Графическое изображение эл полей. Графическое изображение электростатических полей

Силовые линии напряженности электрического поля - линии, касательные к которым в каждой точке совпадают с вектором Е По их направлению можно судить, где расположены положительные (+) и отрицательные (–) заряды, создающие электрическое поле. Густота линий (количество линий, пронизывающих единичную площадку поверхности, перпендикулярную к ним) численно равно модулю вектора Е.




Силовые линии напряженности электрического поля Силовые линии напряженности электрического поля не замкнуты, имеют начало и конец. Можно говорить, что электрическое поле имеет «источники» и «стоки» силовых линий. Силовые линии начинаются на положительных (+) зарядах (Рис. а), заканчиваются на отрицательных (–) зарядах (Рис. б). Силовые линии не пересекаются.






Поток вектора напряженности электрического поля Произвольная площадка dS. Поток вектора напряженности электрического поля через площадку dS: - псевдовектор, модуль которого равен dS, а направление совпадает с направление вектора n к площадке dS. Е = constdФ Е = N - числу линий вектора напряженности электрического поля Е, пронизывающих площадку dS.




Поток вектора напряженности электрического поля Если поверхность не плоская, а поле неоднородное, то выделяют малый элемент dS, который считать плоским, а поле – однородным. Поток вектора напряженности электрического поля: Знак потока совпадает со знаком заряда.


Закон (теорема) Гаусса в интегральной форме. Телесный угол – часть пространства, ограниченная конической поверхностью. Мера телесного угла – отношение площади S сферы, вырезаемой на поверхности сферы конической поверхностью к квадрату радиуса R сферы. 1 стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы.


Теорема Гаусса в интегральной форме Электрическое поле создается точечным зарядом +q в вакууме. Поток d Ф Е, создаваемого этим зарядом, через бесконечно малую площадку dS, радиус вектор которой r. dS n – проекция площадки dS на плоскость перпендикулярную в ектору r. n – единичный вектор положительной нормали к площадке dS.










Если произвольная поверхность окружает k– зарядов, то согласно принципу суперпозиции: Теорема Гаусса: для электрического поля в вакууме поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0.






Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е Теорема Гаусса применяется для нахождения полей, созданных телами, обладающими геометрической симметрией. Тогда векторное уравнение сводится к скалярному.


Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е 1) Находится поток Ф Е вектора Е по определению потока. 2) Находится поток Ф Е по теореме Гаусса. 3) Из условия равенства потоков находится вектор Е.


Примеры применения теоремы Гаусса 1. Поле бесконечной однородно заряженной нити (цилиндра) с линейной плотностью τ (τ = dq/dl, Кл/м). Поле симметричное, направлено перпендикулярно нити и из соображений симметрии на одинаковом расстоянии от оси симметрии цилиндра (нити) имеет одинаковое значение.






2.Поле равномерно заряженной сферы радиуса R. Поле симметричное, линии напряженности Е электрического поля направлены в радиальном направлении, и на одинаковом расстоянии от точки О поле имеет одно и то же значение. Вектор единичной нормали n к сфере радиуса r совпадает с вектором напряженности Е. Охватим заряженную (+q) сферу вспомогательной сферической поверхностью радиуса r.




2.Поле равномерно заряженной сферы При поле сферы находится как поле точечного заряда. При r


(σ = dq/dS, Кл/м 2). Поле симметричное, вектор Е перпендикулярен плоскости с поверхностной плотностью заряда +σ и на одинаковом расстоянии от плоскости имеет одинаковое значение. 3. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда + σ В качестве замкнутой поверхности возьмем цилиндр, основания которого параллельны плоскости, и который делится заряженной плоскостью на две равные половины.


Теорема Ирншоу Система неподвижных электрических зарядов не может находиться в устойчивом равновесии. Заряд + q будет находиться в равновесии, если при его перемещении на расстояние dr со стороны всех остальных зарядов системы, расположенных вне поверхности S, будет действовать сила F, возвращающая его в исходное положение. Имеется система зарядов q 1, q 2, … q n. Один из зарядов q системы охватим замкнутой поверхностью S. n – единичный вектор нормали к поверхности S.


