สูตรสมการลดลง การหารวงเล็บด้วยตัวเลขและวงเล็บด้วยวงเล็บ

ในบทความนี้เราจะดูรายละเอียดเกี่ยวกับกฎพื้นฐานของกฎดังกล่าว หัวข้อสำคัญหลักสูตรคณิตศาสตร์ เช่น วงเล็บเปิด คุณจำเป็นต้องรู้กฎในการเปิดวงเล็บเพื่อที่จะแก้สมการที่ใช้ได้อย่างถูกต้อง

วิธีเปิดวงเล็บอย่างถูกต้องเมื่อเพิ่ม

ขยายวงเล็บที่นำหน้าด้วยเครื่องหมาย “+”

นี่เป็นกรณีที่ง่ายที่สุด เพราะหากมีเครื่องหมายเพิ่มเติมอยู่ด้านหน้าวงเล็บ ป้ายด้านในจะไม่เปลี่ยนแปลงเมื่อเปิดวงเล็บ ตัวอย่าง:

(9 + 3) + (1 - 6 + 9) = 9 + 3 + 1 - 6 + 9 = 16.

วิธีขยายวงเล็บที่นำหน้าด้วยเครื่องหมาย "-"

ใน ในกรณีนี้คุณต้องเขียนคำศัพท์ทั้งหมดใหม่โดยไม่มีวงเล็บ แต่ในขณะเดียวกันก็เปลี่ยนเครื่องหมายทั้งหมดที่อยู่ในนั้นให้เป็นเครื่องหมายตรงกันข้าม เครื่องหมายจะเปลี่ยนเฉพาะคำศัพท์ในวงเล็บที่นำหน้าด้วยเครื่องหมาย "-" เท่านั้น ตัวอย่าง:

(9 + 3) - (1 - 6 + 9) = 9 + 3 - 1 + 6 - 9 = 8.

วิธีการเปิดวงเล็บเมื่อทำการคูณ

ก่อนวงเล็บจะมีเลขตัวคูณอยู่

ในกรณีนี้ คุณต้องคูณแต่ละเทอมด้วยตัวประกอบและเปิดวงเล็บโดยไม่ต้องเปลี่ยนเครื่องหมาย หากตัวคูณมีเครื่องหมาย "-" แสดงว่าในระหว่างการคูณเครื่องหมายของเงื่อนไขจะกลับรายการ ตัวอย่าง:

3 * (1 - 6 + 9) = 3 * 1 - 3 * 6 + 3 * 9 = 3 - 18 + 27 = 12.

วิธีเปิดสองวงเล็บโดยมีเครื่องหมายคูณคั่นระหว่างกัน

ในกรณีนี้ คุณต้องคูณแต่ละเทอมจากวงเล็บแรกกับแต่ละเทอมจากวงเล็บที่สอง จากนั้นจึงบวกผลลัพธ์ ตัวอย่าง:

(9 + 3) * (1 - 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 - 54 + 81 + 3 - 18 + 27 = 48.

วิธีการเปิดวงเล็บในรูปสี่เหลี่ยมจัตุรัส

ถ้าผลรวมหรือผลต่างของสองเทอมถูกยกกำลังสอง ให้เปิดวงเล็บตามสูตรต่อไปนี้:

(x + y)^2 = x^2 + 2 * x * y + y^2

ในกรณีที่มีเครื่องหมายลบอยู่ในวงเล็บ สูตรจะไม่เปลี่ยนแปลง ตัวอย่าง:

(9 + 3) ^ 2 = 9 ^ 2 + 2 * 9 * 3 + 3 ^ 2 = 144.

วิธีขยายวงเล็บไปอีกระดับหนึ่ง

หากผลรวมหรือผลต่างของพจน์ถูกยกขึ้น เช่น ยกกำลัง 3 หรือ 4 คุณก็แค่ต้องแยกกำลังของวงเล็บออกเป็น "กำลังสอง" มีการเพิ่มกำลังของตัวประกอบที่เหมือนกัน และเมื่อทำการหาร กำลังของตัวหารจะถูกลบออกจากกำลังของเงินปันผล ตัวอย่าง:

(9 + 3) ^ 3 = ((9 + 3) ^ 2) * (9 + 3) = (9 ^ 2 + 2 * 9 * 3 + 3 ^ 2) * 12 = 1728.

วิธีเปิด 3 วงเล็บ

มีสมการที่คูณ 3 วงเล็บในคราวเดียว ในกรณีนี้ คุณต้องคูณเงื่อนไขของวงเล็บสองวงเล็บแรกเข้าด้วยกันก่อน แล้วจึงคูณผลรวมของการคูณนี้ด้วยเงื่อนไขของวงเล็บที่สาม ตัวอย่าง:

(1 + 2) * (3 + 4) * (5 - 6) = (3 + 4 + 6 + 8) * (5 - 6) = - 21.

กฎสำหรับวงเล็บเปิดเหล่านี้ใช้ได้กับการแก้สมการเชิงเส้นและตรีโกณมิติอย่างเท่าเทียมกัน

วงเล็บขยายเป็นการแปลงนิพจน์ประเภทหนึ่ง ในส่วนนี้เราจะอธิบายกฎสำหรับการเปิดวงเล็บและดูตัวอย่างปัญหาที่พบบ่อยที่สุด

ยานเดกซ์ RTB R-A-339285-1

วงเล็บเปิดคืออะไร?

วงเล็บใช้เพื่อระบุลำดับการดำเนินการในนิพจน์ตัวเลข ตัวอักษร และตัวแปร สะดวกในการย้ายจากนิพจน์ที่มีวงเล็บไปเป็นแบบเดียวกัน เท่ากับการแสดงออกไม่มีวงเล็บ ตัวอย่างเช่น แทนที่นิพจน์ 2 · (3 + 4) ด้วยนิพจน์ของแบบฟอร์ม 2 3 + 2 4ไม่มีวงเล็บ เทคนิคนี้เรียกว่าวงเล็บเปิด

คำจำกัดความ 1

วงเล็บขยายหมายถึงเทคนิคในการกำจัดวงเล็บ และมักจะพิจารณาเกี่ยวกับสำนวนที่อาจมี:

  • เครื่องหมาย “+” หรือ “-” หน้าวงเล็บที่มีผลรวมหรือผลต่าง
  • ผลคูณของตัวเลข ตัวอักษร หรือตัวอักษรหลายตัว และผลรวมหรือผลต่างซึ่งอยู่ในวงเล็บ

นี่คือวิธีที่เราใช้ในการพิจารณากระบวนการเปิดวงเล็บในหลักสูตร หลักสูตรของโรงเรียน- อย่างไรก็ตาม ไม่มีใครหยุดเราไม่ให้มองการกระทำนี้ในวงกว้างกว่านี้ เราสามารถเรียกวงเล็บเปิดการเปลี่ยนจากนิพจน์ที่มีจำนวนลบในวงเล็บไปเป็นนิพจน์ที่ไม่มีวงเล็บ ตัวอย่างเช่น เราสามารถไปจาก 5 + (− 3) − (− 7) ไปเป็น 5 − 3 + 7 อันที่จริงแล้ว นี่เป็นการเปิดวงเล็บด้วย

ในทำนองเดียวกัน เราสามารถแทนที่ผลคูณของนิพจน์ในวงเล็บรูปแบบ (a + b) · (c + d) ด้วยผลรวม a · c + a · d + b · c + b · d เทคนิคนี้ไม่ขัดแย้งกับความหมายของวงเล็บเปิด

นี่เป็นอีกตัวอย่างหนึ่ง เราสามารถสรุปได้ว่านิพจน์ใดๆ สามารถใช้แทนตัวเลขและตัวแปรในนิพจน์ได้ ตัวอย่างเช่น นิพจน์ x 2 · 1 a - x + sin (b) จะสอดคล้องกับนิพจน์ที่ไม่มีวงเล็บในรูปแบบ x 2 · 1 a - x 2 · x + x 2 · sin (b)

อีกประเด็นหนึ่งสมควรได้รับความสนใจเป็นพิเศษซึ่งเกี่ยวข้องกับลักษณะเฉพาะของการตัดสินใจในการบันทึกเมื่อเปิดวงเล็บ เราสามารถเขียนนิพจน์เริ่มต้นด้วยวงเล็บและผลลัพธ์ที่ได้รับหลังจากเปิดวงเล็บด้วยความเท่าเทียมกัน เช่น หลังจากขยายวงเล็บแทนนิพจน์ 3 − (5 − 7) เราได้รับการแสดงออก 3 − 5 + 7 . เราสามารถเขียนพจน์ทั้งสองนี้เป็นความเท่าเทียมกันได้ 3 − (5 − 7) = 3 − 5 + 7

การดำเนินการกับนิพจน์ที่ยุ่งยากอาจต้องมีการบันทึกผลลัพธ์ระดับกลาง จากนั้นสารละลายจะมีรูปแบบเป็นลูกโซ่แห่งความเท่าเทียมกัน ตัวอย่างเช่น, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 หรือ 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

กฎการเปิดวงเล็บตัวอย่าง

เรามาเริ่มดูกฎการเปิดวงเล็บกันดีกว่า

สำหรับเลขเดี่ยวในวงเล็บ

ตัวเลขติดลบในวงเล็บมักพบในนิพจน์ ตัวอย่างเช่น (− 4) และ 3 + (− 4) ตัวเลขบวกในวงเล็บก็มีตำแหน่งเช่นกัน

ให้เรากำหนดกฎสำหรับการเปิดวงเล็บที่มีจำนวนบวกเพียงตัวเดียว สมมติว่า a เป็นจำนวนบวกใดๆ จากนั้นเราสามารถแทนที่ (a) ด้วย a, + (a) ด้วย + a, - (a) ด้วย –a ถ้าแทนเราเอา หมายเลขเฉพาะจากนั้นตามกฎ: ตัวเลข (5) จะถูกเขียนเป็น 5 นิพจน์ 3 + (5) ที่ไม่มีวงเล็บจะอยู่ในรูปแบบ 3 + 5 เนื่องจาก + (5) ถูกแทนที่ด้วย + 5 และนิพจน์ 3 + (− 5) เทียบเท่ากับนิพจน์ 3 − 5 , เพราะ + (− 5) ถูกแทนที่ด้วย − 5 .

โดยปกติแล้วตัวเลขบวกจะเขียนโดยไม่ใช้วงเล็บ เนื่องจากในกรณีนี้ไม่จำเป็นต้องใช้วงเล็บ

ตอนนี้ให้พิจารณากฎสำหรับการเปิดวงเล็บที่มีวงเล็บเดียว จำนวนลบ. + (- ก)เราแทนที่ด้วย − ก, − (− a) ถูกแทนที่ด้วย + a หากนิพจน์เริ่มต้นด้วยจำนวนลบ (-ก)ซึ่งเขียนอยู่ในวงเล็บ จากนั้นจึงละเว้นวงเล็บเหลี่ยมแทน (-ก)ยังคงอยู่ − ก.

นี่คือตัวอย่างบางส่วน: (− 5) สามารถเขียนเป็น − 5, (− 3) + 0, 5 กลายเป็น − 3 + 0, 5, 4 + (− 3) กลายเป็น 4 − 3 และ − (− 4) − (− 3) หลังจากเปิดวงเล็บจะมีรูปแบบ 4 + 3 เนื่องจาก − (− 4) และ − (− 3) ถูกแทนที่ด้วย + 4 และ + 3

ควรเข้าใจว่านิพจน์ 3 · (- 5) ไม่สามารถเขียนเป็น 3 · − 5 ได้ เกี่ยวกับมัน เราจะคุยกันในย่อหน้าต่อไปนี้

เรามาดูกันว่ากฎสำหรับการเปิดวงเล็บนั้นมีพื้นฐานมาจากอะไร

ตามกฎแล้ว ความแตกต่าง a − b เท่ากับ a + (− b) จากคุณสมบัติของการกระทำกับตัวเลข เราสามารถสร้างห่วงโซ่แห่งความเท่าเทียมกันได้ (a + (− b)) + b = a + ((− b) + b) = a + 0 = aซึ่งจะยุติธรรม ห่วงโซ่แห่งความเท่าเทียมกันนี้พิสูจน์ได้ว่านิพจน์ a + (- b) มีความแตกต่าง ก - ข.

ขึ้นอยู่กับคุณสมบัติ ตัวเลขตรงข้ามและกฎสำหรับการลบจำนวนลบ เราสามารถระบุได้ว่า − (− a) = a, a − (− b) = a + b

มีนิพจน์ที่ประกอบด้วยตัวเลข เครื่องหมายลบ และวงเล็บหลายคู่ การใช้กฎข้างต้นช่วยให้คุณสามารถกำจัดวงเล็บเหลี่ยมตามลำดับโดยย้ายจากวงเล็บด้านในไปด้านนอกหรือด้านใน ทิศทางย้อนกลับ- ตัวอย่างของการแสดงออกดังกล่าวจะเป็น − (− ((− (5)))) มาเปิดวงเล็บโดยย้ายจากภายในสู่ภายนอก: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 ตัวอย่างนี้สามารถวิเคราะห์ไปในทิศทางตรงกันข้ามได้: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

ภายใต้ และ b สามารถเข้าใจได้ไม่เพียง แต่เป็นตัวเลขเท่านั้น แต่ยังเป็นตัวเลขโดยพลการหรือด้วย การแสดงออกตามตัวอักษรโดยมีเครื่องหมาย "+" อยู่ข้างหน้า ซึ่งไม่ใช่ผลรวมหรือส่วนต่าง ในกรณีทั้งหมดนี้ คุณสามารถใช้กฎในลักษณะเดียวกับที่เราทำกับตัวเลขเดี่ยวในวงเล็บได้

ตัวอย่างเช่น หลังจากเปิดวงเล็บแล้วนิพจน์ − (− 2 x) − (x 2) + (− 1 x) − (2 x y 2: z)จะอยู่ในรูปแบบ 2 · x − x 2 − 1 x − 2 · x · y 2: z เราทำมันได้อย่างไร? เรารู้ว่า − (− 2 x) คือ + 2 x และเนื่องจากนิพจน์นี้มาก่อน ดังนั้น + 2 x จึงสามารถเขียนเป็น 2 x ได้ − (x 2) = − x 2, + (− 1 x) = − 1 x และ − (2 x y 2: z) = − 2 x y 2: z.

ในผลคูณของตัวเลขสองตัว

เริ่มจากกฎในการเปิดวงเล็บในผลคูณของตัวเลขสองตัวกันก่อน

สมมุติว่า และ b คือสอง ตัวเลขบวก- ในกรณีนี้เป็นผลคูณของจำนวนลบสองตัว − กและ − b ของรูปแบบ (− a) · (− b) เราสามารถแทนที่ด้วย (a · b) และผลิตภัณฑ์ของตัวเลขสองตัวด้วย สัญญาณตรงกันข้ามของรูปแบบ (− a) · b และ a · (− b) แทนที่ด้วย (- ก ข)- การคูณลบด้วยลบจะได้ค่าบวก และการคูณลบด้วยค่าบวก เช่น การคูณบวกด้วยลบจะได้ค่าลบ

ความถูกต้องของส่วนแรกของกฎการเขียนได้รับการยืนยันโดยกฎสำหรับการคูณจำนวนลบ เพื่อยืนยันส่วนที่สองของกฎ เราสามารถใช้กฎสำหรับการคูณตัวเลขด้วย สัญญาณที่แตกต่างกัน.

ลองดูตัวอย่างบางส่วน

ตัวอย่างที่ 1

ลองพิจารณาอัลกอริทึมสำหรับการเปิดวงเล็บในผลคูณของจำนวนลบสองตัว - 4 3 5 และ - 2 ในรูปแบบ (- 2) · - 4 3 5 เมื่อต้องการทำเช่นนี้ ให้แทนที่นิพจน์เดิมด้วย 2 · 4 3 5 เปิดวงเล็บแล้วได้ 2 · 4 3 5 .

และถ้าเราหาผลหารของจำนวนลบ (- 4) : (- 2) รายการหลังจากเปิดวงเล็บจะมีลักษณะเป็น 4: 2

แทนที่จำนวนลบ − กและ − b อาจเป็นนิพจน์ใดๆ ที่มีเครื่องหมายลบอยู่ข้างหน้าซึ่งไม่ใช่ผลรวมหรือผลต่าง ตัวอย่างเช่น สิ่งเหล่านี้อาจเป็นผลคูณ ผลหาร เศษส่วน กำลัง ราก ลอการิทึม ฟังก์ชันตรีโกณมิติและอื่น ๆ

ลองเปิดวงเล็บในนิพจน์ - 3 · x x 2 + 1 · x · (- ln 5) . ตามกฎแล้ว เราสามารถแปลงค่าได้ดังต่อไปนี้: - 3 x x 2 + 1 x (- ln 5) = - 3 x x 2 + 1 x ln 5 = 3 x x 2 + 1 x ln 5

การแสดงออก (- 3) 2สามารถแปลงเป็นนิพจน์ได้ (− 3 2) หลังจากนั้นคุณสามารถขยายวงเล็บได้: − 3 2.

2 3 · - 4 5 = - 2 3 · 4 5 = - 2 3 · 4 5

การหารตัวเลขด้วยเครื่องหมายต่างกันอาจต้องมีการขยายวงเล็บเบื้องต้นด้วย: (− 5) : 2 = (− 5: 2) = − 5: 2 และ 2 3 4: (- 3, 5) = - 2 3 4: 3, 5 = - 2 3 4: 3, 5

กฎนี้สามารถใช้ในการคูณและหารนิพจน์ที่มีเครื่องหมายต่างกันได้ ลองยกตัวอย่างสองตัวอย่าง

1 x + 1: x - 3 = - 1 x + 1: x - 3 = - 1 x + 1: x - 3

บาป (x) (- x 2) = (- บาป (x) x 2) = - บาป (x) x 2

ในผลคูณของตัวเลขสามตัวขึ้นไป

มาดูผลิตภัณฑ์และผลหารที่มี ปริมาณมากตัวเลข หากต้องการขยายวงเล็บจะทำงานที่นี่ กฎถัดไป- หากมีจำนวนลบเป็นจำนวนคู่ คุณสามารถละวงเล็บออกและแทนที่ตัวเลขนั้นด้วยจำนวนที่ตรงกันข้ามได้ หลังจากนี้คุณจะต้องใส่นิพจน์ผลลัพธ์ไว้ในวงเล็บใหม่ หากมีจำนวนลบเป็นจำนวนคี่ ให้ละเว้นวงเล็บและแทนที่ตัวเลขนั้นด้วยจำนวนที่ตรงกันข้าม หลังจากนั้นจะต้องวางนิพจน์ผลลัพธ์ไว้ในวงเล็บใหม่และต้องวางเครื่องหมายลบไว้ข้างหน้า

ตัวอย่างที่ 2

ตัวอย่างเช่น ใช้นิพจน์ 5 · (− 3) · (− 2) ซึ่งเป็นผลคูณของตัวเลขสามตัว มีจำนวนลบสองตัว ดังนั้นเราจึงเขียนนิพจน์ได้เป็น (5 · 3 · 2) จากนั้นจึงเปิดวงเล็บออกในที่สุด จะได้นิพจน์ 5 · 3 · 2

ในผลคูณ (− 2, 5) · (− 3) : (− 2) · 4: (− 1, 25) : (− 1) ตัวเลขห้าตัวเป็นลบ ดังนั้น (− 2, 5) · (− 3) : (− 2) · 4: (− 1, 25) : (− 1) = (− 2, 5 · 3: 2 · 4: 1, 25: 1) . ในที่สุดเราก็ได้เปิดวงเล็บออก −2.5 3:2 4:1.25:1.

กฎข้างต้นสามารถพิสูจน์ได้ ดังต่อไปนี้- ประการแรก เราสามารถเขียนนิพจน์ดังกล่าวใหม่เป็นผลคูณ โดยแทนที่ด้วยการคูณด้วย หมายเลขซึ่งกันและกันแผนก. เราแทนจำนวนลบแต่ละตัวเป็นผลคูณของจำนวนคูณ และแทนที่ - 1 หรือ - 1 ด้วย (- 1) ก.

เมื่อใช้สมบัติการสับเปลี่ยนของการคูณ เราจะสลับตัวประกอบและโอนตัวประกอบทั้งหมดให้เท่ากับ − 1 ไปที่จุดเริ่มต้นของนิพจน์ ผลคูณของเลขคู่ลบหนึ่งเท่ากับ 1 และผลิตภัณฑ์ของเลขคี่เท่ากับ − 1 ซึ่งช่วยให้เราใช้เครื่องหมายลบได้

หากเราไม่ได้ใช้กฎ ลูกโซ่ของการกระทำเพื่อเปิดวงเล็บในนิพจน์ - 2 3: (- 2) · 4: - 6 7 จะมีลักษณะดังนี้:

2 3: (- 2) 4: - 6 7 = - 2 3 - 1 2 4 - 7 6 = = (- 1) 2 3 (- 1) 1 2 4 (- 1 ) · 7 6 = = (- 1 ) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = - 2 3 1 2 4 7 6

สามารถใช้กฎข้างต้นเมื่อเปิดวงเล็บในนิพจน์ที่แสดงถึงผลคูณและผลหารด้วยเครื่องหมายลบที่ไม่ใช่ผลรวมหรือผลต่าง ลองยกตัวอย่างการแสดงออก

x 2 · (- x) : (- 1 x) · x - 3: 2 .

สามารถลดเป็นนิพจน์โดยไม่มีวงเล็บ x 2 · x: 1 x · x - 3: 2

วงเล็บขยายนำหน้าด้วยเครื่องหมาย +

พิจารณากฎที่สามารถนำไปใช้กับวงเล็บขยายที่นำหน้าด้วยเครื่องหมายบวก และ "เนื้อหา" ของวงเล็บเหล่านั้นจะไม่คูณหรือหารด้วยตัวเลขหรือนิพจน์ใดๆ

ตามกฎแล้วจะละเว้นวงเล็บพร้อมกับเครื่องหมายที่อยู่ข้างหน้าในขณะที่เครื่องหมายของคำศัพท์ทั้งหมดในวงเล็บจะยังคงอยู่ หากไม่มีเครื่องหมายอยู่หน้าเทอมแรกในวงเล็บ คุณจะต้องใส่เครื่องหมายบวก

ตัวอย่างที่ 3

ตัวอย่างเช่น เราให้นิพจน์ (12 − 3 , 5) − 7 - หากละเว้นวงเล็บ เราจะเก็บเครื่องหมายของคำศัพท์ไว้ในวงเล็บและใส่เครื่องหมายบวกไว้หน้าเทอมแรก รายการจะมีลักษณะดังนี้ (12 − ​​​​3, 5) − 7 = + 12 − 3, 5 − 7 ในตัวอย่างที่ให้มา ไม่จำเป็นต้องติดเครื่องหมายหน้าเทอมแรก เนื่องจาก + 12 − 3, 5 − 7 = 12 − 3, 5 − 7

ตัวอย่างที่ 4

ลองดูอีกตัวอย่างหนึ่ง ลองใช้นิพจน์ x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x และดำเนินการกับมัน x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x = = x + 2 ก - 3 x 2 + 1 - x 2 - 4 + 1 x

นี่เป็นอีกตัวอย่างหนึ่งของวงเล็บขยาย:

ตัวอย่างที่ 5

2 + x 2 + 1 x - xy z + 2 x - 1 + (- 1 + x - x 2) = = 2 + x 2 + 1 x - xy z + 2 x - 1 - 1 + x + x 2

เครื่องหมายลบที่นำหน้าด้วยเครื่องหมายลบขยายอย่างไร

ลองพิจารณากรณีที่มีเครื่องหมายลบอยู่หน้าวงเล็บ และไม่ได้คูณ (หรือหาร) ด้วยตัวเลขหรือนิพจน์ใดๆ ตามกฎสำหรับการเปิดวงเล็บเหลี่ยมที่นำหน้าด้วยเครื่องหมาย "-" วงเล็บเหลี่ยมที่มีเครื่องหมาย "-" จะถูกละไว้ และเครื่องหมายของคำศัพท์ทั้งหมดในวงเล็บจะกลับกัน

ตัวอย่างที่ 6

เช่น:

1 2 = 1 2 , - 1 x + 1 = - 1 x + 1 , - (- x 2) = x 2

นิพจน์ที่มีตัวแปรสามารถแปลงได้โดยใช้กฎเดียวกัน:

X + x 3 - 3 - - 2 x 2 + 3 x 3 x + 1 x - 1 - x + 2,

เราได้ x - x 3 - 3 + 2 · x 2 - 3 · x 3 · x + 1 x - 1 - x + 2 .

วงเล็บเปิดเมื่อคูณตัวเลขด้วยวงเล็บ นิพจน์ด้วยวงเล็บ

ที่นี่เราจะดูกรณีที่คุณต้องการขยายวงเล็บที่คูณหรือหารด้วยตัวเลขหรือนิพจน์ สูตรของรูปแบบ (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) หรือ ข · (ก 1 ± ก 2 ± … ± ก n) = (ข · ก 1 ± ข · ก 2 ± … ± ข · ก), ที่ไหน ก 1 , 2 , … , นและ b คือตัวเลขหรือนิพจน์บางตัว

ตัวอย่างที่ 7

ตัวอย่างเช่น ลองขยายวงเล็บในนิพจน์ดู (3 - 7) 2- ตามกฎแล้ว เราสามารถทำการแปลงดังต่อไปนี้: (3 − 7) · 2 = (3 · 2 − 7 · 2) . เราได้ 3 · 2 − 7 · 2 .

การเปิดวงเล็บในนิพจน์ 3 x 2 1 - x + 1 x + 2 เราจะได้ 3 x 2 1 - 3 x 2 x + 3 x 2 1 x + 2

การคูณวงเล็บด้วยวงเล็บ

พิจารณาผลคูณของวงเล็บสองตัวที่อยู่ในรูปแบบ (a 1 + a 2) · (b 1 + b 2) สิ่งนี้จะช่วยให้เราได้รับกฎสำหรับการเปิดวงเล็บเมื่อทำการคูณแบบวงเล็บเหลี่ยม

เพื่อที่จะแก้ตัวอย่างที่ให้มา เราจะแสดงนิพจน์ (ข 1 + ข 2)เหมือนข สิ่งนี้จะทำให้เราสามารถใช้กฎในการคูณวงเล็บด้วยนิพจน์ได้ เราได้ (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b โดยดำเนินการเปลี่ยนแบบย้อนกลับ โดย (b 1 + b 2) ใช้กฎการคูณนิพจน์ด้วยวงเล็บอีกครั้ง: a 1 b + a 2 b = = a 1 (b 1 + b 2) + a 2 (b 1 + b 2) = = (ก 1 ข 1 + 1 ข 2) + (ก 2 ข 1 + 2 ข 2) = = ก 1 ข 1 + 1 ข 2 + 2 ข 1 + 2 ข 2

ด้วยเทคนิคง่ายๆ หลายๆ เทคนิค เราสามารถหาผลรวมของผลคูณของแต่ละเทอมจากวงเล็บแรกด้วยแต่ละเทอมจากวงเล็บที่สอง กฎสามารถขยายไปยังเงื่อนไขจำนวนเท่าใดก็ได้ภายในวงเล็บ

ให้เรากำหนดกฎสำหรับการคูณวงเล็บด้วยวงเล็บ: ในการคูณสองผลรวมเข้าด้วยกัน คุณต้องคูณแต่ละเงื่อนไขของผลรวมแรกด้วยแต่ละเงื่อนไขของผลรวมที่สองแล้วบวกผลลัพธ์

สูตรจะมีลักษณะดังนี้:

(ก 1 + ก 2 + . . . + ม) · (ข 1 + ข 2 + . . . + ข n) = = ก 1 ข 1 + 1 ข 2 + . - - + ก 1 ข n + + 2 ข 1 + 2 ข 2 + . - - + ก 2 ข n + + . - - + + มข 1 + มข 1 + . - - ฉันบีเอ็น

ลองขยายวงเล็บในนิพจน์ (1 + x) · (x 2 + x + 6) เป็นผลคูณของผลรวมสองตัว มาเขียนวิธีแก้ปัญหากัน: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 x + 1 6 + x x 2 + x x + x 6

เป็นเรื่องที่ควรกล่าวถึงแยกกันในกรณีที่มีเครื่องหมายลบในวงเล็บพร้อมกับเครื่องหมายบวก ตัวอย่างเช่น ใช้นิพจน์ (1 − x) · (3 · x · y − 2 · x · y 3)

ขั้นแรก นำเสนอนิพจน์ในวงเล็บเป็นผลรวม: (1 + (- x)) · (3 · x · y + (- 2 · x · y 3))- ตอนนี้เราสามารถใช้กฎนี้ได้: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

เปิดวงเล็บกันดีกว่า: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3

วงเล็บขยายในผลคูณของวงเล็บและนิพจน์หลายรายการ

หากมีสามนิพจน์ขึ้นไปในวงเล็บในนิพจน์ จะต้องเปิดวงเล็บตามลำดับ คุณต้องเริ่มการแปลงโดยใส่ปัจจัยสองตัวแรกในวงเล็บ ภายในวงเล็บเหล่านี้ เราสามารถดำเนินการแปลงตามกฎที่กล่าวถึงข้างต้นได้ ตัวอย่างเช่น วงเล็บในนิพจน์ (2 + 4) · 3 · (5 + 7 · 8)

นิพจน์ประกอบด้วยสามปัจจัยพร้อมกัน (2 + 4) , 3 และ (5 + 7 8) . เราจะเปิดวงเล็บตามลำดับ ลองใส่ปัจจัยสองตัวแรกไว้ในวงเล็บอื่น ซึ่งเราจะกำหนดให้เป็นสีแดงเพื่อความชัดเจน: (2 + 4) 3 (5 + 7 8) = ((2 + 4) 3) (5 + 7 8).

ตามกฎสำหรับการคูณวงเล็บด้วยตัวเลข เราสามารถดำเนินการดังต่อไปนี้: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · ( 5 + 7 · 8) .

คูณวงเล็บด้วยวงเล็บ: (2 3 + 4 3) (5 + 7 8) = 2 3 5 + 2 3 7 8 + 4 3 5 + 4 3 7 8

ยึดตามชนิด

องศาที่มีฐานเป็นนิพจน์บางคำเขียนอยู่ในวงเล็บด้วย ในประเภทถือได้ว่าเป็นผลผลิตของวงเล็บหลายอัน นอกจากนี้ตามกฎของทั้งสอง ย่อหน้าก่อนหน้าสามารถเขียนได้โดยไม่มีวงเล็บเหล่านี้

พิจารณากระบวนการเปลี่ยนนิพจน์ (ก + ข + ค) 2 . สามารถเขียนเป็นผลคูณของวงเล็บสองตัวได้ (ก + ข + ค) · (ก + ข + ค)- ลองคูณวงเล็บด้วยวงเล็บแล้วได้ a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c

ลองดูตัวอย่างอื่น:

ตัวอย่างที่ 8

1 x + 2 3 = 1 x + 2 1 x + 2 1 x + 2 = = 1 x 1 x + 1 x 2 + 2 1 x + 2 2 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 2 2

การหารวงเล็บด้วยตัวเลขและวงเล็บด้วยวงเล็บ

การหารวงเล็บเหลี่ยมด้วยตัวเลขนั้น เงื่อนไขทั้งหมดที่อยู่ในวงเล็บจะต้องหารด้วยตัวเลขด้วย ตัวอย่างเช่น (x 2 - x) : 4 = x 2: 4 - x: 4

ขั้นแรกสามารถแทนที่การหารได้ด้วยการคูณ หลังจากนั้นคุณสามารถใช้กฎที่เหมาะสมสำหรับการเปิดวงเล็บในผลิตภัณฑ์ได้ ใช้กฎเดียวกันนี้เมื่อแบ่งวงเล็บด้วยวงเล็บ

ตัวอย่างเช่น เราต้องเปิดวงเล็บในนิพจน์ (x + 2) : 2 3 เมื่อต้องการทำเช่นนี้ ให้แทนที่การหารด้วยการคูณด้วยจำนวนกลับ (x + 2): 2 3 = (x + 2) · 2 3 คูณวงเล็บด้วยตัวเลข (x + 2) · 2 3 = x · 2 3 + 2 · 2 3

นี่เป็นอีกตัวอย่างหนึ่งของการหารด้วยวงเล็บ:

ตัวอย่างที่ 9

1 x + x + 1: (x + 2) .

ลองแทนที่การหารด้วยการคูณ: 1 x + x + 1 · 1 x + 2

มาคูณกัน: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

ลำดับการเปิดวงเล็บเหลี่ยม

ตอนนี้ให้พิจารณาลำดับการใช้กฎที่กล่าวถึงข้างต้นในนิพจน์ ปริทัศน์, เช่น. ในนิพจน์ที่มีผลรวมที่มีผลต่าง ผลคูณหาร วงเล็บในระดับธรรมชาติ

ขั้นตอน:

  • ขั้นตอนแรกคือการยกวงเล็บให้เป็นพลังธรรมชาติ
  • ในขั้นตอนที่สองจะมีการเปิดวงเล็บในงานและผลหาร
  • ขั้นตอนสุดท้ายคือการเปิดวงเล็บด้วยผลรวมและผลต่าง

ลองพิจารณาลำดับของการกระทำโดยใช้ตัวอย่างของนิพจน์ (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) . ให้เราแปลงจากนิพจน์ 3 · (− 2) : (− 4) และ 6 · (− 7) ซึ่งควรจะอยู่ในรูปแบบ (3 2:4)และ (- 6 · 7) เมื่อแทนที่ผลลัพธ์ที่ได้รับเป็นนิพจน์ดั้งเดิม เราจะได้: (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) = (− 5) + (3 · 2: 4) − (- 6 · 7) . เปิดวงเล็บ: − 5 + 3 · 2: 4 + 6 · 7

เมื่อต้องรับมือกับนิพจน์ที่มีวงเล็บอยู่ในวงเล็บ จะสะดวกที่จะดำเนินการแปลงโดยเริ่มจากภายในสู่ภายนอก

หากคุณสังเกตเห็นข้อผิดพลาดในข้อความ โปรดไฮไลต์แล้วกด Ctrl+Enter

ในบทเรียนที่แล้ว เราพูดถึงการแยกตัวประกอบ เราเชี่ยวชาญสองวิธี: การเอาออก ตัวคูณทั่วไปเกินวงเล็บและการจัดกลุ่ม ในบทเรียนนี้ - วิธีการอันทรงพลังต่อไปนี้: สูตรคูณแบบย่อ- ในระยะสั้น - FSU

สูตรการคูณแบบย่อ (ผลรวมและผลต่างกำลังสอง ผลรวมและผลต่างลูกบาศก์ ผลต่างของกำลังสอง ผลรวมและผลต่างของลูกบาศก์) มีความจำเป็นอย่างยิ่งในทุกสาขาวิชาของคณิตศาสตร์ ใช้ในการลดความซับซ้อนของนิพจน์ การแก้สมการ การคูณพหุนาม การลดเศษส่วน การแก้ปริพันธ์ ฯลฯ และอื่น ๆ กล่าวโดยย่อคือ มีเหตุผลทุกประการที่ต้องจัดการกับพวกเขา ทำความเข้าใจว่าสิ่งเหล่านี้มาจากไหน เหตุใดจึงจำเป็น วิธีจดจำ และวิธีนำไปใช้

เราเข้าใจมั้ย?)

สูตรคูณแบบย่อมาจากไหน?

ความเท่าเทียมกัน 6 และ 7 ไม่ได้เขียนด้วยวิธีที่คุ้นเคยมากนัก มันตรงกันข้ามเลย นี่เป็นจุดประสงค์) ความเท่าเทียมกันใดๆ จะทำงานทั้งจากซ้ายไปขวาและจากขวาไปซ้าย รายการนี้ทำให้ชัดเจนยิ่งขึ้นว่า FSU มาจากไหน

นำมาจากการคูณ) ตัวอย่างเช่น:

(ก+ข) 2 =(ก+ข)(ก+ข)=ก 2 +ab+บา+ข 2 =ก 2 +2ab+ข 2

แค่นั้นแหละ ไม่มีเทคนิคทางวิทยาศาสตร์ เราเพียงแค่คูณวงเล็บแล้วให้อันที่คล้ายกัน นี่คือวิธีที่ปรากฎ สูตรคูณแบบย่อทั้งหมด ย่อการคูณเป็นเพราะในสูตรนั้นไม่มีการคูณวงเล็บและการลดลงของค่าที่คล้ายกัน ย่อ.) ทราบผลทันที.

FSU ต้องรู้ด้วยใจ ปราศจาก สามคนแรกคุณไม่จำเป็นต้องฝันถึง C โดยไม่มีส่วนที่เหลือ - B หรือ A)

ทำไมเราต้องมีสูตรคูณแบบย่อ?

มีเหตุผลสองประการในการเรียนรู้หรือจดจำสูตรเหล่านี้ ประการแรกคือคำตอบสำเร็จรูปจะช่วยลดจำนวนข้อผิดพลาดโดยอัตโนมัติ แต่นี่ไม่ใช่ที่สุด เหตุผลหลัก- แต่อันที่สอง...

หากคุณชอบเว็บไซต์นี้...

ฉันมีเว็บไซต์ที่น่าสนใจอีกสองสามแห่งสำหรับคุณ)

คุณสามารถฝึกแก้ตัวอย่างและค้นหาระดับของคุณ การทดสอบด้วยการยืนยันทันที มาเรียนรู้กันเถอะ - ด้วยความสนใจ!)

คุณสามารถทำความคุ้นเคยกับฟังก์ชันและอนุพันธ์ได้

หน้าที่หลักของวงเล็บคือการเปลี่ยนลำดับการดำเนินการเมื่อคำนวณค่า ตัวอย่างเช่น, วี เชิงตัวเลข\(5·3+7\) การคูณจะถูกคำนวณก่อน จากนั้นจึงบวก: \(5·3+7 =15+7=22\) แต่ในนิพจน์ \(5·(3+7)\) การบวกในวงเล็บจะถูกคำนวณก่อน จากนั้นจึงคูณเท่านั้น: \(5·(3+7)=5·10=50\)


ตัวอย่าง. ขยายวงเล็บ: \(-(4m+3)\)
สารละลาย : \(-(4m+3)=-4m-3\).

ตัวอย่าง. เปิดวงเล็บแล้วระบุพจน์ที่คล้ายกัน \(5-(3x+2)+(2+3x)\)
สารละลาย : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).


ตัวอย่าง. ขยายวงเล็บ \(5(3-x)\)
สารละลาย : ในวงเล็บเรามี \(3\) และ \(-x\) และก่อนวงเล็บจะมีห้า ซึ่งหมายความว่าสมาชิกแต่ละตัวในวงเล็บจะคูณด้วย \(5\) - ฉันขอเตือนคุณไว้ก่อน เครื่องหมายคูณระหว่างตัวเลขและวงเล็บไม่ได้ถูกเขียนในวิชาคณิตศาสตร์เพื่อลดขนาดของรายการ.


ตัวอย่าง. ขยายวงเล็บ \(-2(-3x+5)\)
สารละลาย : เช่นเดียวกับในตัวอย่างก่อนหน้านี้ \(-3x\) และ \(5\) ในวงเล็บจะคูณด้วย \(-2\)

ตัวอย่าง. ลดรูปนิพจน์: \(5(x+y)-2(x-y)\)
สารละลาย : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).


ยังคงต้องพิจารณาสถานการณ์สุดท้าย

เมื่อคูณวงเล็บเหลี่ยมด้วยวงเล็บ แต่ละเทอมของวงเล็บแรกจะถูกคูณกับแต่ละเทอมของวงเล็บที่สอง:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

ตัวอย่าง. ขยายวงเล็บ \((2-x)(3x-1)\)
สารละลาย : เรามีผลิตภัณฑ์วงเล็บและสามารถขยายได้ทันทีโดยใช้สูตรด้านบน แต่เพื่อไม่ให้สับสนให้ทำทุกอย่างทีละขั้นตอน
ขั้นตอนที่ 1 ลบวงเล็บแรก - คูณแต่ละเงื่อนไขด้วยวงเล็บที่สอง:

ขั้นตอนที่ 2 ขยายผลิตภัณฑ์ของวงเล็บและปัจจัยตามที่อธิบายไว้ข้างต้น:
- สิ่งแรกก่อน...

จากนั้นครั้งที่สอง

ขั้นตอนที่ 3 ตอนนี้เราคูณและนำเสนอคำศัพท์ที่คล้ายกัน:

ไม่จำเป็นต้องอธิบายรายละเอียดการเปลี่ยนแปลงทั้งหมด คุณสามารถคูณได้ทันที แต่ถ้าคุณแค่เรียนเปิดวงเล็บให้เขียนละเอียดก็มีโอกาสผิดพลาดน้อยลง

หมายเหตุถึงส่วนทั้งหมดจริงๆ แล้ว คุณไม่จำเป็นต้องจำกฎทั้ง 4 ข้อ แต่ต้องจำกฎเพียงข้อเดียว คือ \(c(a-b)=ca-cb\) ทำไม เพราะถ้าคุณแทนที่หนึ่งแทน c คุณจะได้กฎ \((a-b)=a-b\) และถ้าเราแทนที่ลบหนึ่ง เราจะได้กฎ \(-(a-b)=-a+b\) ถ้าคุณแทนที่วงเล็บอื่นแทน c คุณจะได้กฎสุดท้าย

วงเล็บภายในวงเล็บ

บางครั้งในทางปฏิบัติอาจมีปัญหากับวงเล็บเหลี่ยมที่ซ้อนอยู่ภายในวงเล็บอื่นๆ นี่คือตัวอย่างของงานดังกล่าว: ลดความซับซ้อนของนิพจน์ \(7x+2(5-(3x+y))\)

เพื่อแก้ปัญหาได้สำเร็จ งานที่คล้ายกัน, จำเป็นต้อง:
- เข้าใจการซ้อนของวงเล็บอย่างถี่ถ้วน - อันไหนอยู่ไหน;
- เปิดวงเล็บตามลำดับโดยเริ่มจากอันที่อยู่ด้านในสุด

เป็นสิ่งสำคัญเมื่อเปิดวงเล็บอันใดอันหนึ่ง อย่าแตะต้องส่วนที่เหลือของสำนวนแค่เขียนใหม่เหมือนเดิม
ลองดูงานที่เขียนด้านบนเป็นตัวอย่าง

ตัวอย่าง. เปิดวงเล็บแล้วระบุพจน์ที่คล้ายกัน \(7x+2(5-(3x+y))\)
สารละลาย:


ตัวอย่าง. เปิดวงเล็บแล้วระบุพจน์ที่คล้ายกัน \(-(x+3(2x-1+(x-5)))\)
สารละลาย :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

มีวงเล็บซ้อนสามอันอยู่ที่นี่ เริ่มจากอันในสุดกันก่อน (เน้นด้วยสีเขียว) ด้านหน้าของวงเล็บมีเครื่องหมายบวก ดังนั้นมันจึงหลุดออกมา

\(-(x+3(2x-1\)\(+x-5\) \())\)

ตอนนี้คุณต้องเปิดวงเล็บที่สองซึ่งเป็นอันกลาง แต่ก่อนหน้านั้น เราจะทำให้นิพจน์ ghost ง่ายขึ้น เงื่อนไขที่คล้ายกันในวงเล็บที่สองนั้น

\(=-(x\)\(+3(3x-6)\) \()=\)

ตอนนี้เราเปิดวงเล็บเหลี่ยมที่สอง (เน้นด้วยสีน้ำเงิน) ก่อนที่วงเล็บจะเป็นตัวประกอบ ดังนั้นแต่ละเทอมในวงเล็บจะต้องคูณด้วย

\(=-(x\)\(+9x-18\) \()=\)

และเปิดวงเล็บเหลี่ยมสุดท้าย ด้านหน้าวงเล็บจะมีเครื่องหมายลบ ดังนั้นป้ายทั้งหมดจึงกลับด้าน

วงเล็บขยายเป็นทักษะพื้นฐานทางคณิตศาสตร์ หากไม่มีทักษะนี้ ก็เป็นไปไม่ได้ที่จะมีเกรดสูงกว่า C ในระดับ 8 และ 9 ดังนั้นผมขอแนะนำให้คุณเข้าใจหัวข้อนี้ให้ดี

ตอนนี้ให้เราพิจารณากำลังสองของทวินาม และเมื่อใช้มุมมองทางคณิตศาสตร์ เราจะพูดถึงกำลังสองของผลรวม นั่นคือ (a + b)² และกำลังสองของผลต่างของตัวเลขสองตัว นั่นคือ (a – ข)².

เนื่องจาก (a + b)² = (a + b) ∙ (a + b)

จากนั้นเราจะพบ: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b² เช่น

(ก + ข)² = ก² + 2ab + ข²

มันมีประโยชน์ที่จะจำผลลัพธ์นี้ในรูปแบบของความเท่าเทียมกันที่อธิบายไว้ข้างต้นและในคำพูด: กำลังสองของผลรวมของตัวเลขสองตัว เท่ากับกำลังสองจำนวนแรกบวกผลคูณของสองด้วยจำนวนแรกและจำนวนที่สอง บวกกำลังสองของจำนวนที่สอง

เมื่อทราบผลลัพธ์นี้แล้ว เราก็สามารถเขียนได้ทันที เช่น

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(xn + 4x)² = x 2n + 8x n+1 + 16x 2

ลองดูตัวอย่างที่สองเหล่านี้ เราจำเป็นต้องยกกำลังสองผลรวมของตัวเลขสองตัว: ตัวเลขแรกคือ 3ab, ตัวเลขที่สองคือ 1 ผลลัพธ์ควรเป็น: 1) กำลังสองของตัวเลขแรก เช่น (3ab)² ซึ่งเท่ากับ 9a²b²; 2) ผลคูณของสองด้วยตัวเลขแรกและตัวที่สองเช่น 2 ∙ 3ab ∙ 1 = 6ab; 3) กำลังสองของตัวเลขที่ 2 เช่น 1² = 1 - ต้องบวกทั้งสามคำนี้เข้าด้วยกัน

นอกจากนี้เรายังได้สูตรสำหรับยกกำลังสองผลต่างของตัวเลขสองตัวด้วย เช่น สำหรับ (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b²

(ก – ข)² = ก² – 2ab + ข²,

กล่าวคือ กำลังสองของผลต่างของตัวเลขสองตัวจะเท่ากับกำลังสองของตัวเลขแรก ลบผลคูณของ 2 ด้วยตัวเลขแรกและตัวที่สอง บวกด้วยกำลังสองของตัวเลขที่สอง

เมื่อรู้ผลลัพธ์นี้ เราก็สามารถทำการยกกำลังสองของทวินามได้ทันที ซึ่งจากมุมมองทางคณิตศาสตร์ แสดงถึงผลต่างของตัวเลขสองตัว

(ม. – เอ็น) ² = ตร.ม. – 2 ล้าน + น.²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 เป็นต้น

เรามาอธิบายตัวอย่างที่ 2 กัน ที่นี่เรามีความแตกต่างของตัวเลขสองตัวในวงเล็บ: ตัวเลขแรกคือ 5ab 3 และตัวเลขที่สองคือ 3a 2 b ผลลัพธ์ควรเป็น: 1) กำลังสองของตัวเลขแรก เช่น (5ab 3) 2 = 25a 2 b 6, 2) ผลคูณของสองด้วยตัวเลขที่ 1 และตัวที่ 2 เช่น 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 และ 3) กำลังสองของตัวเลขที่สองคือ (3a 2 b) 2 = 9a 4 b 2 ; เทอมแรกและเทอมที่สามต้องมีเครื่องหมายบวก และเทอมที่ 2 ที่มีเครื่องหมายลบ เราจะได้ 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 เพื่ออธิบายตัวอย่างที่ 4 เราสังเกตเพียงว่า 1) (a n-1)2 = a 2n-2 ... เลขชี้กำลังจะต้องคูณด้วย 2 และ 2) ผลคูณของสองด้วยเลข 1 และด้วยเลข 2 = 2 ∙ a n-1 ∙ a = 2a n .

หากเราพิจารณามุมมองของพีชคณิต ความเท่าเทียมกันทั้งสอง: 1) (a + b)² = a² + 2ab + b² และ 2) (a – b)² = a² – 2ab + b² แสดงสิ่งเดียวกัน กล่าวคือ: กำลังสองของทวินามเท่ากับกำลังสองของเทอมแรก บวกด้วยผลคูณของตัวเลข (+2) คูณเทอมแรกและเทอมที่สอง บวกกำลังสองของเทอมที่สอง สิ่งนี้ชัดเจนเพราะความเท่าเทียมกันของเราสามารถเขียนใหม่เป็น:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (ก – ข)² = (+ก)² + (+2) ∙ (+a) (–b) + (–b)²

ในบางกรณี สะดวกในการตีความความเท่าเทียมกันที่เกิดขึ้นในลักษณะนี้:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

ที่นี่เรายกกำลังสองทวินามโดยเทอมแรก = –4a และวินาที = –3b ต่อไปเราจะได้ (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² และสุดท้าย:

(–4a – 3b)² = 6a² + 24ab + 9b²

นอกจากนี้ยังสามารถหาและจำสูตรการยกกำลังสองตรีโกณมิติ รูปสี่เหลี่ยม หรือพหุนามใดๆ โดยทั่วไปได้ อย่างไรก็ตาม เราจะไม่ทำเช่นนี้ เพราะเราไม่ค่อยจำเป็นต้องใช้สูตรเหล่านี้ และถ้าเราจำเป็นต้องยกกำลังสองพหุนามใดๆ (ยกเว้นทวินาม) เราจะลดจำนวนลงเหลือเพียงการคูณ ตัวอย่างเช่น:

31. ให้เราใช้ความเท่าเทียมกันที่ได้รับ 3 อย่าง ได้แก่:

(ก + ข) (ก – ข) = ก² – ข²
(ก + ข)² = ก² + 2ab + ข²
(ก – ข)² = ก² – 2ab + ข²

เพื่อเลขคณิต

ปล่อยให้มันเป็น 41 ∙ 39 จากนั้นเราสามารถแสดงสิ่งนี้ในรูปแบบ (40 + 1) (40 – 1) และลดเรื่องให้เท่ากับค่าแรก - เราได้ 40² – 1 หรือ 1600 – 1 = 1599 ด้วยเหตุนี้ มันง่ายที่จะทำการคูณเช่น 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 เป็นต้น

ปล่อยให้เป็น 41 ∙ 41; มันเหมือนกับ 41² หรือ (40 + 1)² = 1600 + 80 + 1 = 1681 และ 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225 หากคุณต้องการ 37 ∙ 37 แล้วนี่จะเท่ากับ (40 – 3)² = 1600 – 240 + 9 = 1369 การคูณที่คล้ายกัน (หรือการยกกำลังสอง) ตัวเลขสองหลัก) เป็นเรื่องง่ายที่จะทำได้โดยมีทักษะบางอย่างอยู่ในใจ