармации, - М., 1970. – 120с.;

12. Муравьев И.А. Физико-химические аспекты использования основообразующих и вспомогательных веществ в лекарственных суспензионных системах: учебн. пособие / И.А. Муравьев, В.Д. Козьмин, И.Ф. Кононихина. – Ставрополь, 1986. – с.61;

13. ПАВ и ВМС в технологии лекарственных форм. Лекарственные средства. Экономика, технология и перспективы получения. Обзор информации/ Г.С. Башура, О.Н. Клименко, З.Н. Ленушко и др. – М.: ВНИИСЖТИ, 1988. – вып. 12. – 52с.;

14. Полимеры в фармации / Под ред. А.И. Тенцовой и М.Т. Алюшина. – М., 1985. 256с.

15. ru.wikipedia.org/wiki/Полимер

16. www. pharm vestnik. ru