0 tabanına eşit logaritma nedir. Logaritmanın tanımı ve özellikleri: teori ve problem çözümü

Logaritmik İfadeler, örnekleri çözme. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Durum Sınavına gelince, denklemleri çözerken logaritma kullanılır. uygulamalı problemler, ayrıca fonksiyonların incelenmesiyle ilgili görevlerde.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Ürünün logaritması toplamına eşit Faktörlerin logaritmaları.

* * *

*Bir bölümün (kesir) logaritması, faktörlerin logaritmaları arasındaki farka eşittir.

* * *

* Derecenin logaritması ürüne eşitüssünün logaritmasına göre üs.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Öz bu mülkün payı paydaya ve tersini aktarırken üssün işaretinin tersine değişmesi gerçeğinde yatmaktadır. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan ihtiyaç duyulan şey iyi uygulama, bu da belli bir beceri kazandırır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmediyse, basit görevleri çözerken kolayca hata yapabilirsiniz.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların ne kadar “çirkin” çözüldüğünü mutlaka göstereceğim; bunlar Birleşik Devlet Sınavında görünmeyecek ama ilgi çekici, kaçırmayın!

Hepsi bu! Size iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Siteye başvuru yaptığınızda adınız, telefon numaranız, adresiniz gibi çeşitli bilgileri toplayabiliriz. e-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Tarafımızca toplandı kişisel bilgiler sizinle iletişim kurmamıza ve sizi bilgilendirmemize olanak tanır benzersiz teklifler, promosyonlar ve diğer etkinlikler ve yaklaşan etkinlikler.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri ayrıca denetim, veri analizi ve çeşitli çalışmalar sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak için.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde kanuna uygun olarak, adli prosedür, V duruşma ve/veya genel taleplere veya taleplere dayalı olarak devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Daha basit bir şekilde açıklayalım. Örneğin, \(\log_(2)(8)\) güce eşit\(8\) elde etmek için \(2\)'nin yükseltilmesi gerekir. Bundan \(\log_(2)(8)=3\) olduğu açıktır.

Örnekler:

\(\log_(5)(25)=2\)

Çünkü \(5^(2)=25\)

\(\log_(3)(81)=4\)

Çünkü \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

Çünkü \(2^(-5)=\)\(\frac(1)(32)\)

Argüman ve logaritmanın tabanı

Herhangi bir logaritma aşağıdaki “anatomiye” sahiptir:

Bir logaritmanın argümanı genellikle kendi düzeyinde yazılır ve tabanı, logaritma işaretine daha yakın bir alt simgeyle yazılır. Ve bu girdi şu şekilde okunur: "Yirmi beşin beş tabanına göre logaritması."

Logaritma nasıl hesaplanır?

Logaritmayı hesaplamak için şu soruyu yanıtlamanız gerekir: Tartışmayı elde etmek için taban hangi güce yükseltilmelidir?

Örneğin, logaritmayı hesaplayın: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) \(16\) elde etmek için \(4\) hangi kuvvete yükseltilmelidir? Açıkçası ikincisi. Bu yüzden:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(1\) elde etmek için \(\sqrt(5)\) hangi kuvvete yükseltilmelidir? Hangi güç herhangi bir numarayı bir numara yapar? Elbette sıfır!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) elde etmek için \(\sqrt(7)\) hangi kuvvete yükseltilmelidir? Öncelikle herhangi bir sayının birinci kuvveti kendisine eşittir.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(\sqrt(3)\) elde etmek için \(3\) hangi kuvvete yükseltilmelidir? Ne olduğunu bildiğimizden kesirli güç ve bu şu anlama geliyor karekök\(\frac(1)(2)\)'nin kuvvetidir.

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Örnek : Logaritmayı hesaplayın \(\log_(4\sqrt(2))(8)\)

Çözüm :

\(\log_(4\sqrt(2))(8)=x\)

Logaritmanın değerini bulmamız gerekiyor, x olarak gösterelim. Şimdi logaritmanın tanımını kullanalım:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

\(4\sqrt(2)\) ile \(8\)'i birbirine bağlayan şey nedir? İki, çünkü her iki sayı da ikişer sayıyla temsil edilebilir:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Sol tarafta derecenin özelliklerini kullanıyoruz: \(a^(m)\cdot a^(n)=a^(m+n)\) ve \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Bazlar eşit, göstergelerin eşitliğine geçiyoruz

\(\frac(5x)(2)\) \(=3\)


Denklemin her iki tarafını \(\frac(2)(5)\) ile çarpın


Ortaya çıkan kök logaritmanın değeridir

Cevap : \(\log_(4\sqrt(2))(8)=1,2\)

Logaritma neden icat edildi?

Bunu anlamak için denklemi çözelim: \(3^(x)=9\). Denklemin çalışması için \(x\) ile eşleşmeniz yeterli. Elbette \(x=2\).

Şimdi denklemi çözün: \(3^(x)=8\).Neden x'e eşit? Önemli olan bu.

En akıllıları şunu söyleyecektir: "X ikiden biraz küçüktür." Bu sayı tam olarak nasıl yazılır? Bu soruyu cevaplamak için logaritma icat edildi. Onun sayesinde buradaki cevap \(x=\log_(3)(8)\) şeklinde yazılabilir.

Şunu vurgulamak istiyorum: \(\log_(3)(8)\), mesela herhangi bir logaritma sadece bir sayıdır. Evet, sıradışı görünüyor ama kısa. Çünkü eğer bunu forma yazmak isteseydik ondalık olsaydı şu şekilde görünürdü: \(1.892789260714.....\)

Örnek : \(4^(5x-4)=10\) denklemini çözün

Çözüm :

\(4^(5x-4)=10\)

\(4^(5x-4)\) ve \(10\) aynı tabana getirilemez. Bu, logaritma olmadan yapamayacağınız anlamına gelir.

Logaritmanın tanımını kullanalım:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Denklemi X solda olacak şekilde çevirelim

\(5x-4=\log_(4)(10)\)

Bizden önce. \(4\)'ü sağa taşıyalım.

Logaritmadan korkmayın, ona sıradan bir sayı gibi davranın.

\(5x=\log_(4)(10)+4\)

Denklemi 5'e bölün

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Bu bizim kökümüzdür. Evet, alışılmadık görünüyor ama cevabı seçmiyorlar.

Cevap : \(\frac(\log_(4)(10)+4)(5)\)

Ondalık ve doğal logaritmalar

Logaritmanın tanımında belirtildiği gibi tabanı herhangi bir olabilir. pozitif sayı, \((a>0, a\neq1)\) birimi hariç. Ve tüm olası tabanlar arasında, o kadar sık ​​karşılaşılan iki taban var ki, bunlarla logaritmalar için özel bir kısa notasyon icat edildi:

Doğal logaritma: tabanı Euler sayısı \(e\) (yaklaşık olarak \(2,7182818…\)'ye eşit) olan ve logaritma \(\ln(a)\) olarak yazılan bir logaritma.

Yani, \(\ln(a)\) \(\log_(e)(a)\) ile aynıdır

Ondalık Logaritma: Tabanı 10 olan logaritma \(\lg(a)\) olarak yazılır.

Yani, \(\lg(a)\) \(\log_(10)(a)\) ile aynıdır, burada \(a\) bir sayıdır.

Temel logaritmik kimlik

Logaritmaların birçok özelliği vardır. Bunlardan birine “Temel Logaritmik Kimlik” denir ve şuna benzer:

\(a^(\log_(a)(c))=c\)

Bu özellik doğrudan tanımdan kaynaklanmaktadır. Bu formülün tam olarak nasıl ortaya çıktığını görelim.

Logaritmanın tanımına ilişkin kısa bir notasyonu hatırlayalım:

eğer \(a^(b)=c\), o zaman \(\log_(a)(c)=b\)

Yani \(b\), \(\log_(a)(c)\) ile aynıdır. Daha sonra \(a^(b)=c\) formülünde \(b\) yerine \(\log_(a)(c)\) yazabiliriz. Ana logaritmik kimlik olan \(a^(\log_(a)(c))=c\) ortaya çıktı.

Logaritmanın diğer özelliklerini bulabilirsiniz. Onların yardımıyla, doğrudan hesaplanması zor olan ifadelerin değerlerini logaritmalarla basitleştirebilir ve hesaplayabilirsiniz.

Örnek : \(36^(\log_(6)(5))\) ifadesinin değerini bulun

Çözüm :

Cevap : \(25\)

Bir sayı logaritma olarak nasıl yazılır?

Yukarıda belirtildiği gibi, herhangi bir logaritma yalnızca bir sayıdır. Bunun tersi de doğrudur: Herhangi bir sayı logaritma olarak yazılabilir. Örneğin, \(\log_(2)(4)\)'un ikiye eşit olduğunu biliyoruz. Daha sonra iki yerine \(\log_(2)(4)\) yazabilirsiniz.

Ancak \(\log_(3)(9)\) aynı zamanda \(2\)'ye eşittir, bu da \(2=\log_(3)(9)\) yazabileceğimiz anlamına gelir. Aynı şekilde \(\log_(5)(25)\) ve \(\log_(9)(81)\), vb. ile. Yani ortaya çıkıyor

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Dolayısıyla, eğer ihtiyaç duyarsak, ikiyi herhangi bir yerde herhangi bir tabanla logaritma olarak yazabiliriz (bir denklemde, bir ifadede veya bir eşitsizlikte) - sadece tabanın karesini argüman olarak yazabiliriz.

Üçlü için de durum aynıdır; \(\log_(2)(8)\), \(\log_(3)(27)\) veya \(\log_(4)() olarak yazılabilir. 64) \)... Burada küpteki tabanı argüman olarak yazıyoruz:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Ve dört ile:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Ve eksi bir ile:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

Ve üçte biriyle:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Herhangi bir \(a\) sayısı \(b\) tabanına sahip bir logaritma olarak temsil edilebilir: \(a=\log_(b)(b^(a))\)

Örnek : İfadenin anlamını bulun \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Çözüm :

Cevap : \(1\)

Bir sayının logaritması N dayalı A üs denir X oluşturmanız gereken A numarayı almak için N

Şartıyla
,
,

Logaritmanın tanımından şu sonuç çıkıyor
, yani
- bu eşitlik temeldir logaritmik özdeşlik.

10 tabanına dayalı logaritmalara ondalık logaritma denir. Yerine
yazmak
.

Tabana göre logaritmalar e doğal olarak adlandırılır ve belirlenir
.

Logaritmanın temel özellikleri.

    Birin logaritması herhangi bir taban için sıfıra eşittir.

    Ürünün logaritması, faktörlerin logaritmasının toplamına eşittir.

3) Bölümün logaritması logaritmaların farkına eşittir


Faktör
logaritmalardan tabana geçiş modülü denir A tabandaki logaritmalara B .

2-5 arasındaki özellikleri kullanarak, karmaşık bir ifadenin logaritmasını logaritmalar üzerinde yapılan basit aritmetik işlemlerin sonucuna indirgemek genellikle mümkündür.

Örneğin,

Bir logaritmanın bu tür dönüşümlerine logaritma denir. Logaritmanın tersi olan dönüşümlere potansiyasyon denir.

Bölüm 2. Yüksek matematiğin unsurları.

1. Sınırlar

Fonksiyonun sınırı
sonlu bir sayıdır A eğer xx 0 önceden belirlenmiş her biri için
öyle bir sayı var ki
en kısa sürede
, O
.

Limiti olan bir fonksiyon ondan sonsuz küçük bir miktarda farklılık gösterir:
, nerede- b.m.v., yani.
.

Örnek. İşlevi düşünün
.

Çabalarken
, işlev sen sıfıra doğru eğilim gösterir:

1.1. Limitlerle ilgili temel teoremler.

    Sınır sabit değer bu sabit değere eşit

.

    Tutar (fark) limiti sonlu sayı fonksiyonlar bu fonksiyonların limitlerinin toplamına (farkına) eşittir.

    Sonlu sayıda fonksiyonun çarpımının limiti, bu fonksiyonların limitlerinin çarpımına eşittir.

    Paydanın limiti sıfır değilse, iki fonksiyonun bölümünün limiti, bu fonksiyonların limitlerinin bölümüne eşittir.

Harika Sınırlar

,
, Nerede

1.2. Limit Hesaplama Örnekleri

Ancak tüm limitler bu kadar kolay hesaplanmıyor. Çoğu zaman, limitin hesaplanması şu türden bir belirsizliğin ortaya çıkarılmasına indirgenir: veya .

.

2. Bir fonksiyonun türevi

Bir fonksiyonumuz olsun
, segmentte sürekli
.

Argüman biraz artış var
. Daha sonra fonksiyon bir artış alacaktır
.

Bağımsız değişken değeri fonksiyon değerine karşılık gelir
.

Bağımsız değişken değeri
fonksiyon değerine karşılık gelir.

Buradan, .

Bu oranın limitini bulalım.
. Eğer bu limit mevcutsa buna verilen fonksiyonun türevi denir.

Tanım 3 Verilen bir fonksiyonun türevi
argümanla argümanın artışı keyfi olarak sıfıra yaklaştığında, bir fonksiyonun artışının argümanın artışına oranının limiti denir.

Bir fonksiyonun türevi
aşağıdaki gibi belirlenebilir:

; ; ; .

Tanım 4Bir fonksiyonun türevini bulma işlemine denir farklılaşma.

2.1. Türevin mekanik anlamı.

Katı bir cismin ya da maddesel bir noktanın doğrusal hareketini ele alalım.

Zamanın bir noktasında izin ver hareket noktası
uzaktaydı başlangıç ​​pozisyonundan
.

Bir süre sonra
mesafe kat etti
. Davranış =- ortalama hız maddi nokta
. Bunu dikkate alarak bu oranın limitini bulalım.
.

Bu nedenle tanım anlık hız Maddi bir noktanın hareketi yolun zamana göre türevinin bulunmasına bağlıdır.

2.2. Geometrik anlam türev

Grafiksel olarak tanımlanmış bir fonksiyonumuz olsun
.

Pirinç. 1. Türevin geometrik anlamı

Eğer
, sonra işaret et
, noktaya yaklaşarak eğri boyunca hareket edecek
.

Buradan
, yani argümanın belirli bir değeri için türevin değeri Belirli bir noktada tanjantın eksenin pozitif yönü ile oluşturduğu açının tanjantına sayısal olarak eşittir
.

2.3. Temel farklılaşma formülleri tablosu.

Güç fonksiyonu

Üstel fonksiyon

Logaritmik fonksiyon

Trigonometrik fonksiyon

Ters trigonometrik fonksiyon

2.4. Farklılaşma kuralları.

Türevi

Fonksiyonların toplamının (farkının) türevi


İki fonksiyonun çarpımının türevi


İki fonksiyonun bölümünün türevi


2.5. Türevi karmaşık fonksiyon.

Fonksiyon verilsin
şeklinde temsil edilebilecek şekilde

Ve
değişken burada o zaman bir ara argümandır

Karmaşık bir fonksiyonun türevi, verilen fonksiyonun ara argümana göre türevi ile ara argümanın x'e göre türevinin çarpımına eşittir.

Örnek 1.

Örnek 2.

3. Diferansiyel fonksiyon.

Olsun
, belirli bir aralıkta türevlenebilir
ve izin ver en bu fonksiyonun bir türevi var

,

o zaman yazabiliriz

(1),

Nerede - sonsuz küçük bir miktar,

ne zamandan beri

Tüm eşitlik koşullarını (1) ile çarpmak
sahibiz:

Nerede
- b.m.v. daha yüksek sipariş.

Büyüklük
fonksiyonun diferansiyeli denir
ve belirlenmiş

.

3.1. Diferansiyelin geometrik değeri.

Fonksiyon verilsin
.

Şekil 2. Diferansiyelin geometrik anlamı.

.

Açıkçası, fonksiyonun diferansiyeli
belirli bir noktadaki teğetin koordinatındaki artışa eşittir.

3.2. Çeşitli mertebelerden türevler ve diferansiyeller.

eğer varsa
, Daha sonra
birinci türev denir.

Birinci türevin türevine ikinci dereceden türev denir ve şöyle yazılır:
.

Fonksiyonun n'inci dereceden türevi
(n-1)'inci dereceden türev olarak adlandırılır ve şöyle yazılır:

.

Bir fonksiyonun diferansiyelinin diferansiyeline ikinci diferansiyel veya ikinci derece diferansiyel denir.

.

.

3.3 Biyolojik problemlerin farklılaşmayı kullanarak çözülmesi.

Görev 1. Çalışmalar, bir mikroorganizma kolonisinin büyümesinin yasalara uygun olduğunu göstermiştir.
, Nerede N – mikroorganizmaların sayısı (bin olarak), T – zaman (günler).

b) Bu dönemde koloninin nüfusu artacak mı yoksa azalacak mı?

Cevap. Koloninin boyutu artacaktır.

Görev 2. Göldeki su, patojen bakterilerin içeriğini izlemek için periyodik olarak test edilir. Başından sonuna kadar T testten birkaç gün sonra bakteri konsantrasyonu şu orana göre belirlenir:

.

Gölde ne zaman minimum bakteri konsantrasyonu olacak ve içinde yüzmek mümkün olacak mı?

Çözüm: Bir fonksiyon, türevi sıfır olduğunda maksimum veya minimuma ulaşır.

,

Maksimum veya minimumun 6 gün sonra olacağını belirleyelim. Bunu yapmak için ikinci türevi alalım.


Cevap: 6 gün sonra minimum bakteri konsantrasyonu olacaktır.

(Yunanca λόγος - “kelime”, “ilişki” ve ἀριθμός - “sayı”) sayılar B dayalı A(log α B) böyle bir sayıya denir C, Ve B= bir c yani log α'yı kaydeder B=C Ve b=aC eşdeğerdir. Logaritma eğer a > 0, a ≠ 1, b > 0 ise anlamlıdır.

Başka bir deyişle logaritma sayılar B dayalı A bir sayının yükseltilmesi gereken bir üs olarak formüle edilmiştir A numarayı almak için B(logaritma yalnızca pozitif sayılar için mevcuttur).

Bu formülasyondan şu sonuç çıkar: x= log α hesaplaması B, a x =b denklemini çözmeye eşdeğerdir.

Örneğin:

log 2 8 = 3 çünkü 8 = 2 3.

Logaritmanın belirtilen formülasyonunun hemen belirlenmesini mümkün kıldığını vurgulayalım. logaritma değeri Logaritma işaretinin altındaki sayı tabanın belirli bir kuvveti gibi davrandığında. Aslında, logaritmanın formülasyonu şunu doğrulamayı mümkün kılar: b=a c, sonra sayının logaritması B dayalı A eşittir İle. Logaritma konusunun konuyla yakından ilgili olduğu da açıktır. bir sayının kuvvetleri.

Logaritmanın hesaplanmasına denir logaritma. Logaritma: matematiksel işlem logaritması alınır. Logaritma alırken faktörlerin çarpımları terim toplamlarına dönüştürülür.

Potansiyelleşme logaritmanın ters matematiksel işlemidir. Güçlendirme sırasında belirli bir baz, güçlendirmenin gerçekleştirileceği ifade derecesine yükseltilir. Bu durumda terimlerin toplamları faktörlerin çarpımına dönüştürülür.

2 tabanlı (ikili) gerçek logaritmalar oldukça sık kullanılır, e Euler sayısı e ≈ 2,718 ( doğal logaritma) ve 10 (ondalık).

Açık bu aşamada dikkate alınması tavsiye edilir logaritma örnekleri günlük 7 2 , içinde 5, lg0.0001.

Ve lg(-3), log -3 3.2, log -1 -4.3 girişleri mantıklı değil, çünkü ilkinde logaritma işaretinin altına negatif bir sayı yerleştiriliyor, ikincisinde - negatif sayı tabanda ve üçüncüde - hem logaritma işaretinin altındaki negatif bir sayı hem de tabandaki bir birim.

Logaritmayı belirleme koşulları.

Şunu elde ettiğimiz a > 0, a ≠ 1, b > 0 koşullarını ayrı ayrı dikkate almakta fayda var. logaritmanın tanımı. Bu kısıtlamaların neden alındığını düşünelim. x = log α formundaki eşitlik bu konuda bize yardımcı olacaktır. B Yukarıda verilen logaritmanın tanımından doğrudan çıkan temel logaritmik özdeşlik olarak adlandırılır.

Hadi durumu ele alalım a≠1. Bir üzeri herhangi bir kuvvet bire eşit olduğundan, x=log α eşitliği sağlanır. B yalnızca şu durumlarda var olabilir: b=1, ancak log 1 1 herhangi bir gerçek sayı olacaktır. Bu belirsizliği ortadan kaldırmak için şunları alırız: a≠1.

Durumun gerekliliğini kanıtlayalım a>0. Şu tarihte: a=0 logaritmanın formülasyonuna göre ancak şu durumlarda var olabilir: b=0. Ve buna göre o zaman günlük 0 0 sıfırın sıfır olmayan herhangi bir kuvveti sıfır olduğundan, sıfırdan farklı herhangi bir gerçek sayı olabilir. Bu belirsizlik şu koşulla ortadan kaldırılabilir: a≠0. Ve ne zaman A<0 Logaritmanın rasyonel ve irrasyonel değerlerinin analizini reddetmek zorunda kalacağız, çünkü rasyonel ve irrasyonel bir üste sahip bir derece yalnızca negatif olmayan bazlar için tanımlanır. Bu nedenle şart koşulmuştur. a>0.

VE son durum b>0 eşitsizlikten kaynaklanır a>0, çünkü x=log α B ve pozitif tabanlı derecenin değeri A her zaman olumlu.

Logaritmanın özellikleri.

Logaritmalar ayırt edici özelliklerle karakterize edilen özellikler Bu da özenli hesaplamaları önemli ölçüde kolaylaştırmak için yaygın kullanımlarına yol açtı. "Logaritmanın dünyasına" geçerken çarpma çok daha fazla dönüşüme uğrar kolay katlama, bölme çıkarmadır ve üs ve kök çıkarma sırasıyla üs tarafından çarpma ve bölmeye dönüştürülür.

Logaritmaların formülasyonu ve değerlerinin tablosu (için trigonometrik fonksiyonlar) ilk kez 1614 yılında İskoç matematikçi John Napier tarafından yayımlandı. Diğer bilim adamları tarafından genişletilen ve detaylandırılan logaritmik tablolar bilimsel ve mühendislik hesaplamalarında yaygın olarak kullanılmış ve elektronik hesap makineleri ve bilgisayarların kullanımına kadar geçerliliğini korumuştur.