Похідна поділу складної функції. Похідна складної функції

Якщо слідувати визначенню, то похідна функції у точці — це межа відношення збільшення функції Δ yдо збільшення аргументу Δ x:

Начебто все зрозуміло. Але спробуйте порахувати за цією формулою, скажімо, похідну функції f(x) = x 2 + (2x+ 3) · e x· sin x. Якщо все робити за визначенням, то через кілька сторінок обчислень ви просто заснете. Тому існують простіші та ефективніші способи.

Спочатку зазначимо, що з усього різноманіття функцій можна назвати звані елементарні функції. Це щодо прості вирази, похідні яких давно обчислені та занесені до таблиці. Такі функції досить просто запам'ятати — разом із їх похідними.

Похідні елементарних функцій

Елементарні функції – це все, що наведено нижче. Похідні цих функцій треба знати напам'ять. Тим більше, що завчити їх зовсім нескладно — на те вони й елементарні.

Отже, похідні елементарних функцій:

Назва Функція Похідна
Константа f(x) = C, CR 0 (так-так, нуль!)
Ступінь із раціональним показником f(x) = x n n · x n − 1
Сінус f(x) = sin x cos x
Косінус f(x) = cos x − sin x(мінус синус)
Тангенс f(x) = tg x 1/cos 2 x
Котангенс f(x) = ctg x − 1/sin 2 x
Натуральний логарифм f(x) = ln x 1/x
Довільний логарифм f(x) = log a x 1/(x· ln a)
Показова функція f(x) = e x e x(нічого не змінилося)

Якщо елементарну функцію помножити на довільну постійну, то похідна нової функції також легко вважається:

(C · f)’ = C · f ’.

Загалом константи можна виносити за знак похідної. Наприклад:

(2x 3)' = 2 · ( x 3)' = 2 · 3 x 2 = 6x 2 .

Очевидно, елементарні функції можна складати одна з одною, множити, ділити і багато іншого. Так з'являться нові функції, вже не особливо елементарні, але також диференційовані по певним правилам. Ці правила розглянуті нижче.

Похідна суми та різниці

Нехай дані функції f(x) та g(x), похідні яких нам відомі. Наприклад, можна взяти елементарні функції, розглянуті вище. Тоді можна знайти похідну суми та різниці цих функцій:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Отже, похідна суми (різниці) двох функцій дорівнює сумі (різниці) похідних. Доданків може бути більше. Наприклад, ( f + g + h)’ = f ’ + g ’ + h ’.

Строго кажучи, в алгебрі немає поняття «віднімання». Є поняття « негативний елемент». Тому різниця fgможна переписати як суму f+ (−1) · gі тоді залишиться лише одна формула — похідна суми.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Функція f(x) - це сума двох елементарних функцій, тому:

f ’(x) = (x 2 + sin x)’ = (x 2)' + (sin x)’ = 2x+ cos x;

Аналогічно міркуємо для функції g(x). Тільки там уже три доданки (з погляду алгебри):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Відповідь:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Похідна робота

Математика - наука логічна, тому багато хто вважає, що якщо похідна суми дорівнює сумі похідних, то похідна твори strike"> дорівнює твору похідних. А ось фіг вам! Похідна твори вважається зовсім за іншою формулою. А саме:

(f · g) ’ = f ’ · g + f · g

Формула проста, але її часто забувають. І не лише школярі, а й студенти. Результат – неправильно вирішені завдання.

Завдання. Знайти похідні функції: f(x) = x 3 · cos x; g(x) = (x 2 + 7x− 7) · e x .

Функція f(x) є твір двох елементарних функцій, тому все просто:

f ’(x) = (x 3 · cos x)’ = (x 3)' · cos x + x 3 · (cos x)’ = 3x 2 · cos x + x 3 · (− sin x) = x 2 · (3cos xx· sin x)

У функції g(x) перший множник трохи складніший, але загальна схемавід цього не змінюється. Очевидно, перший множник функції g(x) є багаточлен, і його похідна - це похідна суми. Маємо:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) · ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Відповідь:
f ’(x) = x 2 · (3cos xx· sin x);
g ’(x) = x(x+ 9) · e x .