Теорема Ирншоу Сила F обусловлена полем Е, созданным всеми остальными зарядами. Поле всех внешних зарядов Е должно быть направлено противоположно направлению вектора перемещения dr, то есть от поверхности S к центру. Согласно теореме Гаусса, если заряды не охватываются замкнутой поверхностью, то Ф Е = 0. Противоречие доказывает теорему Ирншоу.




0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 33 Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф title="Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф





Изображение электростатического поля с помощью векторов напряженности в различ­ных точках поля является очень не­удобным, так как картина получается весьма за­путанной. Фарадей предложил более простой и нагляд­ный метод изображения электростати­ческого поля с помощьюлиний напряженнос­тей или силовых линий . Силовыми линиями называ­ются кривые, касательные к которым в каждой точке совпадают с направлением векто­ра напря­женности поля (рис.1.2). Направление силовой линии совпадает с направле­нием . Си­ловые линии начинаются на положительных зарядах и оканчиваются на отрицатель­ных. Силовые линии не пересекаются, так как в каждой точке поля век­торимеет лишь одно направление. Электростатическое поле считается однородным, если напряженность во всех его точках одинакова по величине и направлению. Силовыми линиями такого поля являются прямые, параллельные вектору напряженности.

Силовые линии поля точечных зарядов - ради­альные прямые, выходящие из заряда и уходящие в бесконечность, если он положителен (рис.1.3а). Если за­ряд отрицателен, направление силовых линий ока­зы­вается обратным: они начинаются в бесконечности и оканчиваются на заряде -q (рис.1.3б). Поле точечных зарядов обладает центральной симметрией.

Рис.1.3. Линии напряженности точечных зарядов: а - поло­жительного, б - отрицатель­ного.

На рис.1.3 изображены плоские сечения электро­статических полей системы двух одинаковых по ве­ли­чине зарядов: а) заряды, одинаковые по знаку, б) заряды, разные по знаку.

1. 5. Принцип суперпозиции электростатических полей.

Основной задачей электростатики является определение величины и направ­ле­ния вектора напряженности в каждой точке поля, создаваемого либо системой неподвижных точечных зарядов, либо заряженными поверхностями произвольной формы. Рассмотрим первый случай, когда поле создано системой зарядовq 1 , q 2 ,..., q n . Если в какую-либо точку этого поля поместить пробный заряд q 0 , то на него со стороны зарядов q 1 , q 2 ,..., q n будут действовать кулоновские силы . Со­гласно принципу независимости действия сил, рассмотренного в механике, равно­дей­ствующая силаравна их векторной сумме

.

Используя формулу напряженности электростатического поля, левую часть ра­венства можно записать: , где- напряженность результирующего поля, создаваемого всей системой зарядов в точке, где расположен пробный зарядq 0 . Пра­вую часть равенства соответственно можно записать, где- напря­женность поля, создаваемая одним зарядомq i . Равенство примет вид . Сокращая наq 0 , получим .

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, создаваемых каждым из этих зарядов в отдельности. В этом заключается принцип независимости действия электростатических полей или принцип суперпозиции (наложения) полей .

Обозначим через радиус-вектор, проведенный из точечного зарядаq i в ис­следуемую точку поля. Напряженность поля в ней от заряда q i равна . Тогда результирующая напряженность, создаваемая всей системой зарядов равна. Полученная формула применима и для расчета электростатических полей за­ря­женных тел произвольной формы так как любое тело можно разделить на очень малые части, каж­дую из которых можно считать точечным зарядомq i . Тогда расчет в любой точке пространства будет аналогичен выше приведенному.

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора E →). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности E → (рис. 4, а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора E → (рис. 4, б). Силовым линиям приписывают направление, совпадающее с направлением вектора E → . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 5 приведены линии напряженности точечных зарядов (рис. 5, а, б); системы двух разноименных зарядов (рис. 5, а б Рис. 4 Рис. 5 в) − пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 5, г) − пример однородного электрического поля.

Теорема Остроградского–Гаусса и её применение.

Введем новую физическую величину, характеризующую электрическое поле – поток вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

где - проекция поля на направление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Пример использования теоремы Остроградского-Гаусса . Рассмотрим задачу о вычислении поля тонкостенного пологооднородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9)

а б

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора ). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности(рис. 1.4,а ).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора (рис. 1.4,б ).

Силовым линиям приписывают направление, совпадающее с направлением вектора . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 1.5 приведены линии напряженности точечных зарядов (рис. 1.5, а , б ); системы двух разноименных зарядов (рис. 1.5, в )  пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 1.5, г )  пример однородного электрического поля.

1.5. Распределение зарядов

В некоторых случаях для упрощения математических расчетов истинное распределение точечных дискретных зарядов удобно заменить фиктивным непрерывным распределением. При переходе к непрерывному распределению зарядов используют понятие о плотности зарядов  линейной , поверхностной  и объемной , т. е.

(1.12)

где dq  заряд, распределенный соответственно по элементу длины
, элементу поверхностиdS и элементу объема dV.

С учетом этих распределений формула (1.11) может быть записана в другой форме. Например, если заряд распределен по объему, то вместо q i нужно использовать dq = dV, а символ суммы заменить интегралом, тогда

. (1.13)

1.6. Электрический диполь

Для объяснения явлений, связанных с зарядами в физике используется понятие электрического диполя .

Систему двух равных по величине разноименных точечных зарядов, расстояние между которыми много меньше расстояния до исследуемых точек пространства, называют электрическим диполем. Согласно определению диполя +q=q= q.

Прямую, соединяющую разноименные заряды (полюса), называют осью диполя; точку 0  центром диполя (рис. 1.6). Электрический диполь характеризуется плечом диполя : вектором , направленным от отрицательного заряда к положительному. Основной характеристикой диполя являетсяэлектрический дипольный момент = q. (1.14)

По абсолютной величине

р = q. (1.15)

В СИ электрический дипольный момент измеряется в кулонах умноженных на метр (Кл м).

Рассчитаем потенциал и напряженность электрического поля диполя, считая его точечным, если  r.

Потенциал электрического поля, созданного системой точечных зарядов в произвольной точке, характеризуемой радиусвектором , запишем в виде:

где r 1 r 2  r 2 , r 1  r 2  r =
, так как  r;   угол между радиус-векторами и (рис. 1.6). С учетом этого получим

. (1.16)

Используя формулу, связывающую градиент потенциала с напряженностью, найдем напряженность, создаваемую электрическим полем диполя. Разложим вектор электрического поля диполя на две взаимно перпендикулярные составляющие, т. е.
(рис. 1. 6).

Первая их них определяется движением точки, характеризуемой радиусвектором (при фиксированном значении угла), т. е. значение Е  найдем дифференцированием (1.81) по r, т. е.

. (1.17)

Вторая составляющая определяется движением точки, связанным с изменением угла  (при фиксированном r), т. е. Е  найдем дифференцированием (1.16) по :
, (1.18)

где
,d= rd.

Результирующая напряженность Е 2 = Е  2 + Е  2 или после подстановки
. (1.19)

Замечание : При  = 90 о
, (1.20)

т. е. напряженность в точке на прямой проходящей через центр диполя (т. О) и перпендикулярно оси диполя.

При  = 0 о
, (1.21)

т. е. в точке на продолжении прямой, совпадающей с осью диполя.

Анализ формул (1.19), (1.20), (1.21) показывает, что напряженность электрического поля диполя убывает с расстоянием обратно пропорционально r 3 , т. е. быстрее, чем для точечного заряда (обратно пропорционально r 2).

Существует очень удобный способ наглядного описания электрического поля. Этот способ сводится к построению сети линий, при помощи которой изображают модуль и направление напряженности поля в различных точках пространства.

Выберем в электрическом поле какую-либо точку (рис. 31,а) и проведем из нее небольшой прямолинейный отрезок так, чтобы его направление совпадало с направлением поля в точке . Затем из какой-нибудь точки этого отрезка проведем отрезок , направление которого совпадает с направлением поля в точке , и т. д. Мы получим ломаную линию, которая показывает, какое направление имеет поле в точках этой линии.

