Знайти масу плоскої фігури обмеженою лініями онлайн. Обчислити площу фігури, обмеженою лініями

У попередньому розділі, присвяченому розбору геометричного сенсу певного інтегралу, ми отримали ряд формул для обчислення площі криволінійної трапеції:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x для безперервної та невід'ємної функції y = f (x) на відрізку [a; b ] ,

S (G) = - ∫ a b f (x) d x для безперервної та непозитивної функції y = f (x) на відрізку [a; b].

Ці формули застосовні для вирішення щодо простих завдань. Насправді ж нам частіше доведеться працювати з складнішими фігурами. У зв'язку з цим, цей розділ ми присвятимо розбору алгоритмів обчислення площі фігур, які обмежені функціями явно, тобто. як y = f(x) або x = g(y) .

Теорема

Нехай функції y = f 1 (x) та y = f 2 (x) визначені і безперервні на відрізку [a; b], причому f 1 (x) ≤ f 2 (x) для будь-якого значення x з [a; b]. Тоді формула для обчислення площі фігури G , обмеженою лініями x = a , x = b , y = f 1 (x) і y = f 2 (x) матиме вигляд S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Схожа формула буде застосовна для площі фігури, обмеженої лініями y = c , y = d , x = g 1 (y) та x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y.

Доказ

Розберемо три випадки, котрим формула буде справедлива.

У першому випадку, враховуючи властивість адитивності площі, сума площ вихідної фігури G і криволінійної трапеції G 1 дорівнює площі фігури G 2 . Це означає, що

Тому S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x.

Виконати останній перехід ми можемо з використанням третьої якості певного інтеграла.

У другому випадку справедлива рівність: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графічна ілюстрація матиме вигляд:

Якщо обидві функції непозитивні, отримуємо: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графічна ілюстрація матиме вигляд:

Перейдемо до розгляду загального випадкуколи y = f 1 (x) і y = f 2 (x) перетинають вісь O x .

Точки перетину ми позначимо як x i, i = 1, 2,. . . , n-1. Ці точки розбивають відрізок [a; b] на n частин x i-1; x i, i = 1, 2,. . . , n де α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Отже,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Останній перехід ми можемо здійснити з використанням п'ятої якості певного інтеграла.

Проілюструємо на графіку загальний випадок.

Формулу S(G) = ∫ a b f 2 (x) - f 1 (x) d x можна вважати доведеною.

А тепер перейдемо до розбору прикладів обчислення площі фігур, які обмежені лініями y = f(x) та x = g(y) .

Розгляд будь-якого з прикладів ми починатимемо з побудови графіка. Зображення дозволить нам представляти складні фігурияк об'єднання більше простих фігур. Якщо побудова графіків і фігур на них викликає у вас труднощі, можете вивчити розділ про основні елементарні функції, геометричне перетворення графіків функцій, а також побудову графіків під час дослідження функції.

Приклад 1

Необхідно визначити площу фігури, яка обмежена параболою y = - x 2 + 6 x - 5 і прямими лініями y = - 1 3 x - 1 2 x = 1 x = 4 .

Рішення

Зобразимо лінії на графіку декартовій системікоординат.

На відрізку [1; 4 ] графік параболи y = - x 2 + 6 x - 5 розташований вище за пряму y = - 1 3 x - 1 2 . У зв'язку з цим для отримання відповіді використовуємо формулу, отриману раніше, а також спосіб обчислення певного інтеграла за формулою Ньютона-Лейбніца:

S(G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Відповідь: S(G) = 13

Розглянемо складніший приклад.

Приклад 2

Необхідно обчислити площу фігури, яка обмежена лініями y = x + 2, y = x, x = 7.

Рішення

У даному випадкуми маємо лише одну пряму лінію, розташовану паралельно осі абсцис. Це x = 7. Це вимагає від нас знайти другу межу інтегрування самостійно.

Побудуємо графік та нанесемо на нього лінії, дані за умови завдання.

Маючи графік перед очима, ми легко можемо визначити, що нижньою межею інтегрування буде абсцис точки перетину графіка прямої y = x і напів параболи y = x + 2 . Для знаходження абсциси використовуємо рівності:

y = x + 2 О Д З З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (-1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Виходить, що абсцис точки перетину є x = 2 .

Звертаємо вашу увагу на той факт, що в загальному прикладіна кресленні лінії y = x + 2, y = x перетинаються в точці (2; 2), тому такі докладні обчислення можуть здатися зайвими. Ми привели тут таке докладне рішеннятільки тому, що в більш складних випадкахрішення може бути не таким очевидним. Це означає, що координати перетину ліній краще завжди обчислювати аналітично.

На інтервалі [2; 7] графік функції y = x розташований вище за графік функції y = x + 2 . Застосуємо формулу для обчислення площі:

S(G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Відповідь: S(G) = 59 6

Приклад 3

Необхідно обчислити площу фігури, яка обмежена графіками функцій y = 1 x та y = - x 2 + 4 x - 2 .

Рішення

Нанесемо лінії на графік.

Визначимося з межами інтегрування. Для цього визначимо координати точок перетину ліній, прирівнявши вирази 1 x - x 2 + 4 x - 2 . За умови, що x не дорівнює нулю, рівність 1 x = - x 2 + 4 x - 2 стає еквівалентним рівнянню третього ступеня - x 3 + 4 x 2 - 2 x - 1 = 0 із цілими коефіцієнтами. Освіжити в пам'яті алгоритм вирішення таких рівнянь ми можете, звернувшись до розділу «Рішення кубічних рівнянь».

Коренем цього рівняння є х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Розділивши вираз - x 3 + 4 x 2 - 2 x - 1 на двочлен x - 1 отримуємо: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Коріння, що залишилося, ми можемо знайти з рівняння x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (-3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Ми знайшли інтервал x ∈ 1; 3 + 13 2 , на якому фігура G укладена вище синій і нижче червоної лінії. Це допомагає нам визначити площу фігури:

S(G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Відповідь: S(G) = 7 + 13 3 - ln 3 + 13 2

Приклад 4

Необхідно обчислити площу фігури, яка обмежена кривими y = x 3 , y = - log 2 x + 1 і віссю абсцис.

Рішення

Нанесемо усі лінії на графік. Ми можемо отримати графік функції y = - log 2 x + 1 з графіка y = log 2 x якщо розташуємо його симетрично щодо осі абсцис і піднімемо на одну одиницю вгору. Рівняння осі абсцис у = 0.

Позначимо точки перетину ліній.

Як очевидно з малюнка, графіки функцій y = x 3 і y = 0 перетинаються у точці (0 ; 0) . Так виходить тому, що х = 0 є єдиним дійсним коренемрівняння x 3 = 0.

x = 2 є єдиним коренем рівняння - log 2 x + 1 = 0 тому графіки функцій y = - log 2 x + 1 і y = 0 перетинаються в точці (2 ; 0) .

x = 1 є єдиним коренем рівняння x 3 = - log 2 x + 1. У зв'язку з цим графіки функцій y = x 3 і y = - log 2 x + 1 перетинаються в точці (1; 1). Останнє твердження може бути неочевидним, але рівняння x 3 = - log 2 x + 1 не може мати більше одного кореня, так як функція y = x 3 є строго зростаючою, а функція y = - log 2 x + 1 строго спадаючою.

Подальше рішення передбачає кілька варіантів.

Варіант №1

Фігуру G ми можемо представити як суму двох криволінійних трапецій, розташованих вище за осі абсцис, перша з яких розташовується нижче середньої лініїна відрізку x ∈ 0; 1 , а друга нижче за червону лінію на відрізку x ∈ 1 ; 2 . Це означає, що площа дорівнює S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Варіант №2

Фігуру G можна представити як різницю двох фігур, перша з яких розташована вище за осі абсцис і нижче за синю лінію на відрізку x ∈ 0 ; 2 , а друга між червоною та синьою лініями на відрізку x ∈ 1 ; 2 . Це дозволяє нам знайти площу наступним чином:

S(G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В цьому випадку для знаходження площі доведеться використовувати формулу виду S (G) = c d (g 2 (y) - g 1 (y)) d y . Фактично, лінії, які обмежують фігуру, можна подати у вигляді функцій від аргументу y .

Дозволимо рівняння y = x 3 і - log 2 x + 1 щодо x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Отримаємо потрібну площу:

S(G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Відповідь: S(G) = 1 ln 2 - 1 4

Приклад 5

Необхідно обчислити площу фігури, обмежену лініями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Рішення

Червоною лінією нанесемо на графік лінію, задану функцією y = x. Синім кольором нанесемо лінію y = - 1 2 x + 4, чорним кольором позначимо лінію y = 2 3 x - 3.

Зазначимо точки перетину.

Знайдемо точки перетину графіків функцій y = x та y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 П о верка: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 не я в л я т с я р е ш е н ня му р а в н е н і я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н н я е м у р а в н і н я ⇒ (4 ; 2) т о к а п е р е с е н і я y = x та y = - 1 2 x + 4

Знайдемо точку перетину графіків функцій y = x та y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 Перевірка: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н н е м у р а в н е н я ⇒ (9 ; 3) т о к а перес е ч а н я y = x і y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я ет с я р е ш е н н ня м у р я в н е ня

Знайдемо точку перетину ліній y = - 1 2 x + 4 і y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 ; 1) точка перес е чення і = - 1 2 x + 4 і y = 2 3 x - 3

Спосіб №1

Представимо площу шуканої фігури як суму площ окремих фігур.

Тоді площа фігури дорівнює:

S(G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Спосіб №2

Площа вихідної фігури можна як суму двох інших фігур.

Тоді розв'яжемо рівняння лінії щодо x , а тільки після цього застосуємо формулу обчислення площі фігури.

y = x ⇒ x = y 2 до р а з н а я л і н і я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 1 2 x + 4 ⇒ x = - 2 y + 8 с і н я л і н і я

Таким чином, площа дорівнює:

S(G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Як бачите, значення збігаються.

Відповідь: S(G) = 11 3

Підсумки

Для знаходження площі фігури, яка обмежена заданими лініями, нам необхідно побудувати лінії на площині, знайти точки їх перетину, застосувати формулу для знаходження площі. У даному розділіми розглянули варіанти завдань, що найчастіше зустрічаються.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Переходимо до розгляду додатків інтегрального обчислення. На цьому уроці ми розберемо типове та найбільш поширене завдання обчислення площі плоскої фігуриза допомогою певного інтегралу. Нарешті все шукаючі сенсв вищої математики- Нехай знайдуть його. Чи мало. Доведеться ось у житті наближати дачна ділянкаелементарними функціями та знаходити його площу за допомогою певного інтегралу.

Для успішного освоєння матеріалу необхідно:

1) Розбиратися в невизначеному інтеграліхоч би на середньому рівні. Таким чином, чайникам для початку слід ознайомитись з уроком Не.

2) Вміти застосовувати формулу Ньютона-Лейбніца та обчислювати певний інтеграл. Налагодити теплі дружні стосункиз певними інтегралами можна на сторінці Певний інтеграл. Приклади рішень. Завдання «обчислити площу за допомогою певного інтегралу» завжди передбачає побудову кресленнятому актуальним питаннямбудуть також ваші знання та навички побудови креслень. Як мінімум, треба вміти будувати пряму, параболу та гіперболу.

Почнемо з криволінійної трапеції. Криволінійна трапеція - це плоска фігура, обмежена графіком деякої функції y = f(x), віссю OXта лініями x = a; x = b.

Площа криволінійної трапеції чисельно дорівнює певному інтегралу

Будь-який певний інтеграл (який існує) має дуже хороший геометричний зміст. На уроці Певний інтеграл. Приклади рішеньми говорили, що певний інтеграл це число. А зараз настав час констатувати ще один корисний факт. З погляду геометрії певний інтеграл – це ПЛОЩА. Тобто, певному інтегралу (якщо він існує) геометрично відповідає площа деякої фігури. Розглянемо певний інтеграл

Підінтегральна функція

задає на площині криву (її за бажання можна накреслити), а сам певний інтеграл чисельно дорівнює площівідповідної криволінійної трапеції.



Приклад 1

, , , .

Це типове формулювання завдання. Найважливіший момент рішення – побудова креслення. Причому креслення необхідно побудувати ПРАВИЛЬНО.

При побудові креслення я рекомендую наступний порядок: спочаткукраще побудувати всі прямі (якщо вони є) і тільки потім– параболи, гіперболи, графіки інших функцій. З технікою поточкової побудови можна ознайомитись у довідковий матеріал Графіки та властивості елементарних функцій . Там же можна знайти дуже корисний стосовно нашого уроку матеріал – як швидко побудувати параболу.

У цій задачі рішення може виглядати так.

Виконаємо креслення (зверніть увагу, що рівняння y= 0 задає вісь OX):

Штрихувати криволінійну трапецію не будемо, тут очевидно, про яку площу йдеться. Рішення продовжується так:

На відрізку [-2; 1] графік функції y = x 2 + 2 розташований над віссюOXтому:

Відповідь: .

У кого виникли труднощі з обчисленням певного інтегралу та застосуванням формули Ньютона-Лейбніца

,

зверніться до лекції Певний інтеграл. Приклади рішень. Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У цьому випадку «на вічко» підраховуємо кількість клітин у кресленні – ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшла, скажімо, відповідь: 20 квадратних одиниць, то, зрозуміло, десь допущена помилка – в розглянуту постать 20 клітинок вочевидь не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 2

Обчислити площу фігури, обмеженою лініями xy = 4, x = 2, x= 4 та віссю OX.

Це приклад для самостійного рішення. Повне рішеннята відповідь наприкінці уроку.

Що робити, якщо криволінійна трапеція розташована під віссюOX?

Приклад 3

Обчислити площу фігури, обмеженою лініями y = e - x, x= 1 та координатними осями.

Рішення: Виконаємо креслення:

Якщо криволінійна трапеція повністю розташована під віссю OX , то її площу можна знайти за формулою:

В даному випадку:

.

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями y = 2xx 2 , y = -x.

Рішення: Спочатку потрібно виконати креслення. При побудові креслення у завдання на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи y = 2xx 2 та прямий y = -x. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Отже, нижня межа інтегрування a = 0, верхня межаінтегрування b= 3. Часто вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Тим не менш, аналітичний спосібзнаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

Повторимося, що з поточечному побудові межі інтегрування найчастіше з'ясовуються «автоматоматично».

А тепер робоча формула:

Якщо на відрізку [ a; b] деяка безперервна функція f(x) більше або дорівнюєдеякою безперервної функції g(x), то площу відповідної фігури можна знайти за формулою:

Тут уже не треба думати, де розташована постать – над віссю чи під віссю, а важливо, який графік Вище(щодо іншого графіка), а який – НИЖЧЕ.

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому з 2 xx 2 необхідно відняти - x.

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою y = 2xx 2 зверху та прямий y = -xзнизу.

На відрізку 2 xx 2 ≥ -x. За відповідною формулою:

Відповідь: .

Насправді, шкільна формуладля площі криволінійної трапеції у нижній напівплощині (див. приклад №3) – окремий випадокформули

.

Оскільки вісь OXзадається рівнянням y= 0, а графік функції g(x) розташований нижче осі OX, то

.

А зараз пара прикладів для самостійного вирішення

Приклад 5

Приклад 6

Знайти площу фігури, обмеженою лініями

У ході вирішення завдань на обчислення площі за допомогою певного інтеграла іноді трапляється кумедний казус. Креслення виконано правильно, розрахунки – правильно, але, за неуважністю,… знайдено площу не тієї фігури.

Приклад 7

Спочатку виконаємо креслення:

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором(Уважно дивіться на умову – чим обмежена фігура!). Але на практиці, через неуважність, нерідко вирішують, що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад ще й корисний тим, що в ньому площа фігури вважається двома певними інтегралами. Дійсно:

1) На відрізку [-1; 1] над віссю OXрозташований графік прямий y = x+1;

2) На відрізку над віссю OXрозташований графік гіперболи y = (2/x).

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

Відповідь:

Приклад 8

Обчислити площу фігури, обмеженою лініями

Представимо рівняння у «шкільному» вигляді

і виконаємо крапковий креслення:

З креслення видно, що верхня межа у нас «хороша»: b = 1.

Але чому дорівнює нижня межа?! Зрозуміло, що це ціле число, але яке?

Можливо, a=(-1/3)? Але де гарантія, що креслення виконано з ідеальною точністю, цілком може виявитися, що a=(-1/4). А якщо ми взагалі неправильно збудували графік?

У таких випадках доводиться витрачати додатковий часта уточнювати межі інтегрування аналітично.

Знайдемо точки перетину графіків

Для цього розв'язуємо рівняння:

.

Отже, a=(-1/3).

Подальше рішення тривіальне. Головне, не заплутатися у підстановках та знаках. Обчислення тут не найпростіші. На відрізку

, ,

за відповідною формулою:

Відповідь:

На закінчення уроку розглянемо два завдання складніше.

Приклад 9

Обчислити площу фігури, обмеженою лініями

Рішення: Зобразимо цю фігуруна кресленні.

Для поточкового побудови креслення необхідно знати зовнішній виглядсинусоїди. Взагалі корисно знати графіки всіх елементарних функцій, а також деякі значення синуса. Їх можна знайти у таблиці значень тригонометричних функцій . У ряді випадків (наприклад, у цьому) допускається побудова схематичного креслення, на якому принципово правильно повинні бути відображені графіки та межі інтегрування.

З межами інтегрування тут проблем немає, вони випливають прямо з умови:

- "ікс" змінюється від нуля до "пі". Оформлюємо подальше рішення:

На відрізку графік функції y= sin 3 xрозташований над віссю OXтому:

(1) Як інтегруються синуси та косинуси у непарних ступенях, можна подивитися на уроці Інтеграли від тригонометричних функцій. Відщипуємо один синус.

(2) Використовуємо основне тригонометричне тотожність у вигляді

(3) Проведемо заміну змінної t= cos x, тоді: розташований над віссю , тому:

.

.

Примітка:зверніть увагу, як береться інтеграл від тангенсу в кубі, тут використано наслідок основного тригонометричного тотожності

.

Завдання № 3. Зробіть креслення та обчисліть площу фігури, обмеженою лініями

Додаток інтеграла до рішення прикладних завдань

Обчислення площі

Певний інтеграл безперервної невід'ємної функції f(x) чисельно дорівнюєплощі криволінійної трапеції, обмеженої кривою y = f(x), віссю Ох і прямими х = а і х = b. Відповідно до цього формула площі записується так:

Розглянемо деякі приклади на обчислення площ плоских фігур.

Завдання № 1. Обчислити площу, обмежену лініями y = x 2 +1, y = 0, x = 0, x = 2.

Рішення.Побудуємо фігуру, площу якої ми маємо обчислити.

y = x 2 + 1 – це парабола гілки якої спрямовані вгору, і парабола зміщена щодо осі O y вгору одну одиницю (рисунок 1).

Малюнок 1. Графік функції y = x 2 + 1

Завдання № 2. Обчислити площу, обмежену лініями y = x 2 – 1, y = 0 у межах від 0 до 1.


Рішення.Графіком даної функції є парабола гілки, якої спрямовані вгору, і парабола зміщена щодо осі O y вниз одну одиницю (рисунок 2).

Малюнок 2. Графік функції y = x 2 – 1


Завдання № 3. Зробіть креслення та обчисліть площу фігури, обмеженою лініями

y = 8 + 2x - x 2 і y = 2x - 4.

Рішення.Перша з цих двох ліній – парабола, спрямована гілками вниз, оскільки коефіцієнт при x 2 негативний, а друга лінія – пряма, що перетинає обидві осі координат.

Для побудови параболи знайдемо координати її вершини: y=2 – 2x; 2 – 2x = 0, x = 1 – абсцис вершини; y(1) = 8 + 2∙1 – 1 2 = 9 – її ордината, N(1;9) – вершина.

Тепер знайдемо точки перетину параболи та прямий, розв'язавши систему рівнянь:

Прирівнюючи праві частини рівняння, ліві частини яких рівні.

Отримаємо 8 + 2x - x 2 = 2x - 4 або x 2 - 12 = 0, звідки .

Отже, точки – точки перетину параболи та прямий (рисунок 1).


Малюнок 3 Графіки функцій y = 8 + 2x – x 2 та y = 2x – 4

Побудуємо пряму y = 2x - 4. Вона проходить через точки (0; -4), (2; 0) на осях координат.

Для побудови параболи можна ще її точки перетину з віссю 0x, тобто коріння рівняння 8 + 2x – x 2 = 0 або x 2 – 2x – 8 = 0. За теоремою Вієта легко знайти його коріння: x 1 = 2, x 2 = 4.

На малюнку 3 зображено фігуру (параболічний сегмент M 1 N M 2), обмежений даними лініями.

Друга частина завдання полягає у знаходженні площі цієї фігури. Її площу можна знайти за допомогою певного інтегралу за формулою .

Щодо даною умовою, Отримаємо інтеграл:

2 Обчислення об'єму тіла обертання

Обсяг тіла, отриманого від обертання кривої y = f(x) навколо осі Ох, обчислюється за формулою:

При обертанні навколо осі О y формула має вигляд:

Завдання №4. Визначити об'єм тіла, отриманого від обертання криволінійної трапеції, обмеженої прямими х = 0 х = 3 та кривою y = навколо осі О х.

Рішення.Побудуємо рисунок (рисунок 4).

Малюнок 4. Графік функції y =

Обсяг, що шукається, дорівнює


Завдання №5. Обчислити обсяг тіла, отриманого від обертання криволінійної трапеції, обмеженою кривою y = x 2 і прямими y = 0 і y = 4 навколо осі O y .

Рішення.Маємо:

Запитання для повторення

Насправді, для того щоб знаходити площу фігури не треба так багато знань з невизначеного і певного інтегралу. Завдання «обчислити площу за допомогою певного інтегралу» завжди передбачає побудову кресленняТому набагато актуальнішим питанням будуть ваші знання та навички побудови креслень. У зв'язку з цим корисно освіжити в пам'яті графіки основних елементарних функцій, а, як мінімум, вміти будувати пряму, і гіперболу.

Криволінійною трапецією називається плоска фігура, обмежена віссю , прямими , і безперервною графіком на відрізку функції , яка не змінює знак на цьому проміжку. Нехай ця фігура розташована не нижчеосі абсцис:

Тоді площа криволінійної трапеції чисельно дорівнює певному інтегралу. Будь-який певний інтеграл (який існує) має дуже хороший геометричний зміст.

З погляду геометрії певний інтеграл – це ПЛОЩА.

Тобто,певному інтегралу (якщо він існує) геометрично відповідає площа певної постаті. Наприклад, розглянемо певний інтеграл. Підінтегральна функція задає на площині криву, що знаходиться вище за осі (бажаючі можуть виконати креслення), а сам певний інтеграл чисельно дорівнює площі відповідної криволінійної трапеції.

Приклад 1

Це типове формулювання завдання. Перший і найважливіший моментрішення - побудова креслення. Причому креслення необхідно побудувати ПРАВИЛЬНО.

При побудові креслення я рекомендую наступний порядок: спочаткукраще побудувати всі прямі (якщо вони є) і тільки потім- параболи, гіперболи, графіки інших функцій. Графіки функцій вигідніше будувати крапково.

У цій задачі рішення може виглядати так.
Виконаємо креслення (зверніть увагу, що рівняння задає вісь):


На відрізку графік функції розташований над віссютому:

Відповідь:

Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У цьому випадку «на вічко» підраховуємо кількість клітин у кресленні - ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшов, скажімо, відповідь: 20 квадратних одиниць, то, очевидно, що десь припущена помилка - у розглянуту фігуру 20 клітинок явно не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 3

Обчислити площу фігури, обмеженою лініями і координатними осями.

Рішення: Виконаємо креслення:


Якщо криволінійна трапеція розташована під віссю(або, принаймні, не вищецієї осі), то її площу можна знайти за формулою:


В даному випадку:

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями , .

Рішення: Спочатку потрібно виконати креслення Загалом кажучи, при побудові креслення у завданнях на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи та прямий. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Значить, нижня межа інтегрування, верхня межа інтегрування.

Цим способом краще, наскільки можна, не користуватися.

Набагато вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). І такий приклад ми теж розглянемо.

Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

А тепер робоча формула: Якщо на відрізку деяка безперервна функція більше або дорівнюєдеякої безперервної функції , то площа фігури, обмеженою графікамиданих функцій і прямими , , можна знайти за формулою:

Тут уже не треба думати, де розташована постать - над віссю чи під віссю, і, грубо кажучи, важливо, який графік Вище(щодо іншого графіка), а який - НИЖЧЕ.

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому необхідно відняти

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою зверху і прямою знизу.
На відрізку , за відповідною формулою:

Відповідь:

Приклад 4

Обчислити площу фігури, обмеженою лініями , , , .

Рішення: Спочатку виконаємо креслення:

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором(Уважно дивіться на умову – чим обмежена фігура!). Але на практиці через неуважність нерідко виникає «глюк», що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад корисний і тим, що в ньому площа фігури вважається за допомогою двох певних інтегралів.

Дійсно:

1) На відрізку над віссю розташований графік прямий;

2) На відрізку над віссю розташований графік гіперболи.

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

Певний інтеграл. Як обчислити площу фігури

Переходимо до розгляду додатків інтегрального обчислення. На цьому уроці ми розберемо типове та найбільш поширене завдання – як за допомогою певного інтегралу обчислити площу плоскої фігури. Нарешті ті, хто шукає значення у вищій математиці - і знайдуть його. Чи мало. Доведеться ось у житті наближати дачну ділянку елементарними функціями і знаходити її площу за допомогою певного інтегралу.

Для успішного освоєння матеріалу необхідно:

1) Розбиратися в невизначеному інтегралі хоча б середньому рівні. Таким чином, чайникам для початку слід ознайомитись з уроком Не.

2) Вміти застосовувати формулу Ньютона-Лейбніца та обчислювати певний інтеграл. Налагодити теплі дружні стосунки із певними інтегралами можна на сторінці Певний інтеграл. Приклади рішень.

Насправді, для того щоб знаходити площу фігури не треба так багато знань з невизначеного і певного інтегралу. Завдання «обчислити площу за допомогою певного інтегралу» завжди передбачає побудову кресленняТому набагато актуальнішим питанням будуть ваші знання та навички побудови креслень. У зв'язку з цим корисно освіжити в пам'яті графіки основних елементарних функцій, а, як мінімум, вміти будувати пряму, параболу та гіперболу. Зробити це можна (багатьом – потрібно) за допомогою методичного матеріалута статті про геометричні перетворення графіків.

Власне, із завданням знаходження площі за допомогою певного інтеграла всі знайомі ще зі школи, і ми мало підемо вперед від шкільної програми. Цієї статті взагалі могло б і не бути, але справа в тому, що завдання зустрічається в 99 випадків зі 100, коли студент страждає від ненависної вежі із захопленням освоює курс вищої математики.

Матеріали даного практикуму викладено легко, докладно і з мінімумом теорії.

Почнемо з криволінійної трапеції.

Криволінійною трапецієюназивається плоска фігура, обмежена віссю , прямими і графіком безперервної на відрізку функції , яка не змінює знак на цьому проміжку. Нехай ця фігура розташована не нижчеосі абсцис:

Тоді площа криволінійної трапеції чисельно дорівнює певному інтегралу. Будь-який певний інтеграл (який існує) має дуже хороший геометричний зміст. На уроці Певний інтеграл. Приклади рішенья говорив, що певний інтеграл це число. А зараз настав час констатувати ще один корисний факт. З погляду геометрії певний інтеграл – це ПЛОЩА.

Тобто, певному інтегралу (якщо він існує) геометрично відповідає площа деякої фігури. Наприклад, розглянемо певний інтеграл. Підінтегральна функція задає на площині криву, що знаходиться вище за осі (бажаючі можуть виконати креслення), а сам певний інтеграл чисельно дорівнює площі відповідної криволінійної трапеції.

Приклад 1

Це типове формулювання завдання. Перший та найважливіший момент рішення – побудова креслення. Причому креслення необхідно побудувати ПРАВИЛЬНО.

При побудові креслення я рекомендую наступний порядок: спочаткукраще побудувати всі прямі (якщо вони є) і тільки потім– параболи, гіперболи, графіки інших функцій. Графіки функцій вигідніше будувати крапково, з технікою поточкової побудови можна ознайомитись у довідковому матеріалі Графіки та властивості елементарних функцій. Там же можна знайти дуже корисний стосовно нашого уроку матеріал – як швидко побудувати параболу.

У цій задачі рішення може виглядати так.
Виконаємо креслення (зверніть увагу, що рівняння задає вісь):


Штрихувати криволінійну трапецію я не буду, тут очевидно, про яку площу йдеться. Рішення продовжується так:

На відрізку графік функції розташований над віссютому:

Відповідь:

У кого виникли труднощі з обчисленням певного інтегралу та застосуванням формули Ньютона-Лейбніца , зверніться до лекції Певний інтеграл. Приклади рішень.

Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У цьому випадку «на вічко» підраховуємо кількість клітин у кресленні – ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшов, скажімо, відповідь: 20 квадратних одиниць, то, очевидно, що десь припущена помилка - у розглянуту фігуру 20 клітинок явно не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 2

Обчислити площу фігури, обмеженою лініями , , та віссю

Це приклад самостійного рішення. Повне рішення та відповідь наприкінці уроку.

Що робити, якщо криволінійна трапеція розташована під віссю?

Приклад 3

Обчислити площу фігури, обмеженою лініями і координатними осями.

Рішення: Виконаємо креслення:

Якщо криволінійна трапеція розташована під віссю(або, принаймні, не вищецієї осі), то її площу можна знайти за формулою:
В даному випадку:

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями , .

Рішення: Спочатку потрібно виконати креслення Загалом кажучи, при побудові креслення у завданнях на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи та прямий. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Значить, нижня межа інтегрування, верхня межа інтегрування.
Цим способом краще, наскільки можна, не користуватися.

Набагато вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Техніка поточкової побудови для різних графіків детально розглянута у довідці Графіки та властивості елементарних функцій. Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). І такий приклад ми теж розглянемо.

Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

Повторюся, що за поточечному побудові межі інтегрування найчастіше з'ясовуються «автоматом».

А тепер робоча формула: Якщо на відрізку деяка безперервна функція більше або дорівнюєдеякої безперервної функції , то площа фігури, обмеженої графіками даних функцій і прямими , можна знайти за формулою:

Тут уже не треба думати, де розташована постать - над віссю або під віссю, і, грубо кажучи, важливо, який графік Вище(щодо іншого графіка), а який – НИЖЧЕ.

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому необхідно відняти

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою зверху і прямою знизу.
На відрізку , за відповідною формулою:

Відповідь:

Насправді шкільна формула для площі криволінійної трапеції у нижній напівплощині (див. простенький приклад №3) – окремий випадок формули . Оскільки вісь задається рівнянням, а графік функції розташований не вищеосі , то

А зараз пара прикладів для самостійного вирішення

Приклад 5

Приклад 6

Знайти площу фігури, обмеженою лініями , .

У ході вирішення завдань на обчислення площі за допомогою певного інтеграла іноді трапляється кумедний казус. Креслення виконано правильно, розрахунки – правильно, але через неуважність… знайдено площу не тієї фігури, саме так кілька разів лажався ваш покірний слуга. Ось реальний випадокіз життя:

Приклад 7

Обчислити площу фігури, обмеженою лініями , , , .

Рішення: Спочатку виконаємо креслення:

…Ех, креслення хрінонький вийшов, але начебто все розбірливо.

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором(Уважно дивіться на умову – чим обмежена фігура!). Але на практиці через неуважність нерідко виникає «глюк», що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад корисний і тим, що в ньому площа фігури вважається за допомогою двох певних інтегралів. Дійсно:

1) На відрізку над віссю розташований графік прямий;

2) На відрізку над віссю розташований графік гіперболи.

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

Відповідь:

Переходимо ще до одного змістовного завдання.

Приклад 8

Обчислити площу фігури, обмеженою лініями ,
Представимо рівняння в «шкільному» вигляді і виконаємо поточковий креслення:

З креслення видно, що верхню межу ми «хороший»: .
Але чому дорівнює нижня межа?! Зрозуміло, що це ціле число, але яке? Можливо? Але де гарантія, що креслення виконано з ідеальною точністю, цілком може виявитися . Або корінь. А якщо ми взагалі неправильно збудували графік?

У таких випадках доводиться витрачати додатковий час та уточнювати межі інтегрування аналітично.

Знайдемо точки перетину прямої та параболи.
Для цього розв'язуємо рівняння:


,

Справді, .

Подальше рішення тривіально, головне, не заплутатися у підстановках та знаках, обчислення тут не найпростіші.

На відрізку , за відповідною формулою:

Відповідь:

Ну, і на закінчення уроку, розглянемо два завдання складніше.

Приклад 9

Обчислити площу фігури, обмеженою лініями , ,

Рішення: Зобразимо цю фігуру на кресленні

Блін, забув графік підписати, а переробляти картинку, вибачте, не хоче. Чи не креслярський, коротше, сьогодні день =)

Для поточкового побудови необхідно знати зовнішній вигляд синусоїди (і взагалі корисно знати графіки всіх елементарних функцій), а також деякі значення синуса, їх можна знайти в тригонометричної таблиці. У ряді випадків (як у цьому) допускається побудова схематичного креслення, на якому принципово правильно повинні бути відображені графіки та межі інтегрування.

З межами інтегрування тут проблем немає, вони випливають з умови: – «ікс» змінюється від нуля до «пі». Оформлюємо подальше рішення:

На відрізку графік функції розташований над віссю, тому: