Okrąg trygonometryczny z wartościami ujemnymi. Koło liczbowe

W V wieku p.n.e. starożytny grecki filozof Zenon z Elei sformułował swoje słynne aporie, z których najsłynniejszą jest aporia „Achilles i żółw”. Oto jak to brzmi:

Załóżmy, że Achilles biegnie dziesięć razy szybciej niż żółw i jest o tysiąc kroków za nim. W czasie, jaki potrzebuje Achilles na pokonanie tej odległości, żółw wykona sto kroków w tym samym kierunku. Kiedy Achilles przebiegnie sto kroków, żółw czołga się przez kolejne dziesięć kroków i tak dalej. Proces ten będzie trwał w nieskończoność, Achilles nigdy nie dogoni żółwia.

To rozumowanie stało się logicznym szokiem dla wszystkich kolejnych pokoleń. Arystoteles, Diogenes, Kant, Hegel, Hilbert... Wszyscy oni w ten czy inny sposób rozważali aporię Zenona. Wstrząs był tak silny, że „ ... dyskusje trwają do dziś, w środowisku naukowym nie udało się jeszcze dojść do wspólnej opinii co do istoty paradoksów ... w badaniu tego zagadnienia zaangażowano analizę matematyczną, teorię mnogości, nowe podejścia fizyczne i filozoficzne ; żaden z nich nie stał się ogólnie przyjętym rozwiązaniem problemu...„[Wikipedia, „Aporia Zenona”. Każdy rozumie, że daje się oszukać, ale nikt nie rozumie, na czym to oszustwo polega.

Z matematycznego punktu widzenia Zenon w swoich aporiach wyraźnie pokazał przejście od ilości do. To przejście oznacza zastosowanie, a nie trwałe. O ile rozumiem, aparat matematyczny do stosowania zmiennych jednostek miary albo nie został jeszcze opracowany, albo nie został zastosowany do aporii Zenona. Stosowanie naszej zwykłej logiki prowadzi nas w pułapkę. My, ze względu na bezwładność myślenia, do wartości odwrotności stosujemy stałe jednostki czasu. Z fizycznego punktu widzenia wygląda to na spowolnienie czasu, aż do całkowitego zatrzymania się w momencie, gdy Achilles dogoni żółwia. Jeśli czas się zatrzyma, Achilles nie będzie już w stanie przegonić żółwia.

Jeśli odwrócimy naszą zwykłą logikę, wszystko ułoży się na swoim miejscu. Achilles biegnie ze stałą prędkością. Każdy kolejny odcinek jego ścieżki jest dziesięć razy krótszy od poprzedniego. W związku z tym czas poświęcony na jego pokonanie jest dziesięć razy krótszy niż poprzedni. Jeśli zastosujemy w tej sytuacji koncepcję „nieskończoności”, wówczas słuszne będzie stwierdzenie: „Achilles nieskończenie szybko dogoni żółwia”.

Jak uniknąć tej logicznej pułapki? Pozostań w stałych jednostkach czasu i nie przełączaj się na jednostki odwrotne. W języku Zenona wygląda to tak:

W czasie, jaki zajmie Achillesowi przebiegnięcie tysiąca kroków, żółw wykona sto kroków w tym samym kierunku. W następnym odstępie czasowym, równym pierwszemu, Achilles przebiegnie kolejne tysiąc kroków, a żółw przeczołga się sto kroków. Teraz Achilles jest osiemset kroków przed żółwiem.

Podejście to adekwatnie opisuje rzeczywistość, bez żadnych logicznych paradoksów. Ale to nie jest pełne rozwiązanie problemu. Stwierdzenie Einsteina o nieodpartej prędkości światła jest bardzo podobne do aporii Zenona „Achilles i żółw”. Musimy jeszcze przestudiować, przemyśleć i rozwiązać ten problem. A rozwiązania należy szukać nie w nieskończenie dużych liczbach, ale w jednostkach miary.

Kolejna interesująca aporia Zenona opowiada o lecącej strzałce:

Lecąca strzała jest nieruchoma, ponieważ w każdej chwili jest w spoczynku, a ponieważ jest w spoczynku w każdej chwili, jest zawsze w spoczynku.

W tej aporii paradoks logiczny zostaje przezwyciężony w bardzo prosty sposób - wystarczy wyjaśnić, że w każdym momencie lecąca strzała znajduje się w spoczynku w różnych punktach przestrzeni, co w rzeczywistości jest ruchem. Należy tutaj zwrócić uwagę na jeszcze jedną kwestię. Na podstawie jednego zdjęcia samochodu na drodze nie da się określić ani faktu jego ruchu, ani odległości do niego. Aby ustalić, czy samochód się porusza, potrzebne są dwa zdjęcia wykonane z tego samego punktu w różnych momentach w czasie, ale nie można określić odległości od nich. Aby określić odległość do samochodu, potrzebujesz dwóch zdjęć zrobionych z różnych punktów przestrzeni w tym samym momencie, ale na ich podstawie nie można określić faktu ruchu (oczywiście nadal potrzebujesz dodatkowych danych do obliczeń, trygonometria ci pomoże ). To na co chcę zwrócić szczególną uwagę to fakt, że dwa punkty w czasie i dwa punkty w przestrzeni to różne rzeczy, których nie należy mylić, gdyż dają odmienne możliwości badawcze.

środa, 4 lipca 2018 r

Różnice między zestawem a zestawem wielokrotnym są bardzo dobrze opisane w Wikipedii. Zobaczmy.

Jak widać „w zestawie nie mogą być dwa identyczne elementy”, ale jeśli w zestawie znajdują się identyczne elementy, taki zbiór nazywa się „multizbiorem”. Rozsądne istoty nigdy nie zrozumieją tak absurdalnej logiki. To jest poziom gadających papug i tresowanych małp, które nie mają inteligencji od słowa „całkowicie”. Matematycy zachowują się jak zwykli trenerzy, wmawiając nam swoje absurdalne pomysły.

Dawno, dawno temu inżynierowie, którzy zbudowali most, pływali łodzią pod mostem podczas testowania mostu. Jeśli most się zawali, przeciętny inżynier zginął pod gruzami swojego dzieła. Jeśli most wytrzymał obciążenie, utalentowany inżynier zbudował inne mosty.

Bez względu na to, jak matematycy ukrywają się za zwrotem „pamiętaj, jestem w domu” lub raczej „matematyka bada pojęcia abstrakcyjne”, istnieje jedna pępowina, która nierozerwalnie łączy ich z rzeczywistością. Ta pępowina to pieniądze. Zastosujmy matematyczną teorię mnogości do samych matematyków.

Bardzo dobrze uczyliśmy się matematyki, a teraz siedzimy przy kasie i wypłacamy pensje. Tak więc matematyk przychodzi do nas po swoje pieniądze. Odliczamy mu całą kwotę i układamy ją na naszym stole w różnych stosach, do których wkładamy banknoty o tym samym nominale. Następnie bierzemy po jednym rachunku z każdego stosu i dajemy matematykowi jego „matematyczny zestaw wynagrodzeń”. Wyjaśnijmy matematykowi, że resztę rachunków otrzyma dopiero wtedy, gdy udowodni, że zbiór bez identycznych elementów nie jest równy zbiorowi z identycznymi elementami. Tutaj zaczyna się zabawa.

Przede wszystkim sprawdzi się logika posłów: „Można to zastosować do innych, ale nie do mnie!” Wtedy zaczną nas uspokajać, że banknoty o tym samym nominale mają różne numery banknotów, a co za tym idzie, nie można ich uważać za te same elementy. OK, policzmy pensje w monetach - na monetach nie ma cyfr. Tutaj matematyk zacznie gorączkowo przypominać sobie fizykę: różne monety mają różną ilość brudu, struktura kryształu i układ atomów jest dla każdej monety unikalna...

I teraz mam najciekawsze pytanie: gdzie jest granica, za którą elementy multizbioru zamieniają się w elementy zbioru i odwrotnie? Taka linia nie istnieje – o wszystkim decydują szamani, nauka nawet nie jest bliska kłamstwa.

Popatrz tutaj. Wybieramy stadiony piłkarskie o tej samej powierzchni boiska. Pola pól są takie same - co oznacza, że ​​mamy multizbiór. Ale jeśli spojrzymy na nazwy tych samych stadionów, otrzymamy wiele, ponieważ nazwy są różne. Jak widać, ten sam zbiór elementów jest jednocześnie zbiorem i multizbiorem. Który jest poprawny? I tu matematyk-szaman-sostrzysta wyciąga z rękawa asa atutowego i zaczyna nam opowiadać albo o zestawie, albo o wielokrotności. W każdym razie przekona nas, że ma rację.

Aby zrozumieć, jak współcześni szamani operują teorią mnogości, wiążąc ją z rzeczywistością, wystarczy odpowiedzieć na jedno pytanie: czym różnią się elementy jednego zbioru od elementów innego zbioru? Pokażę ci, bez żadnego „wyobrażalnego jako pojedyncza całość” lub „niewyobrażalnego jako pojedyncza całość”.

Niedziela, 18 marca 2018 r

Suma cyfr liczby to taniec szamanów z tamburynem, który nie ma nic wspólnego z matematyką. Tak, na lekcjach matematyki uczy się nas znajdować sumę cyfr liczby i posługiwać się nią, ale po to są szamani, aby uczyć swoich potomków swoich umiejętności i mądrości, w przeciwnym razie szamani po prostu wymrą.

Czy potrzebujesz dowodu? Otwórz Wikipedię i spróbuj znaleźć stronę „Suma cyfr liczby”. Ona nie istnieje. W matematyce nie ma wzoru, za pomocą którego można by znaleźć sumę cyfr dowolnej liczby. Przecież liczby to symbole graficzne, za pomocą których piszemy liczby, a w języku matematyki zadanie brzmi tak: „Znajdź sumę symboli graficznych reprezentujących dowolną liczbę”. Matematycy nie potrafią rozwiązać tego problemu, ale szamani mogą to zrobić z łatwością.

Zastanówmy się, co i jak zrobić, aby znaleźć sumę cyfr danej liczby. I tak otrzymamy liczbę 12345. Co należy zrobić, aby znaleźć sumę cyfr tej liczby? Rozważmy wszystkie kroki w kolejności.

1. Zapisz numer na kartce papieru. Co my zrobiliśmy? Przekonwertowaliśmy liczbę na graficzny symbol liczbowy. To nie jest operacja matematyczna.

2. Jeden powstały obraz wycinamy na kilka obrazków zawierających indywidualne liczby. Cięcie obrazu nie jest operacją matematyczną.

3. Zamień poszczególne symbole graficzne na liczby. To nie jest operacja matematyczna.

4. Dodaj powstałe liczby. Teraz to jest matematyka.

Suma cyfr liczby 12345 wynosi 15. Są to „kursy krojenia i szycia”, prowadzone przez szamanów, z których korzystają matematycy. Ale to nie wszystko.

Z matematycznego punktu widzenia nie ma znaczenia, w jakim systemie liczbowym zapiszemy liczbę. Zatem w różnych systemach liczbowych suma cyfr tej samej liczby będzie inna. W matematyce system liczbowy jest oznaczony jako indeks dolny po prawej stronie liczby. Przy dużej liczbie 12345, nie chcę oszukiwać głowy, rozważmy liczbę 26 z artykułu o. Zapiszmy tę liczbę w systemie binarnym, ósemkowym, dziesiętnym i szesnastkowym. Nie będziemy patrzeć na każdy krok pod mikroskopem, już to zrobiliśmy. Spójrzmy na wynik.

Jak widać, w różnych systemach liczbowych suma cyfr tej samej liczby jest inna. Wynik ten nie ma nic wspólnego z matematyką. To tak, jakby wyznaczając pole prostokąta w metrach i centymetrach, otrzymałbyś zupełnie inne wyniki.

Zero wygląda tak samo we wszystkich systemach liczbowych i nie ma sumy cyfr. To kolejny argument przemawiający za tym, że. Pytanie do matematyków: jak w matematyce oznacza się coś, co nie jest liczbą? Co, dla matematyków nie istnieje nic poza liczbami? Mogę na to pozwolić szamanom, ale nie naukowcom. Rzeczywistość to nie tylko liczby.

Uzyskany wynik należy uznać za dowód, że systemy liczbowe są jednostkami miary liczb. W końcu nie możemy porównywać liczb o różnych jednostkach miary. Jeśli te same działania z różnymi jednostkami miary tej samej wielkości prowadzą do różnych wyników po ich porównaniu, to nie ma to nic wspólnego z matematyką.

Czym jest prawdziwa matematyka? Dzieje się tak wtedy, gdy wynik operacji matematycznej nie zależy od wielkości liczby, użytej jednostki miary i tego, kto wykonuje tę czynność.

Znak na drzwiach Otwiera drzwi i mówi:

Oh! Czy to nie jest damska toaleta?
- Młoda kobieta! To laboratorium do badania niedefilicznej świętości dusz podczas ich wznoszenia się do nieba! Aureola na górze i strzałka w górę. Jaka inna toaleta?

Kobieta... Aureola na górze i strzałka w dół oznaczają mężczyznę.

Jeśli takie dzieło sztuki projektowej przelatuje Ci przed oczami kilka razy dziennie,

Nic więc dziwnego, że nagle w swoim samochodzie znajdujesz dziwną ikonę:

Osobiście staram się widzieć minus cztery stopnie u osoby robiącej kupę (jeden obrazek) (kompozycja kilku obrazków: znak minus, cyfra cztery, oznaczenie stopni). I nie sądzę, że ta dziewczyna jest głupia, która nie zna fizyki. Ma po prostu silny stereotyp postrzegania obrazów graficznych. A matematycy uczą nas tego cały czas. Oto przykład.

1A nie oznacza „minus cztery stopnie” ani „jeden a”. To jest „kupujący człowiek” lub liczba „dwadzieścia sześć” w zapisie szesnastkowym. Osoby, które stale pracują w tym systemie liczbowym, automatycznie postrzegają cyfrę i literę jako jeden symbol graficzny.

Jeśli już zapoznałeś się z okrąg trygonometryczny , a chcesz po prostu odświeżyć sobie pamięć o pewnych elementach, albo zupełnie się niecierpliwisz, to oto on:

Tutaj przeanalizujemy wszystko szczegółowo krok po kroku.

Koło trygonometryczne nie jest luksusem, ale koniecznością

Trygonometria Wielu osobom kojarzy się z nieprzeniknioną gęstwiną. Nagle tak wiele wartości funkcji trygonometrycznych, tak wiele wzorów się nawarstwiło… Ale jakby na początku nie wyszło i… jedziemy… kompletne nieporozumienie…

Bardzo ważne jest, aby się nie poddawać wartości funkcji trygonometrycznych, - mówią, zawsze możesz spojrzeć na ostrogę z tabelą wartości.

Jeśli ciągle patrzysz na tabelę z wartościami wzorów trygonometrycznych, pozbądźmy się tego nawyku!

On nam pomoże! Będziesz z nim pracować kilka razy, a potem pojawi się w Twojej głowie. W czym jest lepszy od stołu? Tak, w tabeli znajdziesz ograniczoną liczbę wartości, ale na okręgu - WSZYSTKO!

Powiedz na przykład, patrząc standardowa tabela wartości wzorów trygonometrycznych , jaki jest sinus równy, powiedzmy, 300 stopni, czyli -45.


Nie ma mowy?.. oczywiście, że możesz się połączyć formuły redukcyjne... A patrząc na okrąg trygonometryczny, możesz łatwo odpowiedzieć na takie pytania. A wkrótce dowiesz się jak!

A przy rozwiązywaniu równań i nierówności trygonometrycznych bez koła trygonometrycznego jest to absolutnie nigdzie.

Wprowadzenie do koła trygonometrycznego

Chodźmy po kolei.

Najpierw napiszmy ten ciąg liczb:

A teraz to:

I na koniec ten:

Oczywiście jasne jest, że tak naprawdę na pierwszym miejscu jest , na drugim miejscu jest , a na ostatnim miejscu jest . Oznacza to, że będziemy bardziej zainteresowani łańcuchem.

Ale jak pięknie wyszło! Jeśli coś się stanie, przywrócimy tę „cudowną drabinę”.

Dlaczego tego potrzebujemy?

Łańcuch ten to główne wartości sinusa i cosinusa w pierwszym kwartale.

Narysujmy okrąg o promieniu jednostkowym w prostokątnym układzie współrzędnych (to znaczy, bierzemy dowolny promień o długości i deklarujemy jego długość jako jednostkową).

Z belki „0-Start” układamy narożniki w kierunku strzałki (patrz rysunek).

Otrzymujemy odpowiednie punkty na okręgu. Jeśli więc rzutujemy punkty na każdą z osi, otrzymamy dokładnie wartości z powyższego łańcucha.

Dlaczego tak jest, pytasz?

Nie analizujmy wszystkiego. Rozważmy zasada, które pozwolą Ci poradzić sobie z innymi, podobnymi sytuacjami.

Trójkąt AOB jest prostokątny i zawiera . I wiemy, że naprzeciw kąta b leży odnoga o połowę mniejsza od przeciwprostokątnej (mamy przeciwprostokątną = promień okręgu, czyli 1).

Oznacza to AB= (a zatem OM=). I zgodnie z twierdzeniem Pitagorasa

Mam nadzieję, że coś już się wyjaśniło?

Zatem punkt B będzie odpowiadał wartości, a punkt M będzie odpowiadał wartości

Podobnie z pozostałymi wartościami pierwszego kwartału.

Jak rozumiesz, będzie znana oś (wół). oś cosinusa i oś (oy) – oś sinusów . Później.

Na lewo od zera wzdłuż osi cosinus (poniżej zera na osi sinusoidy) będą oczywiście wartości ujemne.

A więc oto WSZECHMOCNY, bez którego nie ma miejsca w trygonometrii.

Ale porozmawiamy o tym, jak używać koła trygonometrycznego.

Trygonometria jako nauka wywodzi się ze starożytnego Wschodu. Astronomowie wyprowadzili pierwsze stosunki trygonometryczne w celu stworzenia dokładnego kalendarza i orientacji według gwiazd. Obliczenia te dotyczyły trygonometrii sferycznej, podczas gdy na zajęciach szkolnych badano stosunek boków i kątów płaskiego trójkąta.

Trygonometria to dział matematyki zajmujący się właściwościami funkcji trygonometrycznych oraz zależnościami między bokami i kątami trójkątów.

W okresie rozkwitu kultury i nauki w I tysiącleciu naszej ery wiedza rozprzestrzeniła się ze starożytnego Wschodu do Grecji. Ale główne odkrycia trygonometrii są zasługą ludzi kalifatu arabskiego. W szczególności turkmeński naukowiec al-Marazi wprowadził funkcje takie jak tangens i cotangens oraz opracował pierwsze tabele wartości sinusów, stycznych i cotangensów. Pojęcia sinusa i cosinusa zostały wprowadzone przez indyjskich naukowców. Trygonometrii poświęcano wiele uwagi w pracach tak wielkich postaci starożytności, jak Euklides, Archimedes i Eratostenes.

Podstawowe wielkości trygonometrii

Podstawowe funkcje trygonometryczne argumentu numerycznego to sinus, cosinus, tangens i cotangens. Każdy z nich ma swój własny wykres: sinus, cosinus, tangens i cotangens.

Wzory do obliczania wartości tych wielkości opierają się na twierdzeniu Pitagorasa. Jest lepiej znany uczniom w sformułowaniu: „Spodnie pitagorejskie, równe we wszystkich kierunkach”, ponieważ dowód przedstawiono na przykładzie trójkąta prostokątnego równoramiennego.

Sinus, cosinus i inne zależności ustalają związek między kątami ostrymi i bokami dowolnego trójkąta prostokątnego. Przedstawmy wzory na obliczenie tych wielkości dla kąta A i prześledźmy zależności pomiędzy funkcjami trygonometrycznymi:

Jak widać, tg i ctg są funkcjami odwrotnymi. Jeśli wyobrazimy sobie nogę a jako iloczyn grzechu A i przeciwprostokątnej c oraz nogę b jako cos A*c, otrzymamy następujące wzory na styczną i kotangę:

Koło trygonometryczne

Graficznie zależność pomiędzy wymienionymi wielkościami można przedstawić w następujący sposób:

Okrąg w tym przypadku reprezentuje wszystkie możliwe wartości kąta α - od 0° do 360°. Jak widać na rysunku, każda funkcja przyjmuje wartość ujemną lub dodatnią w zależności od kąta. Przykładowo sin α będzie miał znak „+”, jeśli α należy do 1. i 2. ćwiartki koła, czyli mieści się w przedziale od 0° do 180°. Dla α od 180° do 360° (III i IV ćwiartka) sin α może mieć tylko wartość ujemną.

Spróbujmy zbudować tablice trygonometryczne dla określonych kątów i dowiedzieć się, co oznaczają wielkości.

Wartości α równe 30°, 45°, 60°, 90°, 180° itd. nazywane są przypadkami specjalnymi. Wartości funkcji trygonometrycznych dla nich są obliczane i prezentowane w formie specjalnych tabel.

Kąty te nie zostały wybrane przypadkowo. Oznaczenie π w tabelach dotyczy radianów. Rad to kąt, pod którym długość łuku koła odpowiada jego promieniowi. Wartość tę wprowadzono w celu ustalenia uniwersalnej zależności, przy obliczaniu w radianach rzeczywista długość promienia w cm nie ma znaczenia.

Kąty w tabelach funkcji trygonometrycznych odpowiadają wartościom radianów:

Nietrudno więc zgadnąć, że 2π to pełny okrąg, czyli 360°.

Własności funkcji trygonometrycznych: sinus i cosinus

Aby rozważyć i porównać podstawowe właściwości sinusa i cosinusa, tangensa i cotangensu, należy narysować ich funkcje. Można tego dokonać w postaci krzywej umiejscowionej w dwuwymiarowym układzie współrzędnych.

Rozważ tabelę porównawczą właściwości sinusa i cosinusa:

SinusoidaCosinus
y = sinxy = cos x
ODZ [-1; 1]ODZ [-1; 1]
sin x = 0, dla x = πk, gdzie k ϵ Zcos x = 0, dla x = π/2 + πk, gdzie k ϵ Z
sin x = 1, dla x = π/2 + 2πk, gdzie k ϵ Zcos x = 1, przy x = 2πk, gdzie k ϵ Z
sin x = - 1, przy x = 3π/2 + 2πk, gdzie k ϵ Zcos x = - 1, dla x = π + 2πk, gdzie k ϵ Z
sin (-x) = - sin x, czyli funkcja jest nieparzystacos (-x) = cos x, czyli funkcja jest parzysta
funkcja jest okresowa, najmniejszy okres wynosi 2π
sin x › 0, gdzie x należy do 1. i 2. ćwiartki lub od 0° do 180° (2πk, π + 2πk)cos x › 0, gdzie x należy do ćwiartek I i IV lub od 270° do 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, gdzie x należy do trzeciej i czwartej ćwiartki lub od 180° do 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, gdzie x należy do 2. i 3. ćwiartki lub od 90° do 270° (π/2 + 2πk, 3π/2 + 2πk)
wzrosty w przedziale [- π/2 + 2πk, π/2 + 2πk]rośnie w przedziale [-π + 2πk, 2πk]
maleje na przedziałach [π/2 + 2πk, 3π/2 + 2πk]maleje w odstępach czasu
pochodna (sin x)’ = cos xpochodna (cos x)’ = - sin x

Ustalenie, czy funkcja jest parzysta, czy nie, jest bardzo proste. Wystarczy wyobrazić sobie okrąg trygonometryczny ze znakami wielkości trygonometrycznych i w myślach „złożyć” wykres względem osi OX. Jeśli znaki się pokrywają, funkcja jest parzysta, w przeciwnym razie jest nieparzysta.

Wprowadzenie radianów i wyszczególnienie podstawowych własności fal sinusoidalnych i cosinusoidalnych pozwala przedstawić następujący wzór:

Bardzo łatwo jest sprawdzić poprawność wzoru. Na przykład dla x = π/2 sinus wynosi 1, podobnie jak cosinus x = 0. Sprawdzenie można przeprowadzić, korzystając z tabel lub śledząc krzywe funkcji dla danych wartości.

Właściwości tangentsoid i kotangentsoid

Wykresy funkcji stycznej i cotangens różnią się znacznie od funkcji sinus i cosinus. Wartości tg i ctg są względem siebie odwrotne.

  1. Y = brązowy x.
  2. Styczna dąży do wartości y przy x = π/2 + πk, ale nigdy ich nie osiąga.
  3. Najmniejszy dodatni okres tangentoidy to π.
  4. Tg (- x) = - tg x, czyli funkcja jest nieparzysta.
  5. Tg x = 0, dla x = πk.
  6. Funkcja jest rosnąca.
  7. Tg x › 0, dla x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, dla x ϵ (— π/2 + πk, πk).
  9. Pochodna (tg x)’ = 1/cos 2 ⁡x.

Rozważ graficzny obraz kotangentoidy poniżej w tekście.

Główne właściwości kotangentoidów:

  1. Y = łóżeczko x.
  2. W przeciwieństwie do funkcji sinus i cosinus, w tangentoidzie Y może przyjmować wartości zbioru wszystkich liczb rzeczywistych.
  3. Kotangentoida dąży do wartości y przy x = πk, ale nigdy ich nie osiąga.
  4. Najmniejszy dodatni okres kotangentoidy to π.
  5. Ctg (- x) = - ctg x, czyli funkcja jest nieparzysta.
  6. Ctg x = 0, dla x = π/2 + πk.
  7. Funkcja jest malejąca.
  8. Ctg x › 0, dla x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, dla x ϵ (π/2 + πk, πk).
  10. Pochodna (ctg x)’ = - 1/sin 2 ⁡x Poprawnie

W tym artykule szczegółowo przeanalizujemy definicję koła liczbowego, poznamy jego główną właściwość i uporządkujemy liczby 1,2,3 itd. O tym, jak zaznaczyć inne liczby na okręgu (na przykład \(\frac(π)(2), \frac(π)(3), \frac(7π)(4), 10π, -\frac(29π) ( 6)\)) rozumie .

Koło liczbowe zwany kołem o promieniu jednostkowym, którego punkty odpowiadają , ułożone według następujących zasad:

1) Początek znajduje się w skrajnie prawym punkcie okręgu;

2) Przeciwnie do ruchu wskazówek zegara - kierunek dodatni; zgodnie z ruchem wskazówek zegara – ujemny;

3) Jeśli nakreślimy odległość \(t\) na okręgu w kierunku dodatnim, to dotrzemy do punktu o wartości \(t\);

4) Jeśli wykreślimy odległość \(t\) na okręgu w kierunku ujemnym, to dotrzemy do punktu o wartości \(–t\).

Dlaczego okrąg nazywa się kołem liczbowym?
Ponieważ ma na sobie numery. W ten sposób okrąg przypomina oś liczbową – na okręgu, podobnie jak na osi, dla każdej liczby znajduje się konkretny punkt.


Dlaczego warto wiedzieć, czym jest okrąg liczbowy?
Za pomocą koła liczbowego określa się wartości sinusów, cosinusów, stycznych i cotangensów. Dlatego, aby poznać trygonometrię i zdać egzamin Unified State Exam z ponad 60 punktami, musisz zrozumieć, czym jest okrąg liczbowy i jak umieszczać na nim kropki.


Co w definicji oznaczają słowa „...o promieniu jednostkowym...”?
Oznacza to, że promień tego okręgu jest równy \(1\). A jeśli skonstruujemy taki okrąg ze środkiem w początku, to będzie on przecinał się z osiami w punktach \(1\) i \(-1\).



Nie musi być narysowany mały, możesz zmienić „wielkość” podziałów wzdłuż osi, wtedy obraz będzie większy (patrz poniżej).

Dlaczego promień wynosi dokładnie jeden? Jest to wygodniejsze, ponieważ w tym przypadku obliczając obwód za pomocą wzoru \(l=2πR\) otrzymujemy:

Długość koła liczbowego wynosi \(2π\) lub w przybliżeniu \(6,28\).


Co oznacza „...których punkty odpowiadają liczbom rzeczywistym”?
Jak powiedzieliśmy powyżej, na okręgu liczbowym dla dowolnej liczby rzeczywistej na pewno będzie jej „miejsce” - punkt odpowiadający tej liczbie.


Po co określać początek i kierunek na okręgu liczbowym?
Głównym celem koła liczbowego jest jednoznaczne określenie jego punktu dla każdej liczby. Ale jak określić, gdzie umieścić punkt, jeśli nie wiesz, od czego liczyć i gdzie się poruszać?

Ważne jest, aby nie mylić początku na linii współrzędnych i na okręgu liczbowym - są to dwa różne układy odniesienia! I nie należy mylić \(1\) na osi \(x\) i \(0\) na okręgu - są to punkty na różnych obiektach.

Które punkty odpowiadają liczbom \(1\), \(2\) itd.?

Pamiętasz, założyliśmy, że okrąg liczbowy ma promień \(1\)? Będzie to nasz segment jednostkowy (analogicznie do osi liczbowej), który naniesiemy na okrąg.

Aby zaznaczyć na okręgu punkt odpowiadający cyfrze 1, należy przejść od 0 na odległość równą promieniowi w kierunku dodatnim.


Aby zaznaczyć na okręgu punkt odpowiadający liczbie \(2\), należy przebyć odległość równą dwóm promieniom od początku układu współrzędnych, tak aby \(3\) było odległością równą trzem promieniom itd.

Patrząc na to zdjęcie, możesz mieć 2 pytania:
1. Co się stanie, gdy koło się „zakończy” (tzn. dokonamy pełnego obrotu)?
Odpowiedź: przejdźmy do drugiej tury! A kiedy skończy się drugie, przejdziemy do trzeciego i tak dalej. Dlatego na okręgu można narysować nieskończoną liczbę liczb.

2. Gdzie będą liczby ujemne?
Odpowiedź: właśnie tam! Można je również ułożyć, licząc od zera wymaganą liczbę promieni, ale teraz w kierunku ujemnym.

Niestety, trudno jest oznaczyć liczby całkowite na okręgu liczbowym. Wynika to z faktu, że długość koła liczbowego nie będzie równa liczbie całkowitej: \(2π\). A w najdogodniejszych miejscach (w punktach przecięcia z osiami) pojawią się również ułamki, a nie liczby całkowite