Рис. 31. а) Ломаная линия, показывающая направление поля только в четырех точках, б) Ломаная линия, показывающая направление поля в шести точках. в) Линия, показывающая направление поля во всех точках. Штриховая линия показывает направление поля в точке

Построенная таким образом ломаная не вполне точно определяет направление поля во всех точках. Действительно, отрезок точно направлен вдоль поля лишь в точке (по построению); но в какой-либо другой точке этого же отрезка поле может иметь уже несколько другое направление. Это построение будет, однако, тем точнее передавать направление поля, чем ближе друг к другу выбранные точки. На рис. 31,б направление поля изображается не для четырех, а для шести точек, и картина более точна. Изображение направления поля сделается вполне точным, когда точки излома будут неограниченно сближаться. При этом ломаная переходит в некоторую плавную кривую (рис. 31,в). Направление касательной к этой линии в каждой точке совпадает с направлением напряженности поля в этой точке. Поэтому ее обычно называют линией электрического поля. Таким образом, всякая мысленно проведенная в поле линия, направление касательной к которой в любой точке ее совпадает с направлением напряженности поля в этой точке, называется линией электрического поля.

Из двух противоположных направлений, определяемых касательной, мы условимся всегда выбирать то направление, которое совпадает с направлением силы, действующей на положительный заряд, и будем отмечать это направление на чертеже стрелками.

Вообще говоря, линии электрического поля являются кривыми. Однако могут быть и прямые линии. Примерами электрического поля, описываемого прямыми линиями, является поле точечного заряда, удаленного от других зарядов (рис. 32), и поле равномерно заряженного шара, также удаленного от других заряженных тел (рис. 33).

Рис. 32. Линии поля точечного положительного заряда

Рис. 33. Линии поля равномерно заряженного шара

При помощи линий электрического поля можно не только изображать направление поля, но и характеризовать модуль напряженности поля. Рассмотрим опять поле одного точечного заряда (рис. 34). Линии этого поля представляют собой радиальные прямые, расходящиеся от заряда во все стороны. Из места нахождения заряда , как из центра, построим ряд сфер. Через каждую из них проходят все линии поля, проведенные нами. Так как площадь этих сфер увеличивается пропорционально квадрату радиуса, т. е. квадрату расстояния до заряда, то число линий, проходящих через единицу площади поверхности сфер, уменьшается как квадрат расстояния до заряда. С другой стороны, мы знаем, что так же уменьшается и напряженность электрического поля. Поэтому в нашем примере мы можем судить о напряженности поля по числу линий поля, проходящих через единичную площадку, перпендикулярную к этим линиям.

Рис. 34. Сферы, проведенные вокруг положительного точечного заряда . На каждой из них показана единичная площадка

Если бы заряд был взят в раз большим, то и напряженность поля во всех точках возросла бы в раз. Поэтому, чтобы и в этом случае можно было судить о напряженности поля по густоте линий поля, условимся проводить из заряда тем больше линий, чем больше заряд. При таком способе изображения густота линий поля может служить для количественного описания напряженности поля. Мы сохраним этот способ изображения и в том случае, когда поле образовано не одним единичным зарядом, а имеет более сложный характер.

Само собой разумеется, что число линий, которое мы проведем через единицу поверхности для изображения поля данной напряженности, зависит от нашего произвола. Необходимо только, чтобы при изображении разных областей одного и того же поля или при изображении нескольких сравниваемых между собой полей была сохранена густота линий, принятая для изображения поля, напряженность которого равна единице.

На чертежах (например, на рис. 35) можно изображать не распределение линий поля в пространстве, а лишь сечение картины этого распределения плоскостью чертежа, что позволит получить так называемые «электрические карты». Такие карты дают наглядное представление о том, как распределяется данное поле в пространстве. Там, где напряженность поля велика, линии проводятся густо, там, где поле слабое, густота линий невелика.

Рис. 35. Линии поля между разноименно заряженными пластинами. Напряженность поля: а) наименьшая – густота линий поля минимальна; 6) средняя – густота линий поля средняя; в) наибольшая – густота линий поля максимальна

Поле, напряженность которого во всех точках одна и та же и по модулю и по направлению, называется однородным. Линии однородного поля представляют собой параллельные прямые. На чертежах однородное поле также представится рядом параллельных и равноотстоящих прямых, проходящих тем гуще, чем сильнее изображаемое ими поле (рис. 35).

Отметим, что цепочки, образуемые крупинками в опыте § 13, имеют ту же форму, что и линии поля. Это естественно, так как каждая удлиненная крупинка располагается по направлению напряженности поля в соответствующей точке. Поэтому рис. 26 и 27 подобны картам линий электрического поля между параллельными пластинами и возле двух заряженных шаров. Используя тела различной формы, можно с помощью таких опытов легко найти картины распределения линий электрического поля для различных полей.