Зверніть увагу, що на останньому етапі похідна розкладається на множники. Формально цього робити не потрібно, проте більшість похідних обчислюються не власними силами, а щоб дослідити функцію. А значить, далі похідна прирівнюватиметься до нуля, з'ясовуватимуться її знаки і так далі. Для такої справи краще мати вираз, розкладений на множники.

Якщо є дві функції f(x) та g(x), причому g(x) ≠ 0 на цікавій для нас безлічі, можна визначити нову функцію h(x) = f(x)/g(x). Для такої функції також можна знайти похідну:

Неслабо, так? Звідки взявся мінус? Чому g 2? А ось так! Це одна з самих складних формул- Без пляшки не розберешся. Тому краще вивчати її на конкретні приклади.

Завдання. Знайти похідні функції:

У чисельнику та знаменнику кожного дробу стоять елементарні функції, тому все, що нам потрібно – це формула похідної частки:


За традицією, розкладемо чисельник на множники — це значно спростить відповідь:

Складна функція - це не обов'язково формула завдовжки півкілометра. Наприклад, достатньо взяти функцію f(x) = sin xта замінити змінну x, скажімо, на x 2 + ln x. Вийде f(x) = sin ( x 2 + ln x) - це і є складна функція. Вона теж має похідну, проте знайти її за правилами, розглянутими вище, не вийде.

Як бути? У таких випадках допомагає заміна змінної та формула похідної складної функції:

f ’(x) = f ’(t) · t', якщо xзамінюється на t(x).

Як правило, з розумінням цієї формули справа ще сумніше, ніж з похідною приватного. Тому її теж краще пояснити на конкретних прикладах, докладним описомкожного кроку.

Завдання. Знайти похідні функції: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Зауважимо, що якщо у функції f(x) замість виразу 2 x+ 3 буде просто x, то вийде елементарна функція f(x) = e x. Тому робимо заміну: нехай 2 x + 3 = t, f(x) = f(t) = e t. Шукаємо похідну складної функції за формулою:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

А тепер – увага! Виконуємо зворотну заміну: t = 2x+ 3. Отримаємо:

f ’(x) = e t · t ’ = e 2x+ 3 · (2 x + 3)’ = e 2x+ 3 · 2 = 2 · e 2x + 3

Тепер розберемося із функцією g(x). Очевидно, треба замінити x 2 + ln x = t. Маємо:

g ’(x) = g ’(t) · t' = (sin t)’ · t' = cos t · t

Зворотна заміна: t = x 2 + ln x. Тоді:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

Ось і все! Як видно з останнього виразу, все завдання звелося до обчислення похідної суми

Відповідь:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) · cos ( x 2 + ln x).

Дуже часто на своїх уроках замість терміну "похідна" я використовую слово "штрих". Наприклад, штрих від суми дорівнює суміштрихів. Так зрозуміліше? Ну от і добре.

Таким чином, обчислення похідної зводиться до позбавлення цих самих штрихів за правилами, розглянутими вище. Як останнього прикладуповернемося до похідного ступеня з раціональним показником:

(x n)’ = n · x n − 1

Мало хто знає, що в ролі nцілком може виступати дробове число. Наприклад, корінь - це x 0,5. А що, коли під корінням стоятиме щось наворочене? Знову вийде складна функція – такі конструкції люблять давати на контрольні роботита екзаменах.

Завдання. Знайти похідну функції:

Для початку перепишемо корінь у вигляді ступеня з раціональним показником:

f(x) = (x 2 + 8x − 7) 0,5 .

Тепер робимо заміну: нехай x 2 + 8x − 7 = t. Знаходимо похідну за формулою:

f ’(x) = f ’(t) · t ’ = (t 0,5)' · t' = 0,5 · t−0,5 · t ’.

Робимо зворотну заміну: t = x 2 + 8x− 7. Маємо:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)' = 0,5 · (2 x+ 8) · ( x 2 + 8x − 7) −0,5 .

Нарешті, повертаємось до коріння:

Вирішувати фізичні завданняабо приклади з математики абсолютно неможливо без знань про похідну та методи її обчислення. Похідна - одна з найважливіших понять математичного аналізу. Цією фундаментальної темими вирішили присвятити сьогоднішню статтю. Що таке похідна, який її фізичний та геометричний змістЯк порахувати похідну функції? Всі ці питання можна поєднати в одне: як зрозуміти похідну?

Геометричний та фізичний зміст похідної

Нехай є функція f(x) , задана в певному інтервалі (a, b) . Точки х і х0 належать до цього інтервалу. При зміні х змінюється сама функція. Зміна аргументу – різниця його значень х-х0 . Ця різниця записується як дельта ікс і називається збільшенням аргументу. Зміною або збільшенням функції називається різниця значень функції у двох точках. Визначення похідної:

Похідна функції у точці – межа відношення збільшення функції у цій точці до збільшення аргументу, коли останнє прагне нулю.

Інакше це можна записати так:

Який сенс у знаходженні такої межі? А ось який:

похідна від функції в точці дорівнює тангенсу кута між віссю OX і щодо графіку функції в даній точці.


Фізичний змістпохідної: похідна шляхи за часом дорівнює швидкості прямолінійного руху.

Дійсно, ще зі шкільних часів всім відомо, що швидкість – це приватна дорога. x=f(t) та часу t . Середня швидкістьза деякий проміжок часу:

Щоб дізнатися швидкість руху в момент часу t0 потрібно обчислити межу:

Правило перше: виносимо константу

Константу можна винести за знак похідної. Більше того – це потрібно робити. При вирішенні прикладів математики візьміть за правило - якщо можете спростити вираз, обов'язково спрощуйте .

приклад. Обчислимо похідну:

Правило друге: похідна суми функцій

Похідна суми двох функцій дорівнює сумі похідних цих функцій. Те саме справедливо і для похідної різниці функцій.

Не наводитимемо доказ цієї теореми, а краще розглянемо практичний приклад.

Знайти похідну функції:

Правило третє: похідна робота функцій

Похідна твори двох функцій, що диференціюються, обчислюється за формулою:

Приклад: знайти похідну функції:

Рішення:

Тут важливо сказати про обчислення похідних складних функцій. Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.

У наведеному вище прикладі ми зустрічаємо вираз:

У даному випадкупроміжний аргумент - 8х у п'ятому ступені. Для того, щоб обчислити похідну такого виразу, спочатку вважаємо похідну. зовнішньої функціїза проміжним аргументом, а потім множимо на похідну безпосередньо самого проміжного аргументу незалежної змінної.

Правило четверте: похідна приватного двох функцій

Формула для визначення похідної від частки двох функцій:

Ми постаралися розповісти про похідні для чайників з нуля. Ця тема не така проста, як здається, тому попереджаємо: у прикладах часто зустрічаються пастки, так що будьте уважні при обчисленні похідних.

З будь-яким питанням з цієї та інших тем ви можете звернутися до студентського сервісу. За короткий термінми допоможемо вирішити найскладнішу контрольну та розібратися із завданнями, навіть якщо ви ніколи раніше не займалися обчисленням похідних.

Наводиться доказ формули похідної складної функції. Детально розглянуті випадки, коли складна функція залежить від однієї та двох змінних. Проводиться узагальнення на випадок довільного числазмінних.

Тут ми наводимо висновок наступних формулдля похідної складної функції.
Якщо , то
.
Якщо , то
.
Якщо , то
.

Похідна складної функції від однієї змінної

Нехай функцію від змінної x можна уявити як складну функцію в наступному вигляді:
,
де є деякі функції. Функція диференційована при певному значенні змінної x. Функція диференційована при значенні змінної.
Тоді складна (складова) функція диференційована в точці x та її похідна визначається за формулою:
(1) .

Формулу (1) також можна записати так:
;
.

Доказ

Введемо такі позначення.
;
.
Тут є функція від змінних та , є функція від змінних та . Але ми опускатимемо аргументи цих функцій, щоб не захаращувати викладки.

Оскільки функції та диференційовані в точках x і відповідно, то в цих точках існують похідні цих функцій, які є наступними межами:
;
.

Розглянемо таку функцію:
.
При фіксованому значенні змінної u є функцією від . Очевидно, що
.
Тоді
.

