К регуляторным системам организма относят. Кафедра биологической химии

Подразделяется на центральную и периферическую. В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную.

Головной мозг расположен в мозговом отделе черепа. Он состоит из пя­ти отделов, выполняющих различные функции: продолговатый, задний (варолиев мост и мозжечок), средний, промежуточный, передний мозг (большие по­лушария).

1. Продолговатый мозг отвечает за , дыхание, сердечную
деятельность, защитные рефлексы (рвота, кашель).

2. Задний мозг. Варолиев мост - проводящие пути между мозжечком и
полушариями. Мозжечок регулирует двигательные акты (равновесие, коорди­нация движений).

3. Средний мозг - поддерживает тонус мышц, отвечает за ориентировочные, сторожевые и оборонительные рефлексы на зрительные и звуковые раз­дражители.

4. Промежуточный мозг состоит из таламуса, эпи-и гипотоламуса. Свер­ху к нему прилегает эпифиз, а снизу - гипофиз. Он регулирует все сложные
двигательные рефлексы, координирует работу внутренних органов и участвует
в гуморальной регуляции обмена веществ, потребление воды и пищи, поддер­жании постоянной температуры тела.

5. Передний мозг осуществляет психическую деятельность: память, речь,
мышление, поведение. Состоит из серого и белого вещества. Серое вещество
образует кору и подкорковые структуры и представляет собой совокупность тел
нейронов и их коротких отростков (дендритов), белое вещество - длинных от­
ростков - дексонов.

Спинной мозг расположен в костном позвоночном канале. Он имеет вид белого шнура диаметром около одного сантиметра. В нем есть 31 сегмент, от которых отходит пара смешанных спинномозговых нервов. У него две функции - рефлекторная и проводниковая.


1. Рефлекторная функция - осуществление двигательных и вегетативных рефлексов (сосудодвигательный, пищевой, дыхательный, дефекации, мо­чеиспускания, половой).

2. Проводниковая функция - проведение нервных импульсов от голов­ного мозга к телу и наоборот.

Вегетативная нервная система управляет деятельностью внутренних органов, желез и не подчиняется воле человека. Она состоит из ядер - скопле­ние нейронов в головном и спинном мозге, вегетативных узлов - скопление нейронов вне ЦНС и из нервных окончаний. Вегетативная система делится на симпатическую и парасимпатическую.

Симпатическая система мобилизует силы организма в экстремальной ситуации. Ее ядра находятся в спинном мозге, а узлы вблизи него. При ее воз­буждении учащаются и усиливаются сердечные сокращения, происходит пере­распределение крови от внутренних органов к мышцам, снижении железистой двигательной функции желудка и кишечника.

Парасимпатическая система. Ее ядра находятся в продолговатом, сред­нем мозге и частично в спинном мозге, а функция - противоположна симпати­ческой - система «отбоя» - способствует протеканию восстановительных про­цессов в организме. Строение и функция гуморальной регуляторной системы организма человека.

Гуморальную регуляцию осуществляют железы внутренней и смешан­ной секреции.

1. Железы внутренней секреции (эндокринные железы) не имеют выводных протоков и выделяют свои секреты непосредственно в кровь.

2. Железы смешанной секреции - одновременно осуществляют и внеш­нюю и внутреннюю секрецию (поджелудочная железа, половые железы) - вы­деляют секреты в кровь и в полость органов.

Эндокринные железы выделяют гормоны. Всем им свойственна высокая интенсивность оказываемого воздействия, его дистантность - оказания дейст­вия на расстоянии от места продукции; высокая специфичность действия, а также идентичность действий гормонов у животных и человека. Гормоны ока­зывают свое влияние на организм различными путями: через нервную систему, гуморальную систему и непосредственно воздействуя на рабочие органы и фи­зиологические процессы.

Эндокринноактивных желез большое количество: гипоталамус, гипофиз, эпифиз, тимус, половые железы, надпочечники, щитовидная железа, паращито-видная железа, плацента, поджелудочная железа. Разберем функции некоторых из них.

Гипоталамус - участвует в регуляции вводно-солевого обмена, через син­тез антиудиритеческого гормона; в недержании гомоэтермии; контроле эмоций и поведения, деятельность органов размножения; обуславливает лактацию.

При гипофункции развивается несахарный диабет вследствие очень силь­ного и обильного диуреза. При гиперфункции появляются отеки, артериальная гиперемия, нарушается сон.

Гипофиз находится в головном мозге, он продуцирует гормон роста, а та­кже деятельность других желез. Выработка лактогенного гормона и гормона, регулирующего пигментацию кожи и волос. Гормоны гипофиза включают окисление липидов . При гипофункции в детском возрасте развивается карлико­вость (нанизм). При гиперфункции в детском возрасте развивается гигантизм, а во взрослом акромегалия.

Щитовидная железа выделяет йодозавимый гормон тироксин. При ги­пофункции в детском возрасте развивается кретинизм - задержка роста, психи­ческого и полового развития. Во взрослом возрасте - териоидный зоб, снижа­ются интеллектуальные возможности, повышается содержание холестерина в крови, нарушается менструальный цикл, часто происходит невынашивание бе­ременности (преждевременные роды и выкидыши). При гипертериозе развива­ется базедова болезнь.

Поджелудочная железа - выделяет два противоположных по действию гормона, регулирующих обмен углеводов - глюкогон, отвечает за распад гли­когена до глюкозы, а инсулин - за синтез из глюкозы гликогена. При дефиците

глюкогона и избытке инсулина развивается тяжелейшая гипогликемическая кома. При избытке глюкогона и дефиците инсулина - сахарный диабет.

Регуляторные системы организма человека - Дубынин В.А. - 2003.

В пособии на современном уровне, но в доступной для читателя форме изложены основы знаний по анатомии нервной системы, нейрофизиологии и нейрохимии (с элементами психофармакологии), физиологии высшей нервной деятельности и нейроэндокринологии.
Для студентов ВУЗов, обучающихся по направлению подготовки 510600 Биология, биологическим, а также медицинским, психологическим и другим специальностям.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ - 5с.
ВВЕДЕНИЕ - 6-8с.
1 ОСНОВЫ КЛЕТОЧНОГО СТРОЕНИЯ ЖИВЫХ ОРГАНИЗМОВ - 9-39с.
1.1 Клеточная теория - 9с.
1.2 Химическая организация клетки -10-16с.
1.3 Строение клетки - 17-26с.
1.4 Синтез белков в клетке - 26-31с.
1.5 Ткани: строение и функции - 31-39с.
2 СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ - 40-96с.
2.1 Рефлекторный принцип работы мозга - 40-42с.
2.2 Эмбриональное развитие нервной системы - 42-43с.
2.3 Общее представление о строении нервной системы - 43-44с.
2.4 Оболочки и полости центральной нервной системы - 44-46с.
2.5 Спинной мозг - 47-52с.
2.6 Общее строение головного мозга - 52-55с.
2.7 Продолговатый мозг - 56-57с.
2.8 Мост - 57-бОс.
2.9 Мозжечок - 60-62с.
2.10 Средний мозг - 62-64с.
2.11 Промежуточный мозг - 64-68с.
2.12 Конечный мозг - 68-74с.
2.13 Проводящие пути головного и спинного мозга - 74-80с.
2.14 Локализация функций в коре полушарий большого мозга - 80-83с.
2.15 Черепные нервы - 83-88с.
2.16 Спинномозговые нервы - 88-93с.
2.17 Автономная (вегетативная) нервная система - 93-96с.
3 ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ - 97-183с.
3.1 Синаптические контакты нервных клеток - 97-101 с.
3.2 Потенциал покоя нервной клетки - 102-107с.
3.3 Потенциал действия нервной клетки -108-115с.
3.4 Постсинаптические потенциалы. Распространение потенциала действия по нейрону- 115-121с.
3.5 Жизненный цикл медиаторов нервной системы -121-130с.
3.6 Ацетилхолин - 131-138с.
3.7 Норадреналин - 138-144с.
3.8 Дофамин-144-153С.
3.9 Серотонин - 153-160с.
3.10 Глутаминовая кислота (глутамат) -160-167с.
3.11 Гамма-аминомасляная кислота-167-174с.
3.12 Другие медиаторы-непептиды: гистамин, аспарагиновая кислота, глицин, пурины - 174-177с.
3.13 Медиаторы-пептиды - 177-183с.
4 ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ - 184-313с.
4.1 Общие представления о принципах организации поведения. Компьютерная аналогия работы центральной нервной системы - 184-191с.
4.2 Возникновение учения о высшей нервной деятельности. Основные понятия физиологии высшей нервной деятельности -191-200с.
4.3 Разнообразие безусловных рефлексов - 201-212с.
4.4 Разнообразие условных рефлексов - 213-223с.
4.5 Неассоциативное обучение. Механизмы кратковременной и долговременной памяти - 223-241с.
4.6 Безусловное и условное торможение - 241-251с.
4.7 Система сна и бодрствования - 251-259с.
4.8 Типы высшей нервной деятельности (темпераменты) - 259-268с.
4.9 Сложные типы ассоциативного обучения животных - 268-279с.
4.10 Особенности высшей нервной деятельности человека. Вторая сигнальная система - 279-290с.
4.11 Онтогенез высшей нервной деятельности человека - 290-296с.
4.12 Система потребностей, мотиваций, эмоций - 296-313с.
5 ЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ -314-365с.
5.1 Общая характеристика эндокринной системы - 314-325с.
5.2 Гипоталамо-гипофизарная система - 325-337с.
5.3 Щитовидная железа - 337-341с.
5.4 Паращитовидные железы - 341-342с.
5.5 Надпочечники - 342-347с.
5.6 Поджелудочная железа - 347-350с.
5.7 Эндокринология размножения - 350-359с.
5.8 Эпифиз, или шишковидная железа - 359-361с.
5.9 Тимус - 361-362с.
5.10 Простагландины - 362-363с.
5.11 Регуляторные пептиды - 363-365с.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ - 366-367с.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Регуляторные системы организма человека - Дубынин В.А. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Раздел 1 ОРГАНИЗМ ЧЕЛОВЕКА КАК БИОЛОГИЧЕСКАЯ СИСТЕМА

§ 8.Регуляторные системы организма человека

Гуморальная регуляция (лат. гумор - жидкость) осуществляется с помощью веществ, которые влияют на процессы метаболизма в клетках, следовательно, и на работу органов и организма в целом. Эти вещества попадают в кровь, а из нее - в клетки. Так, повышение уровня углекислого газа в крови увеличивает частоту дыхания.

