Jak znaleźć pierwiastki równania kwadratowego. Równania kwadratowe


Kontynuujemy studiowanie tematu „ rozwiązywanie równań" Zapoznaliśmy się już z równaniami liniowymi i przechodzimy do zapoznania się z nimi równania kwadratowe.

Najpierw przyjrzymy się, czym jest równanie kwadratowe i jak się je zapisuje ogólna perspektywa, a my damy powiązane definicje. Następnie użyjemy przykładów, aby szczegółowo zbadać, w jaki sposób rozwiązuje się niekompletne równania kwadratowe. Przejdźmy do rozwiązania pełne równania, otrzymujemy wzór na pierwiastek, zapoznajemy się z dyskryminatorem równania kwadratowego i rozważamy rozwiązania typowe przykłady. Na koniec prześledźmy powiązania między pierwiastkami i współczynnikami.

Nawigacja strony.

Co to jest równanie kwadratowe? Ich typy

Najpierw musisz jasno zrozumieć, czym jest równanie kwadratowe. Dlatego logiczne jest rozpoczęcie rozmowy o równaniach kwadratowych od definicji równania kwadratowego, a także powiązanych definicji. Następnie możesz rozważyć główne typy równań kwadratowych: równania zredukowane i nieredukowane, a także równania pełne i niekompletne.

Definicja i przykłady równań kwadratowych

Definicja.

Równanie kwadratowe jest równaniem postaci a x 2 +b x+c=0, gdzie x jest zmienną, a, b i c to pewne liczby, a a jest różne od zera.

Powiedzmy od razu, że równania kwadratowe są często nazywane równaniami drugiego stopnia. Wynika to z faktu, że równanie kwadratowe jest równanie algebraiczne drugi stopień.

Podana definicja pozwala nam podać przykłady równań kwadratowych. Zatem 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0 itd. Są to równania kwadratowe.

Definicja.

Liczby a, b i c nazywane są współczynniki równania kwadratowego a·x 2 +b·x+c=0, a współczynnik a nazywany jest pierwszym lub najwyższym, lub współczynnikiem x 2, b jest drugim współczynnikiem, czyli współczynnikiem x, a c jest wyrazem wolnym .

Weźmy na przykład równanie kwadratowe w postaci 5 x 2 −2 x −3=0, tutaj współczynnik wiodący wynosi 5, drugi współczynnik jest równy −2, a wyraz wolny jest równy −3. Należy zauważyć, że gdy współczynniki b i/lub c są ujemne, jak w podanym przykładzie, wówczas skrócona forma zapisując równanie kwadratowe w postaci 5 x 2 −2 x−3=0, a nie 5 x 2 +(−2) x+(−3)=0.

Warto zauważyć, że gdy współczynniki a i/lub b są równe 1 lub -1, zwykle nie są one wyraźnie obecne w równaniu kwadratowym, co wynika ze specyfiki zapisywania takich . Na przykład w równaniu kwadratowym y 2 −y+3=0 współczynnik wiodący wynosi jeden, a współczynnik y jest równy −1.

Równania kwadratowe zredukowane i nieredukowane

W zależności od wartości współczynnika wiodącego rozróżnia się równania kwadratowe zredukowane i nieredukowane. Podajmy odpowiednie definicje.

Definicja.

Nazywa się równanie kwadratowe, w którym współczynnik wiodący wynosi 1 dane równanie kwadratowe. W W przeciwnym razie równanie kwadratowe to nietknięty.

Według tę definicję, równania kwadratowe x 2 −3·x+1=0, x 2 −x−2/3=0, itd. – podany, w każdym z nich pierwszy współczynnik równy jeden. A 5 x 2 −x−1=0 itd. - niezredukowane równania kwadratowe, ich współczynniki wiodące są różne od 1.

Z dowolnego niezredukowanego równania kwadratowego, dzieląc obie strony przez współczynnik wiodący, można przejść do równania zredukowanego. Działanie to jest transformacją równoważną, to znaczy otrzymane w ten sposób zredukowane równanie kwadratowe ma te same pierwiastki, co pierwotne nieredukowane równanie kwadratowe, lub podobnie jak ono nie ma pierwiastków.

Spójrzmy na przykład, jak dokonuje się przejścia z nieredukowanego równania kwadratowego do zredukowanego.

Przykład.

Z równania 3 x 2 +12 x−7=0 przejdź do odpowiedniego zredukowanego równania kwadratowego.

Rozwiązanie.

Musimy tylko podzielić obie strony pierwotnego równania przez wiodący współczynnik 3, jest on różny od zera, abyśmy mogli wykonać to działanie. Mamy (3 x 2 +12 x−7):3=0:3, czyli to samo, (3 x 2):3+(12 x):3−7:3=0, a następnie (3: 3) x 2 +(12:3) x−7:3=0, skąd . W ten sposób otrzymaliśmy zredukowane równanie kwadratowe, które jest równoważne pierwotnemu.

Odpowiedź:

Równania kwadratowe zupełne i niezupełne

Definicja równania kwadratowego zawiera warunek a≠0. Warunek ten jest niezbędny, aby równanie a x 2 + b x + c = 0 było kwadratowe, ponieważ gdy a = 0, faktycznie staje się równaniem liniowym w postaci b x + c = 0.

Jeśli chodzi o współczynniki b i c, mogą one być równe zero, zarówno indywidualnie, jak i razem. W takich przypadkach równanie kwadratowe nazywa się niekompletnym.

Definicja.

Nazywa się równaniem kwadratowym a x 2 +b x+c=0 niekompletny, jeżeli co najmniej jeden ze współczynników b, c równy zeru.

Z kolei

Definicja.

Pełne równanie kwadratowe jest równaniem, w którym wszystkie współczynniki są różne od zera.

Takie nazwy nie zostały nadane przypadkowo. Stanie się to jasne po następujących dyskusjach.

Jeżeli współczynnik b wynosi zero, to równanie kwadratowe przyjmuje postać a·x 2 +0·x+c=0 i jest równoważne równaniu a·x 2 +c=0. Jeżeli c=0, czyli równanie kwadratowe ma postać a·x 2 +b·x+0=0, to można je przepisać jako a·x 2 +b·x=0. A przy b=0 i c=0 otrzymujemy równanie kwadratowe a·x 2 =0. Powstałe równania różnią się od pełnego równania kwadratowego tym, że ich lewa strona nie zawiera ani wyrazu ze zmienną x, ani wyrazu wolnego, ani obu. Stąd ich nazwa - niepełne równania kwadratowe.

Zatem równania x 2 +x+1=0 i −2 x 2 −5 x+0,2=0 są przykładami pełnych równań kwadratowych, a x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 są niepełnymi równaniami kwadratowymi.

Rozwiązywanie niepełnych równań kwadratowych

Z informacji zawartych w poprzednim akapicie wynika, że ​​tak trzy typy niepełnych równań kwadratowych:

  • a·x 2 =0, odpowiadają temu współczynniki b=0 i c=0;
  • a x 2 +c=0 gdy b=0 ;
  • i a·x 2 +b·x=0, gdy c=0.

Przyjrzyjmy się po kolei, jak rozwiązuje się niepełne równania kwadratowe każdego z tych typów.

a x 2 = 0

Zacznijmy od rozwiązania niepełnych równań kwadratowych, w których współczynniki b i c są równe zeru, czyli równań w postaci a x 2 =0. Równanie a·x 2 =0 jest równoważne równaniu x 2 =0, które otrzymuje się z oryginału poprzez podzielenie obu części przez niezerową liczbę a. Oczywiście pierwiastek równania x 2 = 0 wynosi zero, ponieważ 0 2 = 0. Równanie to nie ma innych pierwiastków, co tłumaczy się faktem, że dla dowolnej niezerowej liczby p zachodzi nierówność p 2 > 0, co oznacza, że ​​dla p ≠0 równość p 2 = 0 nigdy nie jest osiągnięta.

Zatem niekompletne równanie kwadratowe a·x 2 =0 ma pojedynczy pierwiastek x=0.

Jako przykład podajemy rozwiązanie niepełnego równania kwadratowego -4 x 2 =0. Jest to równoważne równaniu x 2 = 0, jego jedynym pierwiastkiem jest x = 0, dlatego pierwotne równanie ma pojedynczy pierwiastek zero.

Można napisać krótkie rozwiązanie w tym przypadku w następujący sposób:
−4 x 2 =0 ,
x2 =0,
x=0 .

ax2 +c=0

Przyjrzyjmy się teraz, jak rozwiązuje się niepełne równania kwadratowe, w których współczynnik b wynosi zero, a c≠0, czyli równania w postaci a x 2 +c=0. Wiemy, że przeniesienie terminu z jednej strony równania na drugą odbywa się za pomocą przeciwny znak, a także podzielenie obu stron równania przez liczbę różną od zera daje równanie równoważne. Dlatego możemy wykonać następujące czynności równoważne transformacje niepełne równanie kwadratowe a x 2 +c=0 :

  • przesuń c na prawą stronę, co daje równanie a x 2 =−c,
  • i dzielimy obie strony przez a, otrzymujemy .

Otrzymane równanie pozwala nam wyciągnąć wnioski na temat jego pierwiastków. W zależności od wartości a i c wartość wyrażenia może być ujemna (na przykład, jeśli a=1 i c=2, to ) lub dodatnia (na przykład, jeśli a=−2 i c=6, wtedy ), to nie jest zero , ponieważ zgodnie z warunkiem c≠0. Przyjrzyjmy się przypadkom osobno.

Jeśli , to równanie nie ma pierwiastków. To stwierdzenie wynika z faktu, że kwadrat dowolnej liczby jest liczbą nieujemną. Wynika z tego, że gdy , to dla dowolnej liczby p równość nie może być prawdziwa.

Jeśli , to sytuacja z pierwiastkami równania jest inna. W tym przypadku, jeśli pamiętamy o , to pierwiastek równania od razu staje się oczywisty, jest to liczba, ponieważ . Łatwo zgadnąć, że liczba ta jest w istocie także pierwiastkiem równania. Równanie to nie ma innych pierwiastków, co można wykazać na przykład przez sprzeczność. Zróbmy to.

Oznaczmy pierwiastki równania właśnie ogłoszonego jako x 1 i −x 1 . Załóżmy, że równanie ma jeszcze jeden pierwiastek x 2, inny niż wskazane pierwiastki x 1 i −x 1. Wiadomo, że podstawienie jego pierwiastków do równania zamiast x powoduje, że równanie staje się poprawną równością liczbową. Dla x 1 i −x 1 mamy , a dla x 2 mamy . Właściwości równości liczbowych pozwalają nam na odejmowanie wartości wyraz po wyrazie równości numeryczne, zatem odejmowanie odpowiednich części równości daje x 1 2 −x 2 2 =0. Właściwości operacji na liczbach pozwalają nam zapisać otrzymaną równość jako (x 1 −x 2)·(x 1 +x 2)=0. Wiemy, że iloczyn dwóch liczb jest równy zero wtedy i tylko wtedy, gdy przynajmniej jedna z nich jest równa zero. Zatem z otrzymanej równości wynika, że ​​x 1 −x 2 =0 i/lub x 1 +x 2 =0, czyli to samo, x 2 =x 1 i/lub x 2 =−x 1. Doszliśmy więc do sprzeczności, ponieważ na początku powiedzieliśmy, że pierwiastek równania x 2 jest różny od x 1 i −x 1. To dowodzi, że równanie nie ma innych pierwiastków niż i .

Podsumujmy informacje zawarte w tym akapicie. Niekompletne równanie kwadratowe a x 2 +c=0 jest równoważne równaniu to

  • nie ma korzeni, jeśli ,
  • ma dwa pierwiastki i , jeśli .

Rozważmy przykłady rozwiązywania niepełnych równań kwadratowych postaci a·x 2 +c=0.

Zacznijmy od równania kwadratowego 9 x 2 +7=0. Po przesunięciu wyrazu wolnego na prawą stronę równania przyjmie on postać 9 x 2 =−7. Dzieląc obie strony otrzymanego równania przez 9, otrzymujemy . Ponieważ prawa strona ma liczbę ujemną, równanie to nie ma pierwiastków, dlatego pierwotne niekompletne równanie kwadratowe 9 x 2 +7 = 0 nie ma pierwiastków.

Rozwiążmy kolejne niekompletne równanie kwadratowe −x 2 +9=0. Przesuwamy dziewiątkę w prawą stronę: −x 2 = −9. Teraz dzielimy obie strony przez -1, otrzymujemy x 2 = 9. Po prawej stronie jest Liczba dodatnia, z czego wnioskujemy, że lub . Następnie zapisujemy ostateczną odpowiedź: niepełne równanie kwadratowe −x 2 +9=0 ma dwa pierwiastki x=3 lub x=−3.

ax2 +bx=0

Pozostaje zająć się rozwiązaniem ostatniego typu niepełnych równań kwadratowych dla c=0. Niekompletne równania kwadratowe postaci a x 2 + b x = 0 pozwalają rozwiązać metoda faktoryzacji. Oczywiście możemy, znajdując się po lewej stronie równania, dla którego wystarczy wyjąć to z nawiasów wspólny mnożnik X. Pozwala nam to przejść od pierwotnego niepełnego równania kwadratowego do równoważnego równania w postaci x·(a·x+b)=0. Równanie to jest równoważne zbiorowi dwóch równań x=0 i a·x+b=0, z których drugie jest liniowe i ma pierwiastek x=−b/a.

Zatem niepełne równanie kwadratowe a·x 2 +b·x=0 ma dwa pierwiastki x=0 i x=−b/a.

Aby skonsolidować materiał, przeanalizujemy rozwiązanie na konkretnym przykładzie.

Przykład.

Rozwiązać równanie.

Rozwiązanie.

Usunięcie x z nawiasów daje równanie . Jest to równoważne dwóm równaniom x=0 i . Rozwiązywanie tego, co mamy równanie liniowe: i wykonanie podziału pomieszane numery NA ułamek wspólny, znaleźliśmy . Dlatego pierwiastki pierwotnego równania to x=0 i .

Po nabyciu niezbędnej praktyki rozwiązania takich równań można w skrócie zapisać:

Odpowiedź:

x=0 , .

Dyskryminator, wzór na pierwiastki równania kwadratowego

Aby rozwiązać równania kwadratowe, istnieje wzór na pierwiastek. Zapiszmy to wzór na pierwiastki równania kwadratowego: , Gdzie D=b 2 −4 za do- tak zwana dyskryminator równania kwadratowego. Wpis zasadniczo oznacza, że ​​.

Warto wiedzieć, w jaki sposób wyprowadzono wzór na pierwiastek i jak można go wykorzystać do znalezienia pierwiastków równań kwadratowych. Rozwiążmy to.

Wyprowadzenie wzoru na pierwiastki równania kwadratowego

Musimy rozwiązać równanie kwadratowe a·x 2 +b·x+c=0. Wykonajmy kilka równoważnych przekształceń:

  • Możemy podzielić obie strony tego równania przez niezerową liczbę a, uzyskując następujące równanie kwadratowe.
  • Teraz podkreślmy idealny kwadrat po lewej stronie: . Następnie równanie przyjmie postać .
  • Na tym etapie możliwe jest przeniesienie dwóch ostatnich wyrazów na prawą stronę z przeciwnym znakiem, mamy .
  • Przekształćmy także wyrażenie po prawej stronie: .

W efekcie otrzymujemy równanie równoważne pierwotnemu równaniu kwadratowemu a·x 2 +b·x+c=0.

Rozwiązaliśmy już równania o podobnej formie w poprzednie akapity kiedy to rozebrali. To pozwala ci to zrobić następujące wnioski dotyczące pierwiastków równania:

  • jeśli , to równanie nie ma słuszne rozwiązania;
  • jeżeli , to równanie ma zatem postać , z której widoczny jest jedyny jego pierwiastek;
  • jeśli , to lub , co jest tym samym co lub , to znaczy równanie ma dwa pierwiastki.

Zatem obecność lub brak pierwiastków równania, a zatem pierwotnego równania kwadratowego, zależy od znaku wyrażenia po prawej stronie. Z kolei znak tego wyrażenia wyznacza znak licznika, gdyż mianownik 4·a 2 jest zawsze dodatni, czyli znak wyrażenia b 2 −4·a·c. To wyrażenie b 2 −4 a c zostało nazwane dyskryminator równania kwadratowego i oznaczony literą D. Stąd jasna jest istota dyskryminatora – na podstawie jego wartości i znaku wnioskują, czy równanie kwadratowe ma prawdziwe korzenie, a jeśli tak, to jaka jest ich liczba - jeden czy dwa.

Wróćmy do równania i przepiszmy je stosując notację dyskryminacyjną: . I wyciągamy wnioski:

  • jeśli D<0 , то это уравнение не имеет действительных корней;
  • jeśli D=0, to równanie to ma jeden pierwiastek;
  • wreszcie, jeśli D>0, to równanie ma dwa pierwiastki lub, co można zapisać w postaci lub, oraz po rozwinięciu i sprowadzeniu ułamków do wspólny mianownik otrzymujemy .

Wyprowadziliśmy więc wzory na pierwiastki równania kwadratowego, które wyglądają jak , gdzie dyskryminator D oblicza się ze wzoru D=b 2 −4·a·c.

Za ich pomocą, z dodatnim dyskryminatorem, możesz obliczyć oba pierwiastki rzeczywiste równania kwadratowego. Gdy dyskryminator jest równy zero, oba wzory dają tę samą wartość pierwiastka, co odpowiada jednoznacznemu rozwiązaniu równania kwadratowego. I kiedy dyskryminator negatywny próbując skorzystać ze wzoru na pierwiastki równania kwadratowego, mamy do czynienia z ekstrakcją pierwiastek kwadratowy od liczby ujemnej, co prowadzi nas poza i program nauczania. W przypadku ujemnego dyskryminatora równanie kwadratowe nie ma rzeczywistych pierwiastków, ale ma parę złożony koniugat korzenie, które można znaleźć, korzystając z tych samych wzorów na pierwiastki, które otrzymaliśmy.

Algorytm rozwiązywania równań kwadratowych za pomocą wzorów pierwiastkowych

W praktyce przy rozwiązywaniu równań kwadratowych można od razu skorzystać ze wzoru na pierwiastek w celu obliczenia ich wartości. Ale jest to bardziej związane ze znalezieniem złożonych korzeni.

Jednak w kurs szkolny zwykle algebra mówimy o nie o kompleksie, ale o rzeczywistych pierwiastkach równania kwadratowego. W takim przypadku wskazane jest, aby przed użyciem wzorów na pierwiastki równania kwadratowego najpierw znaleźć dyskryminator, upewnić się, że jest on nieujemny (w przeciwnym razie możemy stwierdzić, że równanie nie ma pierwiastków rzeczywistych), i dopiero wtedy obliczyć wartości pierwiastków.

Powyższe rozumowanie pozwala nam pisać algorytm rozwiązywania równania kwadratowego. Aby rozwiązać równanie kwadratowe a x 2 +b x+c=0, należy:

  • korzystając ze wzoru dyskryminacyjnego D=b 2 −4·a·c oblicz jego wartość;
  • wywnioskować, że równanie kwadratowe nie ma pierwiastków rzeczywistych, jeśli wyróżnik jest ujemny;
  • obliczyć jedyny pierwiastek równania ze wzoru, jeśli D=0;
  • znajdź dwa rzeczywiste pierwiastki równania kwadratowego, korzystając ze wzoru na pierwiastek, jeśli wyróżnik jest dodatni.

Tutaj po prostu zauważamy, że jeśli dyskryminator jest równy zero, możesz również użyć wzoru; da on tę samą wartość co .

Można przejść do przykładów zastosowania algorytmu rozwiązywania równań kwadratowych.

Przykłady rozwiązywania równań kwadratowych

Rozważmy rozwiązania trzech równań kwadratowych z dodatnim, ujemnym i równy zeru dyskryminujący. Po zapoznaniu się z ich rozwiązaniem analogicznie możliwe będzie rozwiązanie dowolnego innego równania kwadratowego. Zaczynajmy.

Przykład.

Znajdź pierwiastki równania x 2 +2·x−6=0.

Rozwiązanie.

W tym przypadku mamy następujące współczynniki równania kwadratowego: a=1, b=2 i c=−6. Zgodnie z algorytmem należy najpierw obliczyć dyskryminator, w tym celu podstawiamy wskazane a, b i c do wzoru dyskryminacyjnego, mamy D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Ponieważ 28>0, czyli dyskryminator jest większy od zera, równanie kwadratowe ma dwa pierwiastki rzeczywiste. Znajdźmy je za pomocą wzoru głównego, otrzymamy , tutaj możesz uprościć wynikowe wyrażenia, wykonując przesunięcie mnożnika poza znak pierwiastka a następnie redukcja ułamka:

Odpowiedź:

Przejdźmy do następnego typowego przykładu.

Przykład.

Rozwiąż równanie kwadratowe −4 x 2 +28 x−49=0 .

Rozwiązanie.

Zaczynamy od znalezienia dyskryminatora: D=28 2 −4·(−4)·(−49)=784−784=0. Dlatego to równanie kwadratowe ma jeden pierwiastek, który znajdujemy jako , to znaczy

Odpowiedź:

x=3,5.

Pozostaje rozważyć rozwiązanie równań kwadratowych z ujemnym dyskryminatorem.

Przykład.

Rozwiąż równanie 5·y 2 +6·y+2=0.

Rozwiązanie.

Oto współczynniki równania kwadratowego: a=5, b=6 i c=2. Podstawiamy te wartości do wzoru dyskryminacyjnego, mamy D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Dyskryminator jest ujemny, dlatego to równanie kwadratowe nie ma rzeczywistych pierwiastków.

Jeśli chcesz wskazać złożone korzenie, wtedy aplikujemy dobrze znana formuła pierwiastki równania kwadratowego i wykonaj działania z Liczby zespolone :

Odpowiedź:

nie ma prawdziwych korzeni, złożone korzenie to: .

Zauważmy jeszcze raz, że jeśli dyskryminator równania kwadratowego jest ujemny, to w szkole zwykle od razu zapisują odpowiedź, w której wskazują, że nie ma pierwiastków rzeczywistych i nie znaleziono pierwiastków zespolonych.

Wzór na pierwiastek dla parzystych drugich współczynników

Wzór na pierwiastki równania kwadratowego, gdzie D=b 2 −4·a·c pozwala otrzymać wzór w postaci bardziej zwartej, pozwalającej na rozwiązywanie równań kwadratowych z parzystym współczynnikiem dla x (lub po prostu z współczynnik mający na przykład postać 2·n lub 14·ln5=2,7·ln5 ). Wyciągnijmy ją.

Powiedzmy, że musimy rozwiązać równanie kwadratowe w postaci a x 2 +2 n x+c=0. Znajdźmy jego korzenie, korzystając ze znanego nam wzoru. W tym celu obliczamy dyskryminator D=(2 n) 2 −4 za c=4 n 2 −4 za c=4 (n 2 −a do), a następnie korzystamy ze wzoru na pierwiastek:

Oznaczmy wyrażenie n 2 −ac jako D 1 (czasami jest to oznaczone jako D „). Następnie wzór na pierwiastki rozważanego równania kwadratowego z drugim współczynnikiem 2 n przyjmie postać , gdzie D 1 = n 2 −a·c.

Łatwo zauważyć, że D=4·D 1, czyli D 1 =D/4. Innymi słowy, D 1 jest czwartą częścią dyskryminatora. Jest oczywiste, że znak D 1 jest taki sam jak znak D . Oznacza to, że znak D 1 jest również wskaźnikiem obecności lub braku pierwiastków równania kwadratowego.

Zatem, aby rozwiązać równanie kwadratowe z drugim współczynnikiem 2·n, potrzebujesz

  • Oblicz D 1 = n 2 −a·c ;
  • Jeśli D1<0 , то сделать вывод, что действительных корней нет;
  • Jeśli D 1 = 0, to oblicz jedyny pierwiastek równania, korzystając ze wzoru;
  • Jeśli D 1 > 0, to znajdź dwa pierwiastki rzeczywiste, korzystając ze wzoru.

Rozważmy rozwiązanie przykładu, korzystając ze wzoru na pierwiastek uzyskanego w tym akapicie.

Przykład.

Rozwiąż równanie kwadratowe 5 x 2 −6 x −32=0 .

Rozwiązanie.

Drugi współczynnik tego równania można przedstawić jako 2·(−3) . Oznacza to, że możesz przepisać pierwotne równanie kwadratowe w postaci 5 x 2 +2 (−3) x−32=0, tutaj a=5, n=−3 i c=−32 i obliczyć czwartą część dyskryminujący: re 1 = n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Ponieważ jego wartość jest dodatnia, równanie ma dwa rzeczywiste pierwiastki. Znajdźmy je, korzystając z odpowiedniego wzoru na pierwiastek:

Należy zauważyć, że możliwe było użycie zwykłego wzoru na pierwiastki równania kwadratowego, ale w tym przypadku konieczne byłoby wykonanie większej pracy obliczeniowej.

Odpowiedź:

Upraszczanie postaci równań kwadratowych

Czasami przed przystąpieniem do obliczania pierwiastków równania kwadratowego za pomocą wzorów nie zaszkodzi zadać pytanie: „Czy można uprościć postać tego równania?” Zgadzam się, że pod względem obliczeniowym łatwiej będzie rozwiązać równanie kwadratowe 11 x 2 −4 x−6=0 niż 1100 x 2 −400 x−600=0.

Zazwyczaj uproszczenie postaci równania kwadratowego osiąga się poprzez pomnożenie lub podzielenie obu stron przez określoną liczbę. Na przykład w poprzednim akapicie można było uprościć równanie 1100 x 2 −400 x −600=0 dzieląc obie strony przez 100.

Podobną transformację przeprowadza się za pomocą równań kwadratowych, których współczynniki nie są . W tym przypadku zwykle dzielimy obie strony równania przez Wartości bezwzględne jego współczynniki. Weźmy na przykład równanie kwadratowe 12 x 2 −42 x+48=0. wartości bezwzględne jego współczynników: NWD(12, 42, 48)= NWD(12, 42), 48)= NWD(6, 48)=6. Dzieląc obie strony pierwotnego równania kwadratowego przez 6, otrzymujemy równoważne równanie kwadratowe 2 x 2 −7 x+8=0.

Mnożenie obu stron równania kwadratowego jest zwykle wykonywane w celu pozbycia się współczynników ułamkowych. W tym przypadku mnożenie odbywa się przez mianowniki jego współczynników. Na przykład, jeśli obie strony równania kwadratowego pomnożymy przez LCM(6, 3, 1)=6, wówczas przyjmiemy prostszą postać x 2 +4·x−18=0.

Podsumowując ten punkt, zauważamy, że prawie zawsze pozbywają się minusa przy najwyższym współczynniku równania kwadratowego, zmieniając znaki wszystkich wyrazów, co odpowiada mnożeniu (lub dzieleniu) obu stron przez -1. Na przykład zwykle przechodzi się od równania kwadratowego −2 x 2 −3 x+7=0 do rozwiązania 2 x 2 +3 x−7=0 .

Zależność pierwiastków i współczynników równania kwadratowego

Wzór na pierwiastki równania kwadratowego wyraża pierwiastki równania poprzez jego współczynniki. Na podstawie wzoru pierwiastkowego można uzyskać inne zależności między pierwiastkami a współczynnikami.

Najbardziej znane i mające zastosowanie wzory z twierdzenia Viety mają postać i . W szczególności dla danego równania kwadratowego suma pierwiastków jest równa drugiemu współczynnikowi o przeciwnym znaku, a iloczyn pierwiastków jest równy członowi swobodnemu. Na przykład patrząc na postać równania kwadratowego 3 x 2 −7 x + 22 = 0, możemy od razu powiedzieć, że suma jego pierwiastków wynosi 7/3, a iloczyn pierwiastków wynosi 22 /3.

Korzystając z już napisanych wzorów, można uzyskać szereg innych powiązań między pierwiastkami i współczynnikami równania kwadratowego. Na przykład sumę kwadratów pierwiastków równania kwadratowego można wyrazić poprzez jego współczynniki: .

Bibliografia.

  • Algebra: podręcznik dla 8 klasy. ogólne wykształcenie instytucje / [Yu. N. Makaryczew, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; edytowany przez SA Telyakovsky. - wyd. 16. - M.: Edukacja, 2008. - 271 s. : chory. - ISBN 978-5-09-019243-9.
  • Mordkovich A.G. Algebra. 8 klasa. O 14:00 Część 1. Podręcznik dla studentów instytucje edukacyjne/ A. G. Mordkovich. - wyd. 11, usunięte. - M.: Mnemosyne, 2009. - 215 s.: il. ISBN 978-5-346-01155-2.

Wiejska szkoła średnia Kopyevskaya

10 sposobów rozwiązywania równań kwadratowych

Kierownik: Patrikeeva Galina Anatolyevna,

nauczyciel matematyki

wieś Kopewo, 2007

1. Historia rozwoju równań kwadratowych

1.1 Równania kwadratowe w starożytnym Babilonie

1.2 Jak Diofantos układał i rozwiązywał równania kwadratowe

1.3 Równania kwadratowe w Indiach

1.4 Równania kwadratowe al-Khorezmiego

1.5 Równania kwadratowe w Europie XIII - XVII wiek

1.6 O twierdzeniu Viety

2. Metody rozwiązywania równań kwadratowych

Wniosek

Literatura

1. Historia rozwoju równań kwadratowych

1.1 Równania kwadratowe w starożytnym Babilonie

Konieczność rozwiązywania równań nie tylko pierwszego, ale także drugiego stopnia w starożytności wynikała z konieczności rozwiązywania problemów związanych ze znajdowaniem pól działki oraz z robotami ziemnymi o charakterze wojskowym, a także z rozwojem samej astronomii i matematyki. Równania kwadratowe można było rozwiązać około 2000 roku p.n.e. mi. Babilończycy.

Korzystając ze współczesnej notacji algebraicznej, możemy powiedzieć, że w ich tekstach klinowych oprócz niekompletnych znajdują się na przykład pełne równania kwadratowe:

X 2 + X = ¾; X 2 - X = 14,5

Zasada rozwiązywania tych równań, podana w tekstach babilońskich, zasadniczo pokrywa się ze współczesną, nie wiadomo jednak, w jaki sposób Babilończycy doszli do tej reguły. Prawie wszystkie odnalezione dotychczas teksty klinowe podają jedynie problemy z rozwiązaniami zawartymi w formie przepisów, bez wskazania, w jaki sposób je odnaleziono.

Pomimo wysoki poziom rozwoju algebry w Babilonie, w tekstach klinowych brakuje pojęcia liczby ujemnej metody ogólne rozwiązywanie równań kwadratowych.

1.2 Jak Diofantos układał i rozwiązywał równania kwadratowe.

Arytmetyka Diofantosa nie zawiera systematycznego przedstawienia algebry, ale zawiera systematyczny szereg problemów, którym towarzyszą wyjaśnienia i które są rozwiązywane poprzez konstruowanie równań różnego stopnia.

Układając równania, Diofant umiejętnie wybiera niewiadome, aby uprościć rozwiązanie.

Oto na przykład jedno z jego zadań.

Problem 11.„Znajdź dwie liczby, wiedząc, że ich suma wynosi 20, a ich iloczyn wynosi 96”

Diofant rozumuje następująco: z warunków zadania wynika, że ​​wymagane liczby nie są równe, gdyż gdyby były równe, ich iloczyn nie byłby równy 96, ale 100. Zatem jedna z nich będzie więcej niż połowa ich kwoty, tj. 10 + x, drugi jest mniejszy, tj. 10-te. Różnica między nimi 2x .

Stąd równanie:

(10 + x)(10 - x) = 96

100 - x 2 = 96

x 2 - 4 = 0 (1)

Stąd x = 2. Jedna z wymaganych liczb jest równa 12 , Inny 8 . Rozwiązanie x = -2 gdyż Diofantos nie istnieje, gdyż grecka matematyka znała tylko liczby dodatnie.

Jeśli rozwiążemy ten problem, wybierając jedną z wymaganych liczb jako niewiadomą, wówczas dojdziemy do rozwiązania równania

y(20 - y) = 96,

y 2 - 20 lat + 96 = 0. (2)


Oczywiste jest, że wybierając połowę różnicy wymaganych liczb jako niewiadomą, Diofant upraszcza rozwiązanie; udaje mu się sprowadzić problem do rozwiązania niepełnego równania kwadratowego (1).

1.3 Równania kwadratowe w Indiach

Zagadnienia równań kwadratowych można znaleźć już w traktacie astronomicznym „Aryabhattiam”, opracowanym w 499 r. przez indyjskiego matematyka i astronoma Aryabhattę. Opisał to inny indyjski naukowiec, Brahmagupta (VII w.). główna zasada rozwiązania równań kwadratowych zredukowane do jednej postaci kanonicznej:

aha 2 + B x = c, a > 0. (1)

W równaniu (1) współczynniki, z wyjątkiem A, może być również ujemna. Reguła Brahmagupty jest zasadniczo taka sama jak nasza.

W Starożytne Indie powszechne były publiczne konkursy w rozwiązywaniu problemów trudne zadania. Jedna ze starych indyjskich ksiąg tak mówi o takich konkursach: „Jak słońce swym blaskiem przyćmiewa gwiazdy, tak samo uczony człowiek przyćmi chwałę innego zgromadzenia ludowe, proponowanie i rozwiązywanie problemów algebraicznych.” Problemy często przedstawiano w formie poetyckiej.

Jest to jeden z problemów słynnego indyjskiego matematyka z XII wieku. Bhaskars.

Problem 13.

„Stado rozbrykanych małp i dwanaście wzdłuż winorośli...

Władze po zjedzeniu dobrze się bawiły. Zaczęli skakać, wieszać się...

Są ich na placu, część 8. Ile było małp?

Bawiłem się na polanie. Powiedz mi, w tej paczce?

Rozwiązanie Bhaskary wskazuje, że wiedział on, że pierwiastki równań kwadratowych są dwuwartościowe (ryc. 3).

Równanie odpowiadające problemowi 13 to:

( X /8) 2 + 12 = X

Bhaskara pisze pod przykrywką:

x 2 - 64x = -768

i uzupełnić lewa strona tego równania do kwadratu, dodaje się do obu stron 32 2 , następnie otrzymanie:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Równania kwadratowe w al - Khorezmi

W traktacie algebraicznym al-Khorezmiego podana jest klasyfikacja równań liniowych i kwadratowych. Autor wyróżnia 6 rodzajów równań, wyrażając je w następujący sposób:

1) „Kwadraty są równe pierwiastkom”, tj. topór 2 + c = B X.

2) „Kwadraty są równe liczbom”, tj. topór 2 = ok.

3) „Pierwiastki są równe liczbie”, tj. ah = s.

4) „Kwadraty i liczby są równe pierwiastkom”, tj. topór 2 + c = B X.

5) „Kwadraty i pierwiastki są równe liczbom”, tj. aha 2 + bx = s.

6) „Pierwiastki i liczby są równe kwadratom”, tj. bx + do = topór 2 .

Dla al-Khorezmiego, który unikał konsumpcji liczby ujemne, wyrazy każdego z tych równań są dodawane, a nie odejmowane. W tym przypadku równania, których nie ma pozytywne decyzje. Autor podaje metody rozwiązywania tych równań wykorzystując techniki al-jabra i al-muqabala. Jego decyzje oczywiście nie są całkowicie zbieżne z naszymi. Nie wspominając, że jest to czysto retoryczne, należy zauważyć na przykład, że przy rozwiązywaniu niepełnego równania kwadratowego pierwszego typu

al-Khorezmi, jak wszyscy matematycy aż do XVII wieku, nie bierze pod uwagę rozwiązanie zerowe, prawdopodobnie dlatego, że konkretnie problemy praktyczne to nie ma znaczenia. Przy rozwiązywaniu pełnych równań kwadratowych al-Khorezmi na częściowym przykłady numeryczne podaje zasady rozwiązania, a następnie dowody geometryczne.

Problem 14.„Kwadrat i liczba 21 są równe 10 pierwiastkom. Znajdź korzeń” (co oznacza pierwiastek równania x 2 + 21 = 10x).

Rozwiązanie autora wygląda mniej więcej tak: podziel liczbę pierwiastków na pół, otrzymasz 5, pomnóż 5 przez siebie, odejmij 21 od iloczynu, zostanie 4. Weź pierwiastek z 4, otrzymasz 2. Odejmij 2 od 5 , otrzymasz 3, będzie to pożądany korzeń. Lub dodaj 2 do 5, co daje 7, to także jest pierwiastek.

Traktat al-Khorezmi jest pierwszą książką, która do nas dotarła, która systematycznie określa klasyfikację równań kwadratowych i podaje wzory na ich rozwiązanie.

1.5 Równania kwadratowe w Europie XIII - XVII nocleg ze śniadaniem

Wzory rozwiązywania równań kwadratowych na wzór al-Khwarizmi w Europie zostały po raz pierwszy przedstawione w Księdze liczydła, napisanej w 1202 roku przez włoskiego matematyka Leonarda Fibonacciego. To obszerne dzieło, które odzwierciedla wpływ matematyki, zarówno krajów islamskich, jak i Starożytna Grecja, wyróżnia się zarówno kompletnością, jak i przejrzystością prezentacji. Autor samodzielnie opracował kilka nowych przykłady algebraiczne rozwiązywania problemów i jako pierwszy w Europie wprowadził liczby ujemne. Jego książka przyczyniła się do szerzenia wiedzy algebraicznej nie tylko we Włoszech, ale także w Niemczech, Francji i innych krajach europejskich. Wiele problemów z Księgi liczydła zostało przeniesionych na prawie wszystkie Podręczniki europejskie XVI - XVII wiek i częściowo XVIII.

Ogólna zasada rozwiązywania równań kwadratowych zredukowana do jednej postaci kanonicznej:

x2+ bx = c,

dla wszystkich możliwych kombinacji znaków współczynników B , Z została sformułowana w Europie dopiero w 1544 roku przez M. Stiefela.

Wyprowadzenie wzoru na rozwiązanie równania kwadratowego w postaci ogólnej jest dostępne u Viète, ale Viète rozpoznał tylko pierwiastki dodatnie. Włoscy matematycy Tartaglia, Cardano, Bombelli byli jednymi z pierwszych w XVI wieku. Biorą pod uwagę, oprócz pozytywów, i korzenie negatywne. Dopiero w XVII w. Dzięki pracom Girarda, Kartezjusza, Newtona i innych naukowców metoda rozwiązywania równań kwadratowych nabiera nowoczesnej formy.

1.6 O twierdzeniu Viety

Twierdzenie wyrażające związek współczynników równania kwadratowego z jego pierwiastkami, nazwane na cześć Viety, zostało przez niego po raz pierwszy sformułowane w 1591 r. w następujący sposób: „Jeśli B + D, pomnożone przez A - A 2 , równa się BD, To A równa się W i równe D ».

Aby zrozumieć Vietę, powinniśmy o tym pamiętać A, jak każda litera samogłoskowa, oznaczało nieznane (nasz X), samogłoski W, D- współczynniki dla niewiadomych. W języku współczesnej algebry powyższe sformułowanie Vieta oznacza: jeśli istnieje

(+ B )x - x 2 = ok ,

x 2 - (a + B )x + a B = 0,

x 1 = a, x 2 = B .

Wyrażanie zależności pomiędzy pierwiastkami i współczynnikami równań ogólne formuły pisane za pomocą symboli, Wietnam ustalił jednolitość metod rozwiązywania równań. Jednak symbolika Viet jest wciąż daleka od nowoczesny wygląd. Nie rozpoznawał liczb ujemnych, dlatego przy rozwiązywaniu równań brał pod uwagę tylko przypadki, w których wszystkie pierwiastki były dodatnie.

2. Metody rozwiązywania równań kwadratowych

Równania kwadratowe są podstawą, na której się opiera majestatyczny budynek algebra. Równania kwadratowe są szeroko stosowane w rozwiązywaniu równań i nierówności trygonometrycznych, wykładniczych, logarytmicznych, niewymiernych i przestępnych. Wszyscy wiemy, jak rozwiązywać równania kwadratowe od szkoły (8 klasa) aż do ukończenia szkoły.

Samouczek wideo 2: Rozwiązywanie równań kwadratowych

Wykład: Równania kwadratowe


Równanie

Równanie- jest to rodzaj równości, w wyrażeniach których występuje zmienna.

Rozwiązać równanie- oznacza znalezienie liczby zamiast zmiennej, która doprowadzi ją do prawidłowej równości.

Równanie może mieć jedno rozwiązanie, kilka lub wcale.

Aby rozwiązać dowolne równanie należy je maksymalnie uprościć do postaci:

Liniowy: a*x = b;

Kwadrat: a*x 2 + b*x + do = 0.

Oznacza to, że przed rozwiązaniem wszelkie równania należy przekształcić do postaci standardowej.

Każde równanie można rozwiązać na dwa sposoby: analitycznie i graficznie.

Na wykresie za rozwiązanie równania uważa się punkty, w których wykres przecina oś OX.

Równania kwadratowe


Równanie można nazwać kwadratowym, jeśli po uproszczeniu ma postać:

a*x 2 + b*x + do = 0.

W której a, b, c są współczynnikami równania różniącymi się od zera. A "X"- pierwiastek równania. Uważa się, że równanie kwadratowe ma dwa pierwiastki lub może w ogóle nie mieć rozwiązania. Powstałe korzenie mogą być takie same.

"A"- współczynnik stojący przed pierwiastkiem kwadratowym.

"B"- stoi przed nieznanym w pierwszym stopniu.

"Z" jest wolnym wyrazem równania.

Jeśli na przykład mamy równanie postaci:

2x 2 -5x+3=0

W nim „2” jest współczynnikiem wiodącego składnika równania, „-5” jest drugim współczynnikiem, a „3” jest terminem wolnym.

Rozwiązywanie równania kwadratowego

Istnieje ogromna różnorodność sposoby rozwiązywania równań kwadratowych. Jednak na szkolnych zajęciach z matematyki rozwiązanie jest badane przy użyciu twierdzenia Viety, a także przy użyciu dyskryminatora.

Rozwiązanie dyskryminacyjne:

Podczas rozwiązywania za pomocą Ta metoda należy obliczyć dyskryminator korzystając ze wzoru:

Jeśli podczas obliczeń okaże się, że dyskryminator jest mniejszy od zera, oznacza to, że to równanie nie ma rozwiązań.

Jeśli dyskryminator wynosi zero, wówczas równanie ma dwa identyczne rozwiązania. W takim przypadku wielomian można zwinąć za pomocą skróconego wzoru na mnożenie do kwadratu sumy lub różnicy. Następnie rozwiąż to jako równanie liniowe. Lub skorzystaj ze wzoru:

Jeśli dyskryminator jest większy od zera, należy zastosować następującą metodę:

Twierdzenie Viety


Jeśli podano równanie, to znaczy współczynnik składnika wiodącego jest równy jeden, można go użyć Twierdzenie Viety.

Załóżmy więc, że równanie wygląda następująco:

Pierwiastki równania znajdują się w następujący sposób:

Niekompletne równanie kwadratowe

Istnieje kilka opcji uzyskania niepełnego równania kwadratowego, którego forma zależy od obecności współczynników.

1. Jeśli drugi i trzeci współczynnik wynoszą zero (b = 0, c = 0), wówczas równanie kwadratowe będzie wyglądać następująco:

To równanie będzie miało jedyna decyzja. Równość będzie prawdziwa tylko wtedy, gdy rozwiązaniem równania będzie zero.

Równanie postaci

Wyrażenie D= b 2 - 4 ak zwany dyskryminujący równanie kwadratowe. JeśliD = 0, wówczas równanie ma jeden pierwiastek rzeczywisty; jeśli D> 0, to równanie ma dwa pierwiastki rzeczywiste.
W razie D = 0 , czasami mówi się, że równanie kwadratowe ma dwa identyczne pierwiastki.
Używając notacji D= b 2 - 4 ak, możemy przepisać wzór (2) do postaci

Jeśli B= 2 tys, wówczas wzór (2) przyjmuje postać:

Gdzie k= b / 2 .
Ta ostatnia formuła jest szczególnie wygodna w przypadkach, gdy B / 2 - liczba całkowita, tj. współczynnik B - Liczba parzysta.
Przykład 1: Rozwiązać równanie 2 X 2 - 5x + 2 = 0 . Tutaj a = 2, b = -5, c = 2. Mamy D= b 2 - 4 ak = (-5) 2- 4*2*2 = 9 . Ponieważ D > 0 , to równanie ma dwa pierwiastki. Znajdźmy je za pomocą wzoru (2)

Więc X 1 =(5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
to jest X 1 = 2 I X 2 = 1 / 2 - korzenie dla dane równanie.
Przykład 2: Rozwiązać równanie 2 X 2 - 3x + 5 = 0 . Tutaj a = 2, b = -3, c = 5. Znalezienie wyróżnika D= b 2 - 4 ak = (-3) 2- 4*2*5 = -31 . Ponieważ D 0 , to równanie nie ma rzeczywistych pierwiastków.

Niekompletne równania kwadratowe. Jeśli w równaniu kwadratowym topór 2 +bx+c =0 drugi współczynnik B lub wolny członek C jest równa zero, wówczas nazywa się równanie kwadratowe niekompletny. Niekompletne równania są izolowane, ponieważ aby znaleźć ich pierwiastki, nie trzeba używać wzoru na pierwiastki równania kwadratowego - łatwiej jest rozwiązać równanie, rozkładając na czynniki jego lewą stronę.
Przykład 1: Rozwiązać równanie 2 X 2 - 5x = 0 .
Mamy X(2x - 5) = 0 . Więc albo X = 0 , Lub 2 X - 5 = 0 , to jest X = 2.5 . Zatem równanie ma dwa pierwiastki: 0 I 2.5
Przykład 2: Rozwiązać równanie 3 X 2 - 27 = 0 .
Mamy 3 X 2 = 27 . Dlatego pierwiastki tego równania są 3 I -3 .

Twierdzenie Viety. Jeśli zredukowane równanie kwadratowe X 2 +px+q =0 ma rzeczywiste pierwiastki, to ich suma jest równa - P, a iloczyn jest równy Q, to jest

x 1 + x 2 = -p,
x 1 x 2 = q

(suma pierwiastków powyższego równania kwadratowego jest równa drugiemu współczynnikowi przyjętemu z przeciwnym znakiem, a iloczyn pierwiastków jest równy członowi swobodnemu).

Tylko. Według formuł i jasnych, prostych zasad. Na pierwszym etapie

niezbędny dane równanie prowadzić do standardowy widok, tj. do formularza:

Jeśli równanie zostało już Ci podane w tej formie, nie musisz wykonywać pierwszego etapu. Najważniejsze jest, aby zrobić to dobrze

wyznaczyć wszystkie współczynniki, A, B I C.

Wzór na znalezienie pierwiastków równania kwadratowego.

Wyrażenie pod znakiem głównym nazywa się dyskryminujący . Jak widać, aby znaleźć X, musimy

Używamy tylko a, b i c. Te. współczynniki z równanie kwadratowe. Po prostu ostrożnie go włóż

wartości a, b i c Obliczamy według tego wzoru. Zastępujemy przez ich oznaki!

Na przykład, w równaniu:

A =1; B = 3; C = -4.

Podstawiamy wartości i piszemy:

Przykład jest prawie rozwiązany:

To jest odpowiedź.

Najczęstszymi błędami są pomyłki z wartościami znaków a, b I Z. A raczej z substytucją

wartości ujemne we wzorze na obliczenie pierwiastków. Tutaj na ratunek przychodzi szczegółowy zapis formuły

Z konkretne liczby. Jeśli masz problemy z obliczeniami, zrób to!

Załóżmy, że musimy rozwiązać następujący przykład:

Tutaj A = -6; B = -5; C = -1

Opisujemy wszystko szczegółowo, dokładnie, nie pomijając niczego ze wszystkimi znakami i nawiasami:

Równania kwadratowe często wyglądają nieco inaczej. Na przykład tak:

Teraz zwróć uwagę na praktyczne techniki, które radykalnie zmniejszają liczbę błędów.

Pierwsze spotkanie. Nie bądź leniwy wcześniej rozwiązanie równania kwadratowego doprowadź go do standardowej formy.

Co to znaczy?

Załóżmy, że po wszystkich przekształceniach otrzymamy następujące równanie:

Nie spiesz się z zapisaniem formuły głównej! Prawie na pewno pomylisz szanse a, b i c.

Zbuduj poprawnie przykład. Najpierw X do kwadratu, potem bez kwadratu, a następnie wyraz wolny. Lubię to:

Pozbądź się minusa. Jak? Musimy pomnożyć całe równanie przez -1. Otrzymujemy:

Ale teraz możesz bezpiecznie zapisać wzór na pierwiastki, obliczyć dyskryminator i zakończyć rozwiązywanie przykładu.

Zdecyduj sam. Powinieneś teraz mieć pierwiastki 2 i -1.

Recepcja druga. Sprawdź korzenie! Przez Twierdzenie Viety.

Aby rozwiązać podane równania kwadratowe, tj. jeśli współczynnik

x 2 +bx+c=0,

Następniex 1 x 2 = ok

x 1 + x 2 =−B

Dla pełnego równania kwadratowego, w którym a≠1:

x2+Bx+C=0,

podzielić całe równanie przez A:

Gdzie x 1 I X 2 - pierwiastki równania.

Recepcja trzecia. Jeśli twoje równanie ma ułamkowe szanse, - pozbądź się ułamków! Zwielokrotniać

równanie ze wspólnym mianownikiem.

Wniosek. Praktyczne porady:

1. Przed rozwiązaniem doprowadzamy równanie kwadratowe do postaci standardowej i budujemy je Prawidłowy.

2. Jeśli przed kwadratem X znajduje się współczynnik ujemny, eliminujemy go, mnożąc wszystko

równania przez -1.

3. Jeśli współczynniki są ułamkowe, eliminujemy ułamki, mnożąc całe równanie przez odpowiednie

czynnik.

4. Jeśli x kwadrat jest czyste, a jego współczynnik wynosi jeden, rozwiązanie można łatwo sprawdzić