Оскільки функція є функцією, що диференціюється в точці , то вона безперервна в цій точці. Тому
.
Тоді
.

Тепер знаходимо похідну.

.

Формулу доведено.

Слідство

Якщо функцію від змінної x можна подати як складну функцію від складної функції
,
то її похідна визначається за формулою
.
Тут , і є деякі функції, що диференціюються.

Щоб довести цю формулу ми послідовно обчислюємо похідну за правилом диференціювання складної функції.
Розглянемо складну функцію
.
Її похідна
.
Розглянемо вихідну функцію
.
Її похідна
.

Похідна складної функції від двох змінних

Тепер нехай складна функція залежить від кількох змінних. Спочатку розглянемо випадок складної функції від двох змінних.

Нехай функцію , яка залежить від змінної x , можна як складну функцію від двох змінних у вигляді:
,
де
і є функції, що диференціюються при деякому значенні змінної x ;
- Функція від двох змінних, що диференціюється в точці , . Тоді складна функція визначена в деякій околиці точки і має похідну, яка визначається за формулою:
(2) .

Доказ

Оскільки функції і диференційовані в точці , то вони визначені в околицях цієї точки, безперервні в точці і існують їх похідні в точці , які є такими межами:
;
.
Тут
;
.
Через безперервність цих функцій у точці маємо:
;
.

Оскільки функція диференційована в точці , то вона визначена в околиці цієї точки, безперервна в цій точці і її збільшення можна записати в наступному вигляді:
(3) .
Тут

- збільшення функції при збільшенні її аргументів на величини і ;
;

- Приватні похідні функції по змінним та .
При фіксованих значеннях і і є функції від змінних і . Вони прагнуть до нуля при і :
;
.
Оскільки і , то
;
.

Приріст функції:

. :
.
Підставимо (3):



.

Формулу доведено.

Похідна складної функції від кількох змінних

Наведений вище висновок легко узагальнюється у разі, коли кількість змінних складної функції більше двох.

Наприклад, якщо f є функцією від трьох змінних, то
,
де
, і є функції, що диференціюються при деякому значенні змінної x ;
- функція, що диференціюється, від трьох змінних, в точці , , .
Тоді, з визначення диференційності функції маємо:
(4)
.
Оскільки, через безперервність,
; ; ,
то
;
;
.

Розділивши (4) на та виконавши граничний перехід, отримаємо:
.

І, нарешті, розглянемо самий загальний випадок .
Нехай функцію від змінної x можна уявити як складну функцію від n змінних у такому вигляді:
,
де
є функції, що диференціюються при деякому значенні змінної x ;
- диференційована функція від n змінних у точці
, , ... , .
Тоді
.

Визначення.Нехай функція \(y = f(x) \) визначена в деякому інтервалі, що містить у собі точку \(x_0 \). Дамо аргументу приріст (Delta x) таке, щоб не вийти з цього інтервалу. Знайдемо відповідне збільшення функції \(\Delta y \) (при переході від точки \(x_0 \) до точки \(x_0 + \Delta x \)) і складемо відношення \(\frac(\Delta y)(\Delta x) \). Якщо існує межа цього відношення при \(\Delta x \rightarrow 0 \), то вказану межу називають похідної функції\(y=f(x) \) у точці \(x_0 \) і позначають \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Для позначення похідної часто використовують символ y". Зазначимо, що y" = f(x) - це нова функціяале, природно, пов'язана з функцією y = f(x), визначена у всіх точках x, в яких існує зазначена вище межа. Цю функцію називають так: похідна функції у = f(x).

Геометричний зміст похідноїполягає у наступному. Якщо до графіку функції у = f(x) у точці з абсцисою х=a можна провести дотичну, непаралельну осі y, то f(a) виражає кутовий коефіцієнт дотичної:
\(k = f"(a) \)

Оскільки \(k = tg(a) \), то вірна рівність \(f"(a) = tg(a) \).

А тепер витлумачимо визначення похідної з погляду наближених рівностей. Нехай функція \(y = f(x) \) має похідну в конкретній точці \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Це означає, що біля точки х виконується наближена рівність \(\frac(\Delta y)(\Delta x) \approx f"(x) \), тобто \(\Delta y \approx f"(x) \cdot \Delta x \). Змістовний зміст отриманої наближеної рівності полягає в наступному: збільшення функції «майже пропорційно» збільшенню аргументу, причому коефіцієнтом пропорційності є значення похідної в заданій точціх. Наприклад, для функції \(y = x^2 \) справедливо наближена рівність \(\Delta y \approx 2x \cdot \Delta x \). Якщо уважно проаналізувати визначення похідної, ми виявимо, що у ньому закладено алгоритм її знаходження.

Сформулюємо його.

Як знайти похідну функції у = f (x)?

1. Зафіксувати значення \(x \), знайти \(f(x) \)
2. Дати аргументу \(x \) збільшення \(\Delta x \), перейти в нову точку\(x+ \Delta x \), знайти \(f(x+ \Delta x) \)
3. Знайти збільшення функції: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Скласти відношення \(\frac(\Delta y)(\Delta x) \)
5. Обчислити $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ця межа і є похідною функцією в точці x.

Якщо функція у = f(x) має похідну в точці х, її називають диференційованою в точці х. Процедуру знаходження похідної функції у = f(x) називають диференціюваннямфункції у = f(x).

Обговоримо таке питання: як пов'язані між собою безперервність та диференційність функції у точці.

Нехай функція у = f(x) диференційована у точці х. Тоді до графіку функції в точці М(х; f(x)) можна провести дотичну, причому, нагадаємо, кутовий коефіцієнт дотичної дорівнює f"(x). Такий графік не може «розриватися» у точці М, тобто функція зобов'язана бути безперервною у точці х.

Це були міркування "на пальцях". Наведемо більш строгу міркування. Якщо функція у = f(x) диференційована в точці х, то виконується наближена рівність \(\Delta y \approx f"(x) \cdot \Delta x \). Якщо в цій рівності \(\Delta x \) спрямувати до нулю, то й \(\Delta y \) прагнутиме до нуля, а це і є умова безперервності функції в точці.

Отже, якщо функція диференційована у точці х, вона і безперервна у цій точці.

Зворотне твердження не так. Наприклад: функція у = | х | безперервна скрізь, зокрема у точці х = 0, але щодо графіку функції в «точці стику» (0; 0) не існує. Якщо деякій точці до графіку функції не можна провести дотичну, то цій точці немає похідна.

Ще один приклад. Функція \(y=\sqrt(x) \) безперервна на всій числовій прямій, у тому числі в точці х = 0. І дотична до графіка функції існує в будь-якій точці, у тому числі в точці х = 0. Але в цій точці дотична збігається з віссю у, тобто перпендикулярна до осі абсцис, її рівняння має вигляд х = 0. Кутового коефіцієнтау такої прямої немає, значить, не існує і \(f"(0) \)

Отже, ми познайомилися з новою властивістю функції - диференціювання. А як за графіком функції можна дійти невтішного висновку про її диференційованості?

Відповідь фактично отримано вище. Якщо деякій точці до графіку функції можна провести дотичну, не перпендикулярну осі абсцис, то цій точці функція диференційована. Якщо у певній точці дотична до графіку функції немає чи вона перпендикулярна осі абсцис, то цій точці функція не диференційована.

Правила диференціювання

Операція знаходження похідної називається диференціюванням. За виконання цієї операції часто доводиться працювати з приватними, сумами, творами функцій, і навіть з «функціями функцій», тобто складними функціями. Виходячи з визначення похідної, можна вивести правила диференціювання, що полегшують роботу. Якщо C - постійне числоі f = f (x), g = g (x) - деякі функції, що диференціюються, то справедливі наступні правила диференціювання:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Похідна складної функції:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблиця похідних деяких функцій

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Функції складного виглядуякий завжди підходять під визначення складної функції. Якщо є функція виду y = sin x - (2 - 3) · r c t g x x 5 7 x 10 - 17 x 3 + x - 11, то її не можна вважати складною на відміну від y = sin 2 x.