Некоторые вещества, например гормоны, выполняют свою функцию, даже если их концентрация в крови очень мала. Большинство гормонов синтезируются и выделяются в кровь клетками желез внутренней секреции, образующих эндокринную систему. Путешествуя с кровью по всему организму, гормоны могут попасть в любого органа. Но влияет гормон на работу органа только в случае, если клетки этого органа имеют рецепторы к этому гормону. Рецепторы сочетаются с гормонами (рис. 8.1), и это вызывает изменение активности клетки. Так, гормон инсулин, присоединяясь к рецепторам клетки печени, стимулирует проникновение в нее глюкозы и синтез гликогена из этого соединения.

Рис. 8.1. Схема действия гормона:

1 - кровеносный сосуд; 2 - молекула гормона; 3 - рецептор на плазматической мембране клетки

Эндокринная система обеспечивает рост и развитие организма, отдельных его частей и органов. Она участвует в регуляции метаболизма и приспосабливает его к потребностям организма, которые постоянно меняются.

Нервная регуляция. В отличие от гуморальной системы регуляции, которая отвечает преимущественно на изменения во внутренней среде, нервная система реагирует на события, происходящие как внутри организма, так и за его пределами. С помощью нервной системы организм отвечает на любые воздействия очень быстро. Такие реакции на действие раздражителей называют рефлексами. Осуществляется рефлекс благодаря работе цепи нейронов, образующих рефлекторную дугу (рис. 8.2). Каждая такая дуга начинается с чувствительного, или рецепторного, нейрона (нейрона - рецептора). Он воспринимает действие раздражителя и создает электрический импульс, который называют нервным. Импульсы, возникающие в нейроне-рецепторе, поступают к нервным центрам спинного и головного мозга, где обрабатывается информация. Здесь принимается решение, к какому органа следует послать нервный импульс, чтобы ответить на действие раздражителя. После этого команды направляются по нейронам-ефекторах к органу, который отвечает на раздражитель. Обычно такой ответ - это сокращение определенной мышцы или выделение секрета железы. Чтобы представить себе скорость передачи сигнала по рефлекторной дуге, вспомните, за какое время вы відсмикуєте руку от горячего предмета.

Нервные импульсы передаются с помощью особых веществ - медиаторов. Нейрон, в котором возник импульс, выделяет их в щель синашу - место соединения нейронов (рис. 8.3).

Рис. 8.2. Рефлекторная дуга:

1 - нейрон-рецептор; 2 - нейрон нервного центра спинного мозга; 3 - нейрон-эффектор; 4 - мышца, которая сокращается

Рис. 8.3. Схема передачи информации между нейронами:

1 - окончание отростка одного нейрона; 2 - медиатор;

3 - плазматическая мембрана другого нейрона; 4 - синаптическая щель

Медиаторы присоединяются к белкам-рецепторам нейрона-мишени, а он в ответ генерирует электрический импульс и передает его к следующему нейрону или иной клетки.

Иммунную регуляцию обеспечивает иммунная система, задача которой заключается в создании иммунитета - способности организма противостоять воздействию внешних и внутренних врагов. Ими являются бактерии, вирусы, различные вещества, которые нарушают нормальную жизнедеятельность организма, а также его клетки, которые отмерли или переродились. Главные боевые силы системы иммунной регуляции - определенные клетки крови и специальные вещества, содержащиеся в ней.

Организм человека - саморегулирующаяся система. Задачей саморегуляции является поддержка всех химических, физических и биологических показателей работы организма в определенных пределах. Так, температура тела здорового человека может колебаться в пределах 36-37°C , кровяное давление 115/75-125/90 мм рт. ст., концентрация глюкозы в крови - 3,8-6,1 ммоль/л. Состояние организма, во время которого все параметры его функционирования остаются относительно постоянными, называют гомеостазом (греч. гомео - подобный, стасис - состояние). На поддержание гомеостаза и направлена работа регуляторных систем организма, которые действуют в постоянной взаимосвязи.

ЧЕЛОВЕК И ЕГО ЗДОРОВЬЕ

Здоровье и болезнь

Что понимают под словом «здоровье» люди, желая друг другу «Будьте здоровы!»? Физиологически организм считается здоровым, если все его клетки, ткани, а соответственно, и органы работают в соответствии с возложенными на них функциями. Если на любом уровне системы «организм» возникают перебои в работе, может развиться болезнь.

Среди болезней различают инфекционные и неинфекционные. Первые передаются от больного организма к здоровому и вызываются различными возбудителями (бактериями, вирусами, простейшими). Неинфекционные болезни могут развиваться из-за недостаточного количества в пищевом рационе определенных веществ, вследствие действия радиационного излучения и тому подобное.

Все чаще ухудшение здоровья людей становится следствием их собственной халатной деятельности. Так, за загрязнение окружающей среды возросло количество заболеваний раком, астмой. Курение, употребление спиртных напитков и наркотиков наносят непоправимый вред всем системам органов человека.

Отдельную группу составляют наследственные болезни. Они передаются от родителей к детям вместе с программой жизни, содержащейся в хромосомах. К этим болезням относят и врожденные дефекты, которые могут возникнуть во время развития плода. Часто они возникают в тех случаях, когда беременная женщина курит, употребляет спиртные напитки, болеет инфекционные болезни и тому подобное.

Каждому с детства известны правила здорового образа жизни. Следует рационально питаться, заниматься спортом, не употреблять алкоголь, никотин, наркотики, меньше смотреть телевизор и ограничивать использование компьютера.

Что такое рак?

Известный французский ученый Бы. Перільє писал: «Рак - заболевание, трудно и определить, и вылечить». К сожалению, эти слова, сказанные около 200 лет назад, актуальны и сегодня.

Ежедневно в организме человека отмирает и образуется в результате деления около 25 млн клеток. Для нормальной жизнедеятельности организма необходимо, чтобы количество клеток в нем сохранялась неизменной. Если это постоянство нарушается и начинается неконтролируемое размножение клеток, может образоваться опухоль. По характеру роста и биологическими признаками опухоли бывают доброкачественными и злокачественными. Один из главных признаков доброкачественных опухолей - отсутствие способности к распространению в организме (метастазирование). Злокачественные опухоли называют раком. Раковые клетки отличаются от нормальных отсутствием характерной специализации. Например, раковые клетки, образовавшиеся в печени, не способны обезвреживать и выводить вредные вещества. Клетки злокачественных опухолей долговечнее за нормальные, гораздо быстрее размножаются, проникают в соседние ткани, разрушая их.

Каковы причины возникновения злокачественных опухолей? Прежде всего, это еда, содержащая много красителей, пищевых добавок и ароматизаторов, курения табака, что приводит не только к раку легких, но и дыхательных путей, пищевода, мочевого пузыря и других органов. Причиной перерождения клеток также могут быть и различные виды излучения (особенно радиоактивное), некоторые микроорганизмы и вирусы, нарушение иммунной защиты.

Стволовые клетки

Стволовые клетки получили такое название неслучайно: от них происходят все 350 видов клеток организма человека, подобно тому, как от ствола дерева образуются все его веточки. Из стволовых клеток на самых ранних этапах развития эмбрион человека. Вследствие деления такой клетки одна из дочерних клеток становится стовбуровою, а вторая специализируется, приобретая свойства того или иного вида клеток организма. Через некоторое время количество клеток с неограниченными возможностями (так иногда называют стволовые клетки) в эмбрионе уменьшается. У новорожденного их лишь несколько сотых процента, а с возрастом становится еще меньше. Во взрослом организме стволовые клетки содержатся в основном в красном костном мозге, однако встречаются и в других органах.

Стволовые клетки являются резервом организма, который он может использовать для «ремонта» каких-либо поврежденных тканей. Ведь известно, что обычно зрелые специализированные клетки не размножаются, поэтому восстановить ткань за их счет невозможно. В этом случае на помощь

могу приходят стволовые клетки. Они активно делятся, специализируются и замещают погибшие клетки, ликвидируя повреждения. Подобной стволовой есть так называемая камбіальна клетка. Одна из ее дочерних клеток в результате специализации становится клеткой той ткани, к которой относится материнская камбіальна клетка. Камбиальные клетки содержатся почти во всех тканях, они обеспечивают их рост и обновление. Так, благодаря камбіальним клеткам непрерывно восстанавливается эпителий кожи. Ученые тщательно исследуют свойства стволовых и камбиальных клеток в поисках путей использования их свойств в медицине.

Организм человека является многоуровневой открытой системой, которую изучают на молекулярном, клеточном, тканевом уровнях, на уровне органов и физиологических систем, а также на уровне целостного организма.

Химическими составляющими организма являются неорганические (вода, соли, кислород, углекислый газ) и органические (белки, жиры, углеводы и тому подобное) вещества. Основной структурно-функциональной единицей организма является клетка, в которой все время происходят реакции метаболизма, обеспечивают рост и развитие организма. Размножение клеток происходит путем деления.

Клетки, сходные по строению, функцией и происхождением, и міжклітинна вещество образуют ткань определенного вида. Из тканей формируются органы, а из органов состоят физиологические системы. По характеру функций их подразделяют на регуляторные (нервная, эндокринная, иммунная) и исполнительные (опорно-двигательная, пищеварительная, дыхательная, половая и др).

Взаимодействие исполнительных и регуляторных систем направлена на поддержание постоянства показателей жизнедеятельности организма - гомеостаза.

В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную . Соматическая нервная система регулирует произвольные движения скелетной мускулатуры и обеспечивает чувствительность. Вегетативная нервная система координирует деятельность внутренних органов, желез, сердечно-сосудистой системы и осуществляет иннервацию всех обменных процессов в теле человека. Работа этой регуляторной системы не подконтрольна сознанию и осуществляется благодаря слаженной работе двух ее отделов: симпатического и парасимпатического. В большинстве случаев активация этих отделов имеет противоположный эффект. Симпатическое влияние наиболее ярко проявляется в том случае, когда организм находится в состоянии стресса или интенсивной работы. Симпатическая нервная система – это система тревоги и мобилизации резервов, необходимых для защиты организма от воздействий внешней среды. Она подает сигналы, которые активируют деятельность мозга и мобилизуют защитные реакции (процесс терморегуляции, иммунные реакции, механизмы свертывания крови). При активации симпатической нервной системы увеличивается частота сердечных сокращений, замедляются процессы пищеварения, увеличивается частота дыхания и усиливается газообмен, увеличивается концентрация глюкозы и жирных кислот в крови за счет выделения их печенью и жировой тканью (рис.5).

Парасимпатический отдел вегетативной нервной системы регулирует работу внутренних органов в состоянии покоя, т.е. это система текущей регуляции физиологических процессов в организме. Преобладание активности парасимпатической части вегетативной нервной системы создает условия для отдыха и восстановления функций организма. При ее активации снижается частота и сила сердечных сокращений, стимулируются процессы пищеварения, уменьшается просвет дыхательных путей (рис.5). Все внутренние органы иннервируются как симпатическим, так и парасимпатическим отделами автономной нервной системы. Кожа и опорно-двигательный аппарат имеет только симпатическую иннервацию.

Рис.5. Регуляция различных физиологических процессов человеческого организма под действием симпатического и парасимпатического отделов вегетативной нервной системы

Вегетативная нервная система обладает сенсорным (чувствительным) компонентом, представленным рецепторами (чувствительным устройствами), располагающимися во внутренних органах. Эти рецепторы воспринимают показатели состояния внутренней среды организма (например, концентрацию углекислого газа, давление, концентрацию питательных веществ в кровеносном русле) и передают эту информацию по центростремительным нервным волокнам в центральную нервную систему, где эта информация обрабатывается. В ответ на полученную информацию от центральной нервной системы по центробежным нервным волокнам передаются сигналы к соответствующим рабочим органам, участвующим в поддержании гомеостаза.

Эндокринная система также осуществляет регуляцию деятельности тканей и внутренних органов. Эта регуляция называется гуморальной и осуществляется с помощью специальных веществ (гормонов), которые выделяются эндокринными железами в кровь или тканевую жидкость. Гормоны – это специальные регулирующие вещества, вырабатываемые в одних тканях организма, транспортируемые с током крови к различным органам и воздействующие на их работу. В то время как обеспечивающие нервную регуляцию сигналы (нервные импульсы) распространяются с большой скоростью и для осуществления ответа со стороны вегетативной нервной системы требуются доли секунды, гуморальная регуляция осуществляется гораздо медленнее, и под ее контролем находятся те процессы нашего организма, которые требуют для регуляции минуты и часы. Гормоны являются сильнодействующими веществами и вызывают свой эффект в очень малых количествах. Каждый гормон влияет на определенные органы и системы органов, которые называются органами-мишенями . Клетки органов мишеней имеют специ-фические белки-рецепторы, которые избирательно взаимодействуют со специфическими гормона-ми. Образование комплекса гормона с белком-рецептором включает целую цепь биохимических реакций, обуславливающих физиологическое действие данного гормона. Концентрация большинства гормонов может изменяться в больших пределах, что обеспечивает поддержание постоянства многих физиологических параметров при непрерывно изменяющихся потребностях организма человека. Нервная и гуморальная регуляция в организме тесно взаимосвязаны и согласованы, что обеспечивает его приспособленность в условиях постоянно меняющейся окружающей среды.

Ведущую роль в гуморальной функциональной регуляции человеческого организма играют гормоны гипофиза и гипоталамуса. Гипофиз (нижний мозговой придаток) – это отдел головного мозга, относящийся к промежуточному мозгу, он прикреплен специальной ножкой к другому отделу промежуточного мозга, гипоталамусу, и находится с ним в тесной функциональной связи. Гипофиз состоит из трех частей: передней, средней и задней (рис.6). Гипоталамус является основным регулирующим центром вегетативной нервной системы, кроме того, этот отдел мозга содержит специальные нейросекреторные клетки, совмещающие свойства нервной клетки (нейрона) и секреторной клетки, синтезирующей гормоны. Однако в самом гипоталамусе эти гормоны в кровь не выделяются, а поступают в гипофиз, в его заднюю долю (нейрогипофиз) , где и выводятся в кровь. Один из этих гормонов, антидиуретический гормон (АДГ или вазопрессин ), преимущественно воздействует на почку и стенки кровеносных сосудов. Увеличение синтеза этого гормона происходит при значительных кровопотерях и других случаях потери жидкости. Под действием этого гормона уменьшается потеря жидкости организмом, кроме того, как и другие гормоны, АДГ воздействует и на функции мозга. Он является природным стимулятором обучения и памяти. Недостаток синтеза этого гормона в организме приводит к заболеванию, называемому несахарным диабетом, при котором резко увеличивается объем выделяемой больными мочи (до 20 л в сутки). Другой гормон, выделяемый в кровь в задней доли гипофиза, называется окситоцином. Мишенью для этого гормона являются гладкие мышцы матки, мышечные клетки, окружающие протоки молочных желез и семенников. Повышение синтеза этого гормона наблюдается в конце беременности и абсолютно необходимо для протекания родов. Окситоцин ухудшает обучение и память. Передняя доля гипофиза (аденогипофиз ) является эндокринной железой и выделяет в кровь ряд гормонов, которые регулируют функции других эндокринных желез (щитовидной железы, надпочечников, половых желез) и называются тропными гормонами . Например, аденокортикотропный гормон (АКТГ) воздействует на кору надпочечников и под его воздействием в кровь выбрасывается целый ряд стероидных гормонов. Тиреотропный гормон стимулирует работы щитовидной железы. Соматотропный гормон (или гормон роста) воздействует на кости, мышцы, сухожилия, внутренние органы, стимулируя их рост. В нейросекреторных клетках гипоталамуса синтезируются особые факторы, влияющие на работу передней доли гипофиза. Часть этих факторов называются либеринами , они стимулируют секрецию гормонов клетками аденогипофиза. Другие факторы, статины, тормозят секрецию соответствующих гормонов. Активность нейросекреторных клеток гипоталамуса изменяется под действием нервных импульсов, приходящих от периферических рецепторов и других отделов мозга. Таким образом, связь между нервной и гуморальной системами в первую очередь осуществляется на уровне гипоталамуса.

Рис.6. Схема головного мозга (а), гипоталамуса и гипофиза (б):

1 – гипоталамус, 2 – гипофиз; 3 – продолговатый мозг; 4 и 5 – нейросекреторные клетки гипоталамуса; 6 – ножка гипофиза; 7 и 12 – отростки (аксоны) нейросекреторных клеток;
8 – задняя доля гипофиза (нейрогипофиз), 9 – промежуточная доля гипофиза, 10 – передняя доля гипофиха (аденогипофиз), 11 – срединное возвышение ножки гипофиза.

Кроме гипоталамо-гипофизарной системы, к эндокринным железам относятся щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелу-дочной железы, секреторные клетки кишечника, половые железы, некоторые клетки сердца.

Щитовидная железа – это единственный орган человека, который способен активно поглощать йод и включать его в биологически активные молекулы, тиреоидные гормоны . Эти гормоны влияют практически на все клетки организма человека, основные их эффекты связаны с регуляцией процессов роста и развития, а также обменных процессов в организме. Гормоны щитовидной железы стимулируют рост и развитие всех систем организма, а особенно нервной системы. При недостаточном функционировании щитовидной железы у взрослых развивается заболевание, которое называется микседема. Ее симптомами являются снижение обмена веществ и нарушение функций нервной системы: замедляется реакция на раздражители, повышается утомляемость, падает температура тела, развиваются отеки, страдает желудочно-кишечный тракт и др. Снижение уровня тиреоидов у новорожденных сопровождается более тяжелыми последствиями и приводит к кретинизму , задержке умственного развития вплоть до полной идиотии. Раньше микседема и кретинизм часто встречались в горных районах, где в ледниковой воде мало йода. Сейчас эту проблему легко решают добавлением натриевой соли йода в поваренную соль. Усиление функционирования щитовидной железы приводит к нарушению, которое называется базедовой болезнью . У таких больных повышается основной обмен, нарушается сон, повышается температура, учащается дыхание и сердцебиение. У многих больных возникает пучеглазие, иногда образуется зоб.

Надпочечники – парные железы, расположенные на полюсах почек. В каждом надпочечнике выделяют два слоя: корковый и мозговой. Эти слои совершенно различны по своему происхож-дению. Наружный корковый слой развивается из среднего зародышевого листка (мезодермы), мозговой слой является видоизмененным узлом вегетативной нервной системы. В коре надпочеч-ников вырабатываются кортикостероидные гормоны (кортикоиды ). Эти гормоны обладают широким спектром действия: влияют на водно-солевой обмен, жировой и углеводный обмены, на иммунные свойства организма, подавляют воспалительные реакции. Один из основных кортикоидов, кортизол , необходим для создания реакции на сильные раздражители, приводящие к развитию стресса.Стресс можно определить как угрожающую ситуацию, развивающуюся под воздействием боли, кровопотери, страха. Кортизол препятствует кровопотере, сужает мелкие артериальные сосуды, усиливает сократительную способность сердечной мышцы. При разрушении клеток коры надпочечников развивается Аддисонова болезнь . У больных наблюдается бронзовый оттенок кожи на некоторых участках тела, развивается мышечная слабость, снижение массы тела, страдает память и умственные способности. Раньше наиболее распространенной причиной возникновения Аддисоновой болезни был туберкулез, в настоящее время это аутоиммунные реакции (ошибочная выработка антител к своим собственным молекулам).

В мозговом веществе надпочечников синтезируются гормоны: адреналин и норадреналин . Мишенями этих гормонов являются все ткани организма. Адреналин и норадреналин призваны мобилизовать все силы человека в случае ситуации, требующей большого физического или умственного напряжения, при травме, инфекции, испуге. Под их влиянием увеличивается частота и сила сердечных сокращений, повышается кровяное давление, учащается дыхание и расширяются бронхи, повышается возбудимость структур головного мозга.

Поджелудочная железа является железой смешанного типа, она выполняет как пищевари-тельные (выработка панкриотического сока), так и эндокринные функции. Она вырабатывает гормоны, регулирующие углеводный обмен в организме. Гормон инсулин стимулирует поступле-ние глюкозы и аминокислот из крови в клетки различных тканей, а также образование в печени из глюкозы основного запасного полисахарида нашего организма, гликогена . Другой гормон подже-лудочной железы, глюкогон , по своим биологическим эффектам является антагонистом инсулина, повышая содержание глюкозы в крови. Глюкогон стимулирует распад гликогена в печени. При недостатке инсулина развивается сахарный диабет, поступившая с пищей глюкоза не поглоща-ется тканями, накапливается в крови и выводится из организма с мочой, в то время как тканям катастрофически не хватает глюкозы. Особенно сильно страдает нервная ткань: нарушается чувствительность периферических нервов, возникает ощущение тяжести в конечностях, возможны судороги. В тяжелых случаях может возникать диабетическая кома и смерть.

Нервная и гуморальная системы, работая совместно, возбуждают или затормаживают различ-ные физиологические функции, что сводит к минимуму отклонения отдельных параметров внут-ренней среды. Относительное постоянство внутренней среды обеспечивается у человека путем регуляции деятельности сердечно-сосудистой, дыхательной, пищеварительной, выделительной систем, потовых желез. Регуляторные механизмы обеспечивают постоянство химического состава, осмотического давления, числа форменных элементов крови и т.д. Весьма совершенные механизмы обеспечивают поддержание постоянной температуры тела человека (терморегуляцию).

Основные понятия и ключевые термины: регуляторные системы, нервная, эндокринная, иммунная системы.

Вспомните! Что такое регуляция функций организма человека?

Регуляция (от лат. regulation) - приводить в порядок, устраивать.

Подумайте!

Организм человека - это сложная система. В нём содержатся миллиарды клеток, миллионы структурных единиц, тысячи органов, сотни функциональных систем, десятки физиологических систем. А благодаря чему они все работают слаженно, как единое целое?

Каковы особенности регуляторных систем организма человека?

РЕГУЛЯТОРНЫЕ СИСТЕМЫ

вокупность органов, оказывающих ведущее влияние на деятельность физиологических систем, органов и клеток. Эти системы имеют особенности строения и функций, связанные с их назначением.

В регуляторных системах имеются центральные и периферические отделы. В центральных органах формируются руководящие команды, а периферические органы обеспечивают распределение и передачу их рабочим органам для выполнения (принцип централизации).

Для осуществления контроля за выполнением команд центральные органы регуляторных систем получают ответную информацию от рабочих органов. Эту особенность деятельности биологических систем называют принципом обратной связи.

Информация от регуляторных систем по всему организму передаётся в виде сигналов. Поэтому клетки таких систем обладают способностью продуцировать электрические импульсы и химические вещества, кодировать и распространять информацию.

Регуляторные системы осуществляют регуляцию функций в соответствии с изменениями внешней или внутренней среды. Поэтому руководящие команды, которые направляются в органы, имеют или стимулирующий, или замедляющий характер (принцип двойного действия).

Такие особенности в организме человека свойственны трём системам - нервной, эндокринной и иммунной. И именно они являются регуляторными системами нашего организма.

Итак, основными особенностями регуляторных систем являются:

1) наличие центральных и периферических отделов; 2) способность продуцировать руководящие сигналы; 3) деятельность по принципу обратной связи; 4) двойной способ регуляции.

Как организована регуляторная деятельность нервной системы?

Нервная система — это совокупность органов человека, которые воспринимают, анализируют и обеспечивают деятельность физиологических систем органов в очень быстром режиме. По строению нервную систему делят на две части -центральную и периферическую. К центральной относят головной и спинной мозг, а к периферической - нервы. Деятельность нервной системы - рефлекторная, осуществляется с помощью нервных импульсов, возникающих в нервных клетках. Рефлекс - это ответная реакция организма на раздражение, которое происходит при участии нервной системы. Любая деятельность физиологических систем имеет рефлекторный характер. Так, с помощью рефлексов регулируются выделение слюны на вкусную еду, отдергивание руки от колючек розы и т. п.


Рефлекторные сигналы передаются с высокой скоростью нервными путями, образующими рефлекторные дуги. Это путь, по которому импульсы передаются от рецепторов к центральным отделам нервной системы и от них - к рабочим органам. Рефлекторная дуга состоит из 5 частей: 1 - рецепторное звено (воспринимает раздражение и превращает в импульсы); 2 - чувствительное (центростремительное) звено (передаёт возбуждение в центральную нервную систему); 3 - центральное звено (в нём происходит анализ информации с участием вставных нейронов); 4 - двигательное (центробежное) звено (передаёт руководящие импульсы к рабочему органу); 5 - рабочее звено (при участии мышцы или железы происходит определённое действие) (ил. 10).

Передача возбуждения с одного нейрона на другой осуществляется с помощью синапсов. Это участок кон

такта одного нейрона с другим или с рабочим органом. Возбуждение в синапсах передаётся особыми веществами-медиаторами. Они синтезируются пресинаптической мембраной и накапливаются в синаптических пузырьках. Когда нервные импульсы доходят до синапса, пузырьки лопаются, и медиаторные молекулы попадают в синаптическую щель. Мембрана дендрита, называемая постсинаптической, принимает информацию и превращает её в импульсы. Возбуждение передаётся дальше уже следующим нейроном.

Итак, благодаря электрической природе нервных импульсов и наличию специальных проводящих путей нервная система осуществляет рефлекторную регуляцию очень быстро и обеспечивает конкретное влияние на органы.

Почему эндокринная и иммунная системы являются регуляторными?

Эндокринная система — это совокупность желёз, обеспечивающих гуморальную регуляцию функций физиологических систем. Высшим отделом эндокринной регуляции является гипоталамус, который вместе с гипофизом управляет периферическими железами. Клетки эндокринных желёз образуют гормоны и посылают их во внутреннюю среду. Кровь, а впоследствии и тканевая жидкость, доставляют эти химические сигналы в клетки. Гормоны могут замедлять или усиливать функции клеток. Например, гормон надпочечников адреналин оживляет работу сердца, ацетилхолин - тормозит. Влияние гормонов на органы - это более медленный способ управления функциями, чем с помощью нервной системы, однако это влияние может быть общим и долгосрочным.

Иммунная система — это совокупность органов, образующих специальные химические соединения и клетки для обеспечения защитного воздействия на клетки, ткани и органы. К центральным органам иммунной системы относятся красный костный мозг и тимус, а к периферическим - миндалины, аппендикс, лимфоузлы. Центральное место среди клеток иммунной системы занимают различные лейкоциты, а среди химических соединений - антитела, вырабатываемые в ответ на чужеродные белковые соединения. Клетки и вещества иммунной системы распространяются с помощью жидкостей внутренней среды. А их воздействие, как и гормонов, имеет медленный, длительный и общий характер.

Итак, эндокринная и иммунная системы являются регуляторными системами и осуществляют в организме человека гуморальную и иммунную регуляцию.

ДЕЯТЕЛЬНОСТЬ

Учимся познавать

Самостоятельная работа с таблицей

Сравните нервную, эндокринную и иммунную регуляторные системы, определите сходство и различия между ними.


Биология + Нейрофизиология

Платон Григорьевич Костюк (1924-2010) -выдающийся украинский нейрофизиолог. Учёный впервые сконструировал и использовал микроэлектродную технику для исследования организации нервных центров, проник в нервную клетку, зарегистрировав её сигналы. Исследовал, как происходит в нервной системе преобразование информации из электрической формы в молекулярную. Платон Костюк доказал, что важную роль в этих процессах играют ионы кальция. А какова роль ионов кальция в нервной регуляции функций организма человека?

Биология + Психология

Каждый человек реагирует на цвета по-разному, в зависимости от темперамента и состояния здоровья. Психологи на основе отношения к цвету определяют характер человека, его наклонности, интеллект, тип психики. Так, красный цвет укрепляет память, придаёт бодрость и энергичность, возбуждает нервную систему, а фиолетовый цвет усиливает творчество, успокаивающе действие на нервную систему, повышает мышечный тонус. Применив знания о регуляторных системах, попробуйте объяснить механизм воздействия цвета на организм человека.

РЕЗУЛЬТАТ

Вопросы для самоконтроля

1. Что такое регуляторные системы? 2. Назовите регуляторные системы организма человека. 3. Что такое рефлекс? 4. Что такое рефлекторная дуга? 5. Назовите составляющие рефлекторной дуги. 6. Что такое эндокринная и иммунная регуляторные системы?

7. Какие особенности имеют регуляторные системы организма человека? 8. Как организована регуляторная деятельность нервной системы? 9. Почему эндокринная и иммунная системы являются регуляторными?

10. Назовите сходство и различия между нервной, эндокринной и иммунной системами регуляции организма.

Это материал учебника