Сильное и слабое взаимодействие. Слабое взаимодействие - одно из четырех фундаментальных взаимодействий

Слабое взаимодействие - это одна из четырех фундаментальных сил, управляющих всей материей во Вселенной. Остальные три - сила тяжести, электромагнетизм и сильное взаимодействие. В то время как другие силы держат вещи вместе, слабая сила играет большую роль в их разрушении.

Слабое взаимодействие сильнее гравитации, но оно эффективно только на очень малых расстояниях. Сила действует на субатомном уровне и играет решающую роль в обеспечении энергией звезд и создании элементов. Она также отвечает за большую часть естественного излучения во Вселенной.

Теория Ферми

Итальянский физик Энрико Ферми в 1933 г. разработал теорию для объяснения бета-распада - процесса превращения нейтрона в протон и вытеснения электрона, который часто называют в этом контексте бета-частицей. Он определил новый тип силы, так называемое слабое взаимодействие, которое отвечало за распад, фундаментальный процесс превращения нейтрона в протон, нейтрино и электрон, который впоследствии был определен как антинейтрино.

Ферми первоначально предполагал, что имело место нулевое расстояние и сцепление. Две частицы должны были соприкасаться, чтобы сила работала. С тех пор выяснилось, что слабое взаимодействие на самом деле является которая проявляется на чрезвычайно коротком расстоянии, равном 0,1% диаметра протона.

Электрослабая сила

Первым этапом в слиянии водорода является столкновение двух протонов с достаточной силой, чтобы преодолеть взаимное отталкивание, испытываемое ими из-за их электромагнитного взаимодействия.

Если обе частицы расположить близко друг к другу, сильное взаимодействие может связывать их. Это создает нестабильную форму гелия (2 He), который имеет ядро ​​с двумя протонами, в отличие от устойчивой формы (4 Не), которая имеет два нейтрона и два протона.

На следующем этапе в игру вступает слабое взаимодействие. Из-за переизбытка протонов один из них претерпевает бета-распад. После этого, другие реакции, включая промежуточное образование и слияние 3 Не, в конечном счете, образуют стабильный 4 Не.

Фейнманивська диаграмма бета-распада нейтрона на протон, электрон и электронное антинейтрино через промежуточный W –бозон – одна из четырех фундаментальных физических взаимодействий между элементарными частицами наряду с гравитационным, электромагнитным и сильным. Наиболее известным ее проявлением является бета-распад и связанная с ним радиоактивность. Взаимодействие названа слабой, поскольку напряженность соответствующего ей поля в 10 13 меньше, чем в полей, удерживающих вместе ядерные частицы (нуклоны и кварки) и в 10 10 меньше по кулоновское на этих масштабах, однако значительно сильнее чем гравитационная. Взаимодействие имеет короткий радиус действия и проявляется лишь на расстояниях порядка размера атомного ядра.
Первую теорию слабого взаимодействия предложил Энрико Ферми в 1930. При разработке теории он использовал гипотезу Вольфганга Паули о существовании новой в то время элементарной частицы нейтрино.
Слабое взаимодействие описывает те процессы ядерной физики и физики элементарных частиц, которые происходят относительно медленно, напротив быстрым процессам, обусловленным сильным взаимодействием. Например, период полураспада нейтрона составляет примерно 16 мин. – Вечность по сравнению с ядерными процессами, для которых характерен время составляет 10 -23 с.
Для сравнения заряженные пионы? ± распадаются через слабое взаимодействие и имеют время жизни 2.6033 ± 0.0005 x 10 -8 c, тогда как нейтральный пион? 0 распадается на два гамма-кванта через электромагнитное взаимодействие и имеет время жизни 8.4 ± 0.6 x 10 -17 c.
Другая характеристика взаимодействия – длина свободного пробега частиц в веществе. Частицы, которые взаимодействуют через электромагнитное взаимодействие – заряженные частицы, гамма-кванты, можно задержать железной плитой толщиной в несколько десятнив сантиметров. Тогда как нейтрино, взаимодействующего лишь слабо, проходит, не столкнувшись ни разу, через слой металла толщиной миллиард километров.
В слабом взаимодействии участвуют кварки и лептоны, включая нейтрино. При этом изменяется аромат частиц, т.е. их тип. Например, в результате распада нейтрона один из его d-кварков превращается в u-кварк. Нейтрино уникальны тем, что взаимодействуют с другими частицами только за слабой, и еще слабую гравитационным взаимодействием.
По современным представлениям, сформулированными в Стандартной модели, слабое взаимодействие переносится калибровочные W-и Z-бозонами, которые были обнаружены на ускорителях в 1982. Их массы составляют 80 и 90 масс протона. Обмен виртуальными W-бозонами называют заряженным током, обмен Z-бозонами – нейтральным током.
Вершины диаграмм Фейнмана, описывающие возможные процессы с участием калибровочных W-и Z-бозонов можно разделить на три типа:

Лептон может випроминиты или поглотить W-бозон, и превратиться в нейтрино;
кварк может випроминиты или поглотить W-бозон, и изменить свой аромат, превратившись в суперпозицию других кварков;
лептон или кварк может поглотить или випроминиты Z-бозон

Способность частицы до слабого взаимодействия описывается квантовым числом, что называется слабый изоспин. Возможные значения изоспину для частиц, которые могут обмениваться W и Z бозонами ± 1 / 2. Именно эти частицы взаимодействуют через слабое взаимодействие. Не взаимодействуют за слабой взаемоидию частицы с нулевым слабым изоспином, для которых процессы обмена W и Z бозонами невозможны. Слабый изоспин сохраняется в реакциях между элементарными частицами. Это означает, что суммарный слабый изоспин всех частиц, участвующих в реакции, остается неизменным, хотя типы частиц могут при этом меняться.
Особенностью слабого взаимодействия является то, что она нарушает четность, поскольку способность к слабого взаимодействия через заряженные токи имеют только фермионы с левой хиральность и античастицы фермионов с правой хиральность. Несохранение четности в слабом взаимодействии открыли Янг Чжэньнин и Ли Чжэндао, за что получили Нобелевскую премию по физике за 1957 год. Причину несохранение четности видят в спонтанном нарушении симметрии. В рамках Стандартной модели за нарушение симметрии соответствует гипотетическая частица – бозон Хиггса. Это единственная частичка обычная модели, которая еще не была обнаружена экспериментально.
При слабом взаимодействии нарушается также CP симметрия. Это нарушение было выявлено экспериментально в 1964 году в экспериментах с каона. Авторы открытия Джеймс Кронин и Вал Фитч награждены Нобелевской премией за 1980. Несохранение CP-симметрии происходит гораздо реже, чем нарушение четности. Оно означает также, поскольку сохранение CPT-симметрия опирается на фундаментральни физические принципы – преобразования Лоренца и близкодействия, возможность нарушения T-симметрии, т.е. неинвариантнисть физических процессов по изменению направления времени.

В 1969 была построена единая теория электромагнитного и слабого ядерного взаимодействия, согласно которой при энергиях советов 100 ГэВ, что соответствует температуре 10 15 К разница между электромагнитными и слабыми процессами исчезает. Экспериментальная проверка единой теории электрослабого и сильного ядерного взаимодействия требует увеличения энергии ускорителей в сто миллиардов раз.
Теория электрослабого взаимодействия построена на основе группы симметрии SU (2).
Несмотря на малую величину и короткодию, слабое взаимодействие выполняет очень важную роль в природе. Если бы удалось «выключить» слабое взаимодействие, то Солнце погасло бы, поскольку стало бы невозможным процесс превращения протона в нейтрон, позитрон и нейтрино, в результате которого 4 протона превращаются в 4 He два позитроны и два нейтрино. Этот процесс служит основным источником энергии для Солнца и большинства звезд (см. Водородный цикл). Процессы слабого взаимодействия важны для эволюции звезд, поскольку они обусловливают потери энергии очень горячих звезд во взрывах сверхновых с образованием пульсаров и т.д. Если бы не было слабого взаимодействия в природе были бы стабильны и широко распространены в обычной веществе мюоны, пи-мезоны и другие частицы. Столь важная роль слабого взаимодействия повязна с тем, что она не подчиняется ряду запретов, характерных для сильного и елетромагнитнои взаимодействий. В частности, слабое взаимодействие превращает заряженные лептоны в нейтрино, а кварки одного аромата – в кварки другое.

Слабое взаимодействие

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.

У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Сильное взаимодействие

Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков.

Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.

Слабое взаимодействие, или слабое ядерное взаимодействие - одно из четырех фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвертого из фундаментальных взаимодействий, гравитационного. Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Квантовые проявления гравитационного взаимодействия никогда не наблюдались. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Типичный пример слабого взаимодействия - это бета-распад нейтрона

где n - нейтрон, p - протон, e- - электрон, e - электронное антинейтрино.

Следует, однако, иметь в виду, что указанное выше правило совсем не означает, что любой акт слабого взаимодействия обязан сопровождаться нейтрино или антинейтрино. Известно, что имеет место большое число безнейтринных распадов. В качестве примера можно отметить процесс распада лямбда-гиперона на протон p и отрицательно заряженный пион. По современным представлениям нейтрон и протон не являются истинно элементарными частицами, а состоят из элементарных частиц, называемых кварками.

Интенсивность слабого взаимодействия характеризуется константой связи Ферми GF. Константа GF размерна. Чтобы образовать безразмерную величину, необходимо использовать какую-нибудь эталонную массу, например массу протона mp. Тогда безразмерная константа связи будет

Видно, что слабое взаимодействие гораздо интенсивнее гравитационного.

Слабое взаимодействие в отличие от гравитационного является короткодействующим. Это означает, что слабое взаимодействие между частицами начинает действовать, только если частицы находятся достаточно близко друг к другу. Если же расстояние между частицами превосходит некоторую величину, называемую характерным радиусом взаимодействия, слабое взаимодействие не проявляет себя. Экспериментально установлено, что характерный радиус слабого взаимодействия порядка 10-15 см, то есть слабое взаимодействие, сосредоточен на расстояниях меньше размеров атомного ядра. Хотя слабое взаимодействие существенно сосредоточено внутри ядра, оно имеет определенные макроскопические проявления. Кроме того, слабое взаимодействие играет важную роль в так называемых термоядерных реакциях, ответственных за механизм энерговыделения в звездах. Удивительнейшим свойством слабого взаимодействия является существование процессов, в которых проявляется зеркальная асимметрия. На первый взгляд кажется очевидным, что разница между понятиями левое и правое условна. Действительно, процессы гравитационного, электромагнитного и сильного взаимодействия инвариантны относительно пространственной инверсии, осуществляющей зеркальное отражение. Говорят, что в таких процессах сохраняется пространственная четность P. Однако экспериментально установлено, что слабые процессы могут протекать с несохранением пространственной четности и, следовательно, как бы чувствуют разницу между левым и правым. В настоящее время имеются твердые экспериментальные доказательства, что несохранение четности в слабых взаимодействиях носит универсальный характер, оно проявляет себя не только в распадах элементарных частиц, но и в ядерных и даже атомных явлениях. Следует признать, что зеркальная асимметрия представляет собой свойство Природы на самом фундаментальном уровне.


Прочие статьи:

Состояния
В 1932 году была предложена протонно-нейтронная модель Иваненко-Гейзенберга. Ядра с одинаковым зарядом и разной массой называются изотопами. 75% 25% природного хлора. Ядра с одинаковыми массовыми числами, но разными зарядами н...

Химический состав и физико-химические свойства ДНК
ДНК представляют собой многоосновные сильные кислоты, щелочные соли которых образуют в воде очень вязкие прозрачные коллоидные растворы, застывающие при концентрации выше 0,25%. Растворы ДНК характеризуются аномальной (структурной) вязкос...

Двустадийный глубинный полупроточный процесс
В первом ферментере происходит размножение бактерий. Часть содержимого из первого ферментера перекачивается во второй, где завершается ферментация. В первый ферментер добавляют свежее сусло, а содержимое второго полностью выливается. Поэт...

Слабое взаимодействие.

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц. Поэтому с его проявлением столкнулись при открытии радиоактивности и исследовании бета-распада (см. 8.1.5).

У бета-распада обнаружилась в высшей степени странная особенность. Создавалось впечатление, что в этом распаде как будто нарушается закон сохранения энергии, что часть энергии куда-то исчезает. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами, но было известно, что внутри ядер нет таких частиц. Как же они возникали? Выяснилось, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино. Какие же силы вызывают такой распад? Анализ показал, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой, которой соответствует некоторое «слабое взаимодействие».

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного. Там, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительные расстояния. Радиус слабого взаимодействия очень мал (10-16 см). Потому оно не может влиять не только на макроскопические, но даже на атомные объекты и ограничивается субатомными частицами. Кроме того, по сравнению с электромагнитным и сильным взаимодействиями слабое взаимодействие протекает чрезвычайно медленно.

Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии. Слабое взаимодействие играет в природе очень важную роль. Оно является составной частью термоядерных реакций на Солнце, звездах, обеспечивая синтез пульсаров, взрывов сверхновых звезд, синтез химических элементов в звездах и др.