Ця стаття покаже поняття складної функції та її виявлення. Попрацюємо з формулами знаходження похідної із прикладами рішень у висновку. Застосування таблиці похідних та правила диференціювання помітно зменшують час для знаходження похідної.

Yandex.RTB R-A-339285-1

Основні визначення

Визначення 1

Складною функцією вважається така функція, яка аргумент також є функцією.

Позначається це так: f (g (x)) . Маємо, що функція g(x) вважається аргументом f(g(x)).

Визначення 2

Якщо є функція f і є функцією котангенсу, тоді g(x) = ln x – це функція натурального логарифму. Отримуємо, що складна функція f(g(x)) запишеться як arctg(lnx). Або функція f є функцією зведеної в 4 ступінь, де g (x) = x 2 + 2 x - 3 вважається цілою раціональною функцією, Отримуємо, що f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, що g(x) може бути складною. З прикладу y = sin 2 x + 1 x 3 – 5 видно, що значення g має кубічний коріньз дробом. Даний виразможна позначати як y = f (f 1 (f 2 (x))) . Звідки маємо, що f - це функція синуса, а f 1 - функція, що розташовується під квадратним коренем, f 2 (x) = 2 x + 1 x 3 – 5 – дробова раціональна функція.

Визначення 3

Ступінь вкладеності визначено будь-яким натуральним числомі записується як y = f (f 1 (f 2 (f 3 (. . . (f n (x))))))))).

Визначення 4

Поняття композиція функції належить до кількості вкладених функцій за умовою завдання. Для вирішення використовується формула знаходження похідної складної функції виду

(f(g(x))) "=f"(g(x)) · g"(x)

Приклади

Приклад 1

Знайти похідну складної функції виду y = (2 x + 1) 2 .

Рішення

За умовою видно, що f є функцією зведення квадрат, а g (x) = 2 x + 1 вважається лінійною функцією.

Застосуємо формулу похідної для складної функції та запишемо:

f "(g (x)) = ((g (x)) 2)" = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 ​​x + 1); g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) "= f "(g (x)) · g "(x) = 2 · (2 ​​x + 1) · 2 = 8 x + 4

Необхідно знайти похідну зі спрощеним вихідним виглядом функції. Отримуємо:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Звідси маємо, що

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результати збіглися.

При вирішенні завдань такого виду важливо розуміти, де розташовуватиметься функція виду f і g (x) .

Приклад 2

Слід знайти похідні складних функцій виду y = sin 2 x та y = sin x 2 .

Рішення

Перший запис функції свідчить, що f є функцією зведення квадрат, а g (x) – функцією синуса. Тоді отримаємо, що

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Другий запис показує, що f є функцією синуса, а g(x) = x 2 позначаємо статечну функцію. Звідси випливає, що добуток складної функції запишемо як

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для похідної y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))))) запишеться як y " = f " (f 1 (f 2 (f 3 (. . .) f n (x)))))) · f 1 "(f 2 (f 3 (. . . (f n (x)))))) · · f 2 " (f 3 (. . . (f n (x))) )) · . . . · f n "(x)

Приклад 3

Знайти похідну функції y = sin (ln 3 a r c t g (2 x)).

Рішення

Даний приклад показує складність запису та визначення розташування функцій. Тоді y = f (f 1 (f 2 (f 3 (f 4 (x)))))) позначимо, де f , f 1 , f 2 , f 3 , f 4 (x) є функцією синуса, функцією зведення в 3 ступінь, функцією з логарифмом та основою е, функцією арктангенсу та лінійною.

З формули визначення складної функції маємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x)

Отримуємо, що слід знайти

  1. f" (f 1 (f 2 (f 3 (f 4 (x))))) як похідна синуса по таблиці похідних, тоді f " (f 1 (f 2 (f 3 (f 4 (x)))) ) = cos (ln 3 a r c t g (2 x)).
  2. f 1 "(f 2 (f 3 (f 4 (x)))) як похідну статечну функцію, тоді f 1 "(f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 a r c t g (2 x) = 3 · ln 2 a r c t g (2 x) .
  3. f 2 "(f 3 (f 4 (x))) як похідна логарифмічна, тоді f 2 "(f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 "(f 4 (x)) як похідний арктангенса, тоді f 3 "(f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При знаходженні похідної f 4 (x) = 2 x зробити винесення 2 за знак похідної із застосуванням формули похідної статечної функції з показником, що дорівнює 1 тоді f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Проводимо об'єднання проміжних результатів та отримуємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x) = = cos (ln 3 a r c t g (2 x)) · 3 · ln 2 a r c t g (2 x) · 1 a r c t g (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 a r c t g (2 x)) · ln 2 a r c t g (2 x) a r c t g (2 x) · (1 + 4 x 2)

Розбір таких функцій нагадує матрьошки. Правила диференціювання не завжди можуть бути застосовані у явному вигляді за допомогою таблиці похідних. Найчастіше потрібно застосовувати формулу знаходження похідних складних функцій.

Існують деякі відмінності складного виду складних функцій. При явному вмінні це розрізняти, знаходження похідних даватиме особливо легко.

Приклад 4

Необхідно розглянути на приведенні подібного прикладу. Якщо є функція виду y = t g 2 x + 3 t g x + 1 , тоді її можна розглянути як складний вид g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, що необхідне застосування формули для складної похідної:

f "(g (x)) = (g 2 (x) + 3 g (x) + 1)" = (g 2 (x)) "+ (3 g (x))" + 1 " = = 2 · g 2 - 1 (x) + 3 · g "(x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3; g "(x) = (t g x)" = 1 cos 2 x ⇒ y " = (f (g (x)))" = f "(g (x)) · g "(x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функція виду y = t g x 2 + 3 t g x + 1 не вважається складною, оскільки має суму t g x 2 3 t g x і 1 . Однак, t g x 2 вважається складною функцією, то отримуємо статечну функцію виду g (x) = x 2 і f є функцією тангенса. Для цього слід продиференціювати за сумою. Отримуємо, що

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 · (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Переходимо до знаходження похідної складної функції (t g x 2) " :

f "(g (x)) = (t g (g (x)))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g "(x) = (x 2)" = 2 · x 2 - 1 = 2 x ⇒ (t g x 2) "= f "(g (x)) · g "(x) = 2 x cos 2 (x 2)

Отримуємо, що y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функції складного виду можуть бути включені до складу складних функцій, причому самі складні функції можуть бути складовими складного функції.

Приклад 5

Наприклад розглянемо складну функцію виду y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Ця функція може бути представлена ​​у вигляді y = f (g (x)) , де значення f є функцією логарифму на підставі 3 , а g (x) вважається сумою двох функцій виду h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 і k(x) = ln 2 x · (x 2 + 1) . Очевидно, що y = f(h(x) + k(x)) .

Розглянемо функцію h(x) . Це відношення l(x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Маємо, що l(x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n(x) + p(x) є сумою двох функцій n(x) = x 2 + 7 та p(x) = 3 cos 3 (2 x + 1) , де p (x) = 3 · p 1 (p 2 (p 3 (x))) є складною функцією з числовим коефіцієнтом 3 а p 1 - функцією зведення в куб, p 2 функцією косинуса, p 3 (x) = 2 x + 1 – лінійною функцією.

Отримали, що m (x) = e x 2 + 3 3 = q (x) + r (x) є сумою двох функцій q (x) = e x 2 і r (x) = 3 3 де q (x) = q 1 (q 2 (x)) – складна функція, q 1 – функція з експонентою, q 2 (x) = x 2 – статечна функція.

Звідси видно, що h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

При переході до виразу виду k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, що функція представлена ​​у вигляді складної s (x) = ln 2 x = s 1 ( s 2 (x)) з цілою раціональною t (x) = x 2 + 1 , де s 1 є функцією зведення в квадрат, а s 2 (x) = ln x - логарифмічної з основою е.

Звідси випливає, що вираз набуде вигляду k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тоді отримаємо, що

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1) = = f n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

За структурами функції стало явно, як і які формули необхідно застосовувати для спрощення вираження за його диференціювання. Для ознайомлення подібних завданьі для поняття їх вирішення необхідно звернутися до пункту диференціювання функції, тобто знаходження її похідної.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter