Похідна складна функція прикладів рішень. Похідна складної функції

Складні похідні. Логарифмічна похідна.
Похідна статечно-показової функції

Продовжуємо підвищувати свою техніку диференціювання. На цьому уроці ми закріпимо пройдений матеріал, розглянемо складніші похідні, а також познайомимося з новими прийомами та хитрощами знаходження похідної, зокрема з логарифмічною похідною.

Тим читачам, у кого низький рівеньпідготовки, слід звернутися до статті Як знайти похідну? Приклади рішеньяка дозволить підняти свої навички практично з нуля. Далі необхідно уважно вивчити сторінку Похідна складної функції, зрозуміти та вирішувати Усенаведені приклади. Даний урок логічно третій за рахунком, і після його освоєння Ви впевнено диференціюватимете досить складні функції. Небажано дотримуватись позиції «Куди ще? Та й так вистачить!», оскільки всі приклади та прийоми рішення взято з реальних контрольних робітта часто зустрічаються на практиці.

Почнемо із повторення. На уроці Похідна складної функціїми розглянули низку прикладів із докладними коментарями. Під час вивчення диференціального обчислення та інших розділів математичного аналізу- диференціювати доведеться дуже часто, і не завжди буває зручно (та й не завжди потрібно) розписувати приклади дуже докладно. Тому ми потренуємося в усному знаходженні похідних. Найкращими «кандидатами» для цього є похідні найпростіших зі складних функцій, наприклад:

За правилом диференціювання складної функції :

При вивченні інших тем матану в майбутньому такий докладний запис найчастіше не потрібний, передбачається, що студент вміє знаходити подібні похідні на автопілоті автоматі. Припустимо, що о 3 годині ночі пролунав телефонний дзвінок, і приємний голосспитав: «Чому дорівнює похідна тангенсу двох ікс?». На це має бути майже миттєва і ввічлива відповідь: .

Перший приклад буде відразу призначений для самостійного рішення.

Приклад 1

Знайти такі похідні усно, на одну дію, наприклад: . Для виконання завдання потрібно використовувати лише таблицю похідних елементарних функцій(Якщо вона ще не запам'яталася). Якщо виникнуть труднощі, рекомендую перечитати урок Похідна складної функції.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Відповіді наприкінці уроку

Складні похідні

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше диференційному обчисленніздаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити дане значенняу «страшне вираження».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовується в зворотному порядку, Від самої зовнішньої функції, до самої внутрішньої. Вирішуємо:

Начебто без помилок.

(1) Беремо похідну від квадратного кореня.

(2) Беремо похідну від різниці, використовуючи правило

(3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

(4) Беремо похідну від косинуса.

(5) Беремо похідну від логарифму.

(6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, коли на прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твори трьохмножників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» – логарифм: . Чому можна так зробити? А хіба - Це не твір двох множників і правило не працює? Нічого складного немає:

Тепер залишилося вдруге застосувати правило до дужки:

Можна ще зневіритися і винести щось за дужки, але в даному випадкувідповідь краще залишити саме у такому вигляді – легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь? Наведемо вираз чисельника до спільному знаменникуі позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання і просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Приклад 8

Знайти похідну функції

Тут можна піти довгим шляхом, використовуючи правило диференціювання складної функції:

Але перший крок одразу кидає у зневіру - належить взяти неприємну похідну від дробового ступеняа потім ще й від дробу.

Тому перед тимяк брати похідну від «накрученого» логарифму, його попередньо спрощують, використовуючи відомі шкільні властивості:



! Якщо під рукою є зошит із практикою, перепишіть ці формули прямо туди. Якщо зошита немає, перемалюйте їх на листочок, оскільки приклади уроку, що залишилися, буду обертатися навколо цих формул.

Саме рішення можна оформити приблизно так:

Перетворимо функцію:

Знаходимо похідну:

Попереднє перетворення самої функції значно спростило рішення. Таким чином, коли для диференціювання запропоновано подібний логарифм, його завжди доцільно «розвалити».

А зараз кілька нескладних прикладів для самостійного вирішення:

Приклад 9

Знайти похідну функції

Приклад 10

Знайти похідну функції

Всі перетворення та відповіді в кінці уроку.

Логарифмічна похідна

Якщо похідна від логарифмів – це така солодка музика, виникає питання, а чи не можна в деяких випадках організувати логарифм штучно? Можна, можливо! І навіть треба.

Приклад 11

Знайти похідну функції

Подібні приклади ми нещодавно розглянули. Що робити? Можна послідовно застосувати правило диференціювання приватного, та був правило диференціювання твори. Недолік способу полягає в тому, що вийде величезний триповерховий дріб, з яким зовсім не хочеться мати справи.

Але в теорії та практиці є така чудова річ, як логарифмічна похідна. Логарифми можна організувати штучно, «навісивши» їх на обидві частини:

Тепер потрібно максимально розвалити логарифм правої частини (формули перед очима?). Я розпишу цей процес докладно:

Власне приступаємо до диференціювання.
Укладаємо під штрих обидві частини:

Похідна правої частини досить проста, її я не коментуватиму, оскільки якщо ви читаєте цей текст, то повинні впевнено з нею впоратися.

Як бути з лівою частиною?

У лівій частині у нас складна функція. Передбачаю питання: «Чому, там же одна буква «ігрок» під логарифмом?».

Справа в тому, що ця «одна літерка ігорок» – САМА ЗА СЕБЕ Є ФУНКЦІЄЮ(якщо не зрозуміло, зверніться до статті Похідна від функції, заданої неявно). Тому логарифм – це зовнішня функція, а «гравець» – внутрішня функція. І ми використовуємо правило диференціювання складної функції :

У лівій частині як за помахом чарівної паличкиу нас «намалювалася» похідна. Далі за правилом пропорції перекидаємо «ігрок» із знаменника лівої частини нагору правої частини:

А тепер згадуємо, про який такий «гравець»-функцію ми міркували під час диференціювання? Дивимося на умову:

Остаточна відповідь:

Приклад 12

Знайти похідну функції

Це приклад самостійного рішення. Зразок оформлення прикладу даного типунаприкінці уроку.

За допомогою логарифмічної похідної можна було вирішити будь-який із прикладів №№4-7, інша річ, що там функції простіші, і, можливо, використання логарифмічної похідної не надто й виправдане.

Похідна статечно-показової функції

Цю функцію ми ще розглядали. Ступінно-показова функція – це функція, у якої і ступінь та основа залежать від «ікс». Класичний приклад, який вам приведуть у будь-якому підручнику чи на будь-якій лекції:

Як знайти похідну від статечно-показової функції?

Необхідно використовувати щойно розглянутий прийом – логарифмічну похідну. Навішуємо логарифми на обидві частини:

Як правило, у правій частині з-під логарифму виноситься ступінь:

У результаті в правій частині у нас вийшов добуток двох функцій, який диференціюватиметься по стандартною формулою .

Знаходимо похідну, для цього укладаємо обидві частини під штрихи:

Подальші дії нескладні:

Остаточно:

Якщо якесь перетворення не зовсім зрозуміле, будь ласка, уважно перечитайте пояснення Прикладу №11.

У практичних завданняхстатечно-показова функція завжди буде складнішою, ніж розглянутий лекційний приклад.

Приклад 13

Знайти похідну функції

Використовуємо логарифмічну похідну.

У правій частині у нас константа та твір двох множників – «ікса» та «логарифма логарифма ікс» (під логарифм вкладено ще один логарифм). При диференціюванні константу, як ми пам'ятаємо, краще одразу винести за знак похідної, щоб вона не заважала під ногами; і, звичайно, застосовуємо знайоме правило :


Як бачите, алгоритм застосування логарифмічної похідної не містить у собі якихось особливих хитрощів або хитрощів, і знаходження похідної статечно-показової функції зазвичай не пов'язане з «муками».

Наводяться приклади обчислення похідних із застосуванням похідної формули складної функції.

Тут ми наводимо приклади обчислення похідних від наступних функцій:
; ; ; ; .

Якщо функцію можна представити як складну функцію в наступному вигляді:
,
то її похідна визначається за формулою:
.
У наведених нижче прикладах ми записуватимемо цю формулу в наступному вигляді:
.
де.
Тут нижні індекси або розташовані під знаком похідної позначають змінні, по якій виконується диференціювання.

Зазвичай, в похідних таблицях , наводяться похідні функцій від змінної x .

Однак x – це формальний параметр. Змінну x можна замінити будь-якою іншою змінною. Тому, при диференціювання функції від змінної , ми змінюємо, у таблиці похідних, змінну x на змінну u .

Прості приклади

Приклад 1
.

Знайти похідну складної функції

Рішення Запишемозадану функцію
.
в еквівалентному вигляді:
;
.

У таблиці похідних знаходимо:
.
За формулою похідної складної функції маємо:

Тут.

Відповідь

Приклад 2
.

Знайти похідну складної функції

Знайти похідну
.


.
За формулою похідної складної функції маємо:

Тут.

Виносимо постійну 5 за знак похідної та з таблиці похідних знаходимо:

Приклад 3
.

Знайти похідну складної функції

Знайдіть похідну -1 Виносимо постійну
;
за знак похідної та з таблиці похідних знаходимо:
.

З таблиці похідних знаходимо:
.
За формулою похідної складної функції маємо:

Тут.

Застосовуємо формулу похідної складної функції:

Більш складні приклади У більшми застосовуємо правило диференціювання складної функції кілька разів. При цьому ми обчислюємо похідну з кінця. Тобто розбиваємо функцію на складові частини та знаходимо похідні найпростіших частин, використовуючи таблицю похідних. Також ми застосовуємо правила диференціювання суми, твори та дроби . Потім робимо підстановки та застосовуємо формулу похідної складної функції.

Приклад 4

Приклад 3
.

Знайти похідну складної функції

Виділимо саму просту частинуформули та знайдемо її похідну. .



.
Тут ми використовували позначення
.

Знаходимо похідну наступної частини вихідної функції, застосовуючи отримані результати. Застосовуємо правило диференціювання суми:
.

Ще раз застосовуємо правило диференціювання складної функції.

.
За формулою похідної складної функції маємо:

Тут.

Приклад 5

Знайдіть похідну функції
.

Знайти похідну складної функції

Виділимо найпростішу частину формули та з таблиці похідних знайдемо її похідну. .

Застосовуємо правило диференціювання складної функції.
.
Тут
.

Вирішувати фізичні завданняабо приклади з математики абсолютно неможливо без знань про похідну та методи її обчислення. Похідна - одна з найважливіших понятьматематичного аналізу Цією фундаментальної темими вирішили присвятити сьогоднішню статтю. Що таке похідна, який її фізичний та геометричний змістЯк порахувати похідну функції? Всі ці питання можна поєднати в одне: як зрозуміти похідну?

Геометричний та фізичний зміст похідної

Нехай є функція f(x) , задана в певному інтервалі (a, b) . Точки х і х0 належать до цього інтервалу. При зміні х змінюється сама функція. Зміна аргументу – різниця його значень х-х0 . Ця різниця записується як дельта ікс і називається збільшенням аргументу. Зміною або збільшенням функції називається різниця значень функції у двох точках. Визначення похідної:

Похідна функції у точці – межа відношення збільшення функції у цій точці до збільшення аргументу, коли останнє прагне нулю.

Інакше це можна записати так:

Який сенс у знаходженні такої межі? А ось який:

похідна від функції в точці дорівнює тангенсу кута між віссю OX і щодо графіку функції в даній точці.


Фізичний змістпохідної: похідна шляхи за часом дорівнює швидкості прямолінійного руху.

Дійсно, ще зі шкільних часів всім відомо, що швидкість – це приватна дорога. x=f(t) та часу t . Середня швидкістьза деякий проміжок часу:

Щоб дізнатися швидкість руху в момент часу t0 потрібно обчислити межу:

Правило перше: виносимо константу

Константу можна винести за знак похідної. Більше того – це потрібно робити. При вирішенні прикладів математики візьміть за правило - якщо можете спростити вираз, обов'язково спрощуйте .

приклад. Обчислимо похідну:

Правило друге: похідна суми функцій

Похідна суми двох функцій дорівнює сумі похідних цих функцій. Те саме справедливо і для похідної різниці функцій.

Не наводитимемо доказ цієї теореми, а краще розглянемо практичний приклад.

Знайти похідну функції:

Правило третє: похідна робота функцій

Похідна твори двох функцій, що диференціюються, обчислюється за формулою:

Приклад: знайти похідну функції:

Рішення:

Тут важливо сказати про обчислення похідних складних функцій. Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.

У наведеному вище прикладі ми зустрічаємо вираз:

В даному випадку проміжний аргумент - 8х у п'ятому ступені. Для того, щоб обчислити похідну такого виразу спочатку вважаємо похідну зовнішньої функції за проміжним аргументом, а потім множимо на похідну безпосередньо проміжного аргументу незалежної змінної.

Правило четверте: похідна приватного двох функцій

Формула для визначення похідної від частки двох функцій:

Ми постаралися розповісти про похідні для чайників з нуля. Ця тема не така проста, як здається, тому попереджаємо: у прикладах часто зустрічаються пастки, так що будьте уважні при обчисленні похідних.

З будь - яким питанням з цієї та інших тем ви можете звернутися до студентського сервісу . За короткий строкми допоможемо вирішити найскладнішу контрольну та розібратися із завданнями, навіть якщо ви ніколи раніше не займалися обчисленням похідних.

Визначення.Нехай функція \(y = f(x) \) визначена в деякому інтервалі, що містить у собі точку \(x_0 \). Дамо аргументу приріст (Delta x) таке, щоб не вийти з цього інтервалу. Знайдемо відповідне збільшення функції \(\Delta y \) (при переході від точки \(x_0 \) до точки \(x_0 + \Delta x \)) і складемо відношення \(\frac(\Delta y)(\Delta x) \). Якщо існує межа цього відношення при \(\Delta x \rightarrow 0 \), то вказану межу називають похідної функції\(y=f(x) \) у точці \(x_0 \) і позначають \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Для позначення похідної часто використовують символ y". Зазначимо, що y" = f(x) - це нова функціяале, природно, пов'язана з функцією y = f(x), визначена у всіх точках x, в яких існує зазначена вище межа. Цю функцію називають так: похідна функції у = f(x).

Геометричний зміст похідноїполягає у наступному. Якщо до графіку функції у = f(x) у точці з абсцисою х=a можна провести дотичну, непаралельну осі y, то f(a) виражає кутовий коефіцієнт дотичної:
\(k = f"(a) \)

Оскільки \(k = tg(a) \), то вірна рівність \(f"(a) = tg(a) \).

А тепер витлумачимо визначення похідної з погляду наближених рівностей. Нехай функція \(y = f(x) \) має похідну в конкретній точці \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Це означає, що біля точки х виконується наближена рівність \(\frac(\Delta y)(\Delta x) \approx f"(x) \), тобто \(\Delta y \approx f"(x) \cdot \Delta x \). Змістовний зміст отриманої наближеної рівності полягає в наступному: збільшення функції «майже пропорційно» збільшенню аргументу, причому коефіцієнтом пропорційності є значення похідної в заданій точціх. Наприклад, для функції \(y = x^2 \) справедливо наближена рівність \(\Delta y \approx 2x \cdot \Delta x \). Якщо уважно проаналізувати визначення похідної, ми виявимо, що у ньому закладено алгоритм її знаходження.

Сформулюємо його.

Як знайти похідну функції у = f (x)?

1. Зафіксувати значення \(x \), знайти \(f(x) \)
2. Дати аргументу \(x \) збільшення \(\Delta x \), перейти в нову точку\(x+ \Delta x \), знайти \(f(x+ \Delta x) \)
3. Знайти збільшення функції: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Скласти відношення \(\frac(\Delta y)(\Delta x) \)
5. Обчислити $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ця межа і є похідною функцією в точці x.

Якщо функція у = f(x) має похідну в точці х, її називають диференційованою в точці х. Процедуру знаходження похідної функції у = f(x) називають диференціюваннямфункції у = f(x).

Обговоримо таке питання: як пов'язані між собою безперервність та диференційність функції у точці.

Нехай функція у = f(x) диференційована у точці х. Тоді до графіку функції в точці М(х; f(x)) можна провести дотичну, причому, нагадаємо, кутовий коефіцієнт дотичної дорівнює f"(x). Такий графік не може «розриватися» у точці М, тобто функція зобов'язана бути безперервною у точці х.

Це були міркування "на пальцях". Наведемо більш строгу міркування. Якщо функція у = f(x) диференційована в точці х, то виконується наближена рівність \(\Delta y \approx f"(x) \cdot \Delta x \). Якщо в цій рівності \(\Delta x \) спрямувати до нулю, то й \(\Delta y \) прагнутиме до нуля, а це і є умова безперервності функції в точці.

Отже, якщо функція диференційована у точці х, вона і безперервна у цій точці.

Зворотне твердження не так. Наприклад: функція у = | х | безперервна скрізь, зокрема у точці х = 0, але щодо графіку функції в «точці стику» (0; 0) не існує. Якщо деякій точці до графіку функції не можна провести дотичну, то цій точці немає похідна.

Ще один приклад. Функція \(y=\sqrt(x) \) безперервна на всій числовій прямій, у тому числі в точці х = 0. І дотична до графіка функції існує в будь-якій точці, у тому числі в точці х = 0. Але в цій точці дотична збігається з віссю у, тобто перпендикулярна осі абсцис, її рівняння має вигляд х = 0. Кутового коефіцієнтау такої прямої немає, значить, не існує і \(f"(0) \)

Отже, ми познайомилися з новою властивістю функції - диференціювання. А як за графіком функції можна дійти невтішного висновку про її диференційованості?

Відповідь фактично отримано вище. Якщо деякій точці до графіку функції можна провести дотичну, не перпендикулярну осі абсцис, то цій точці функція диференційована. Якщо у певній точці дотична до графіку функції немає чи вона перпендикулярна осі абсцис, то цій точці функція не диференційована.

Правила диференціювання

Операція знаходження похідної називається диференціюванням. За виконання цієї операції часто доводиться працювати з приватними, сумами, творами функцій, і навіть з «функціями функцій», тобто складними функціями. Виходячи з визначення похідної, можна вивести правила диференціювання, що полегшують роботу. Якщо C - постійне числоі f = f (x), g = g (x) - деякі функції, що диференціюються, то справедливі наступні правила диференціювання:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Похідна складної функції:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблиця похідних деяких функцій

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Наводиться доказ формули похідної складної функції. Детально розглянуті випадки, коли складна функція залежить від однієї та двох змінних. Проводиться узагальнення на випадок довільного числазмінних.

Тут ми наводимо висновок наступних формулдля похідної складної функції.
Якщо то
.
Якщо то
.
Якщо то
.

Похідна складної функції від однієї змінної

Нехай функцію від змінної x можна уявити як складну функцію у такому вигляді:
,
де є деякі функції. Функція диференційована при певному значенні змінної x.
Функція диференційована при значенні змінної.
(1) .

Тоді складна (складова) функція диференційована в точці x та її похідна визначається за формулою:
;
.

Формулу (1) також можна записати так:

Доведення
;
.
Введемо такі позначення.

Тут є функція від змінних та , є функція від змінних та .
;
.

Але ми опускатимемо аргументи цих функцій, щоб не захаращувати викладки.
.
Оскільки функції та диференційовані в точках x і відповідно, то в цих точках існують похідні цих функцій, які є наступними межами:
.
Розглянемо таку функцію:
.

При фіксованому значенні змінної u є функцією від .
.
Розглянемо таку функцію:
.

Очевидно, що

.

Тоді

Оскільки функція є функцією, що диференціюється в точці , то вона безперервна в цій точці. Тому

Тепер знаходимо похідну.
,
Формулу доведено.
.
Слідство

Якщо функцію від змінної x можна подати як складну функцію від складної функції
то її похідна визначається за формулою
.
Тут , і є деякі функції, що диференціюються.
.
Щоб довести цю формулу ми послідовно обчислюємо похідну за правилом диференціювання складної функції.
.
Тут , і є деякі функції, що диференціюються.
.

Розглянемо складну функцію

Її похідна Розглянемо вихідну функцію.

Нехай функцію , що залежить від змінної x , можна як складну функцію від двох змінних у вигляді:
,
де
і є функції, що диференціюються при деякому значенні змінної x ;
- Функція від двох змінних, що диференціюється в точці , .
(2) .

Формулу (1) також можна записати так:

Тоді складна функція визначена в деякій околиці точки і має похідну, яка визначається за формулою:
;
.
Тут
;
.
Оскільки функції і диференційовані в точці , то вони визначені в околицях цієї точки, безперервні в точці і існують їх похідні в точці , які є такими межами:
;
.

Через безперервність цих функцій у точці маємо:
(3) .
Тут

Оскільки функція диференційована в точці , то вона визначена в околиці цієї точки, безперервна в цій точці і її збільшення можна записати в наступному вигляді:
;

- збільшення функції при збільшенні її аргументів на величини і ;
- Приватні похідні функції по змінним та .
;
.
При фіксованих значеннях і і є функції від змінних і .
;
.

Вони прагнуть до нуля при і :

. :
.
Оскільки і , то



.

Тоді

Приріст функції:

Підставимо (3):

Похідна складної функції від кількох змінних Наведений вище висновок легко узагальнюється у разі, коли кількість змінних складної функції більше двох.Наприклад, якщо f є
,
де
функцією від трьох змінних
, то
, і є функції, що диференціюються при деякому значенні змінної x ;
(4)
.
- функція, що диференціюється, від трьох змінних, в точці , , .
; ; ,
Тоді, з визначення диференційності функції маємо:
;
;
.

Оскільки, через безперервність,
.

то Розділивши (4) на та виконавши граничний перехід, отримаємо: І, нарешті, розглянемо .
самий
,
де
загальний випадок
Нехай функцію від змінної x можна уявити як складну функцію від n змінних у такому вигляді:
, , ... , .
Розглянемо таку функцію:
.