Понятия «модель», «моделирование», различные подходы к классификации моделей. Этапы моделирования

Понятия «модель», «моделирование», различные подходы к классификации моделей. Этапы моделирования

Модель (modelium) – о латинского мера, образ, способ и т. д.

Модель - это новый объект, отличный от исходного, который обладает существенными для целей моделирования свойствами и в рамках этих целей замещающий исходный объект (объект – оригинал)

Или можно сказать другими словами: модель - это упрощенное представление о ре­альном объекте, процессе или явлении.

Вывод. Модель, необходима для того чтобы:

Понять, как устроен конкретный объект - каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром;

Научиться управлять объектом или процессом и определять наилучшие способы управления при заданных целях и критериях (оптимизация);

Прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект;

Классификация моделей.

Признаки, по которым классифицируются модели:

1. Область использования.

2. Учет фактора времени и области использования.

3. По способу представления.

4. Отрасль знаний (биологические, исторические, социологические и т. д.).

5. Область использования

Учебные : наглядные пособия, обучающие программы, различные тренажеры;

Опытные : модель корабля испытывается в бассейне для определения устойчивости судна при качке;

Научно-технические : ускоритель электронов, прибор, имитирующий разряд молнии, стенд для проверки телевизора;

Игровые : военные, экономические, спортивные, деловые игры ;

Имитационные : эксперимент либо многократно повторяется, чтобы изучить и оце­нить последствия каких либо действий на реальную обстановку, либо проводится одновре­менно со многими другими похожими объектами, но поставленными в разных условиях).

2. Учет фактора времени и области использования

Статическая модель - это как бы одномоментный срез по объекту.

Пример: Вы пришли в стоматологическую поликлинику для осмотра полости рта. Врач осмотрел и всю информацию записал в карточку. Записи в карточке, которые дают кар­тину о состоянии ротовой полости на данный момент времени (число молочных, постоян­ных, пломбированных, удаленных зубов) и будет являться статистической моделью.

Динамическая модель позволяет увидеть изменения объекта во времени.

Пример, та же самая карточка школьника, которая отражает изменения, происходя­щие с его зубами за определенный момент времени.

3. Классификация по способу представления

Первые две большие группы: материальные и информационные. Названия этих групп как бы показывают, из чего сделаны модели.

Материальные модели иначе можно назвать предметными, физическими. Они вос­производят геометрические и физические свойства оригинала и всегда имеют реальное во­площение.

Детские игрушки. По ним ребенок получает первое впечатление об окружающем ми­ре. Двухлетний ребенок играет с плюшевым медвежонком. Когда, спустя годы, ребенок уви­дит в зоопарке настоящего медведя, он без труда узнает его.

Школьные пособия, физические и химические опыты. В них моделируются процессы , например реакция между водородом и кислородом. Такой опыт сопровождается оглуши­тельным хлопком. Модель подтверждает о последствиях возникновения «гремучей смеси» из безобидных и широко распространенных в природе веществ.

Карты при изучении истории или географии, схемы солнечной системы и звездного неба на уроках астрономии и многое другое.

Вывод. Материальные модели реализуют материальный (потрогать, понюхать, уви­деть, услышать) подход к изучению объекта, явления или процесса.

Информационные модели нельзя потрогать или увидеть воочию, они не имеют мате­риального воплощения, потому что они строятся только на информации. В основе этого ме­тода моделирования лежит информационный подход к изучению окружающей действитель­ности.

Информационные модели - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.

Информация, характеризующая объект или процесс, может иметь разный объем и форму представления, выражаться различными средствами. Это многообразие настолько безгранично, насколько велики возможности каждого человека и его фантазии. К информа­ционным моделям можно отнести знаковые и вербальные.

Знаковая модель - информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка.

Знаковые модели окружают нас повсюду. Это рисунки, тексты, графики и схемы.

По способу реализации знаковые модели можно разделить на компьютерные и не­компьютерные.

Компьютерная модель - модель, реализованная средствами программной среды.

Вербальная (от лат «verbalis» - устный) модель - информационная модель в мыслен­ной или разговорной форме.

Это модели, полученные в результате раздумий, умозаключений. Они могут так и ос­таться мысленными или быть выражены словесно. Примером такой модели может стать на­ше поведение при переходе улицы.

Процесс построения модели называется моделированием, другими словами, мо­делирование - это процесс изучения строения и свойств оригинала с помощью модели.

Планетарии" href="/text/category/planetarii/" rel="bookmark">планетарий , в архитектуре - макеты зданий, в самолетостроении - модели летательных аппаратов и т. п.

От предметного (материального) моделирования принципиально отличается идеаль­ное моделирование.

Идеальное моделирование - основано не на материальной аналогии объекта и модели, а на аналогии идеальной, мыслимой.

Знаковое моделирование - это моделирование, использующее в качестве моделей зна­ковые преобразования какого-либо вида: схемы, графики, чертежи, формулы, наборы симво­лов.

Математическое моделирование - это моделирование, при котором исследование объекта осуществляется посредством модели, сформулированной на языке математики: опи­сание и исследование законов механики Ньютона средствами математических формул.

Процесс моделирования состоит из следующих этапов:

Основной задачей процесса моделирования является выбор наиболее адекватной к оригиналу модели и перенос результатов исследования на оригинал. Существуют достаточно общие методы и способы моделирования.

Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и «перевести» (отобразить) полученную структуру в какую-либо заранее определенную форму - формализовать информацию.

Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму.

Формализация - это приведение существенных свойств и признаков объекта моделирования в выбранной форме (к выбранному формальному языку).

Этапы моделирования

Прежде чем браться за какую-либо работу, нужно четко представить себе отправной и каждый пункт деятельности, а также примерные ее этапы. То же самое можно сказать и о моделировании. Отправной пункт здесь - прототип. Им может быть существующий или проектируемый объект или процесс. Конечный этап моделирования - принятие решения на основании знаний об объекте.

Цепочка выглядит следующим образом.

https://pandia.ru/text/78/457/images/image007_30.jpg" width="474" height="430 src=">

I ЭТАП. ПОСТАНОВКА ЗАДАЧИ.

Под задачей понимается некая проблема, которую надо решить. На этапе постановки задачи необходимо отразить три основных момента: описание задачи, определение целей моделирования и анализ объекта или процесса.

Описание задачи

Задача формулируется на обычном языке, и описание должно быть понятным. Главное здесь - определить объект моделирования и понять, что собой должен представлять результат.

Цель моделирования

1) познание окружающего мира

2) создание объектов с заданными свойствами (определяется постановкой задачи «как делать, чтобы...».

3) определение последствий воздействия на объект и принятие правильного решения. Цель моделирования задач типа «что будет, если...», (что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Анализ объекта

На этом этапе четко выделяют моделируемый объект и его основные свойства, из чего он состоит, какие существуют связи между ними.

Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.

II ЭТАП. РАЗРАБОТКА МОДЕЛИ

1. Информационная модель

На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель.

Модели должны отражать наиболее существенные признаки, свойства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте.

2. Знаковая модель

Прежде чем приступить к процессу моделирования, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

3. Компьютерная модель

Компьютерная модель - это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют проводить исследование (моделирование) информационных моделей. Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов.

Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний - среда текстового редактора.

III ЭТАП. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

С развитием вычислительной техники появился новый уникальный метод исследования - компьютерный эксперимент. Компьютерный эксперимент включает последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

IV ЭТАП АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Для того чтобы понять суть математического моделирования, рассмотрим основные определения, особенности процесса.

Суть термина

Моделирование представляет собой процесс создания и применения модели. Ею считают любой абстрактный или материальный предмет, заменяющий в процессе изучения реальный объект моделирования. Важным моментом является сохранение свойств, необходимых для полноценного анализа предмета.

Компьютерное моделирование представляет собой вариант познания, базирующийся на математической модели. Она подразумевает систему неравенств, уравнений, логических знаковых выражений, которые в полной мере отображают все характеристики явления или объекта.

Математическое моделирование предполагает конкретные расчеты, применение вычислительной техники. Для того чтобы объяснить процесс, нужны дополнительные исследования. С этой задачей успешно справляется компьютерное моделирование.

Специфичность компьютерного моделирования

Этот способ изучения сложных систем считают эффективным и результативным. Удобнее и проще анализировать именно компьютерные модели, поскольку можно осуществлять разнообразные вычислительные действия. Это особенно актуально в тех случаях, когда по физическим либо материальным причинам реальные эксперименты не позволяют получать желаемого результата. Логичность таких моделей дает возможность определять главные факторы, которые определяют параметры изучаемого оригинала.

Такое применение математического моделирования позволяет выявлять поведение объекта в различных условиях, выявлять влияние разных факторов на его поведение.

Основы компьютерного моделирования

На чем базируется такое моделирование? Что такое научные исследования на основе ИКТ? Начнем с того, что любое компьютерное моделирование основывается на определенных принципах:

  • математическое моделирование для описания изучаемого процесса;
  • применение инновационных математических моделей для детального рассмотрения изучаемых процессов.

Разновидности моделирования

В настоящее время выделяют разные методы математического моделирования: имитационное и аналитическое.

Аналитический вариант связан с изучением абстрактных моделей реального предмета в виде дифференциальных, алгебраических уравнений, которые предусматривают проведение четкой вычислительной техники, способной дать точное решение.

Имитационное моделирование предполагает исследование математической модели в виде определенного алгоритма, который воспроизводит функционирование анализируемой системы с помощью последовательного выполнения системы несложных вычислений и операций.

Особенности построения компьютерной модели

Подробнее рассмотрим, как происходит такое моделирование. Что такое этапы компьютерного исследования? Начнем с того, что процесс основывается на уходе от четкого объекта или анализируемого явления.

Такое моделирование состоит из двух основных этапов: создание качественной и количественной модели. Компьютерное изучение состоит в проведении системы вычислительных действий на персональном компьютере, направленных на анализ, систематизацию, сравнение результатов исследования с реальным поведением анализируемого объекта. В случае необходимости проводится дополнительное уточнение модели.

Этапы моделирования

Как осуществляется моделирование? Что такое этапы компьютерного исследования? Итак, выделяют следующий алгоритм действий, касающийся построения компьютерной модели:

1 этап. Постановка цели и задач работы, выявление объекта моделирования. Предполагается сбор данных, постановка вопроса, выявление целей и форм исследования, описание полученных результатов.

2 этап. Анализ и изучение системы. Осуществляется описание объекта, создание информационной модели, подбор программных и технических средств, подбираются примеры математического моделирования.

3 этап. Переход к математической модели, проработка метода проектирования, подбор алгоритма действий.

4 этап. Подбор языка программирования либо среды для моделирования, обсуждение вариантов анализа, записи алгоритма на определенном языке программирования.

5 этап. Он состоит в проведении комплекса вычислительных экспериментов, отладке расчетов, обработке полученных результатов. В случае необходимости, на данном этапе осуществляется корректировка моделирования.

6 этап. Интерпретация результатов.

Как анализируется проведенное моделирование? Что такое программные продукты для исследования? В первую очередь подразумевается использование текстовых, графических редакторов, электронных таблиц, математических пакетов, позволяющих получать максимальный результат от проведенных исследований.

Проведение вычислительного эксперимента

Все методы математического моделирования базируются на экспериментах. Под ними принято понимать опыты, проводимые с моделью или объектом. Состоят они в осуществлении определенных действий, позволяющих определять поведение экспериментального образца в ответ на предлагаемые действия.

Вычислительный эксперимент невозможно представить без проведения расчетов, которые связаны с применением формализованной модели.

Основы математического моделирования предполагают проведение исследований с реальным объектом, но вычислительные действия проводят с его точной копией (моделью). При выборе конкретного набора исходных показателей модели, после завершения вычислительных действий, можно получать оптимальные условия для полноценного функционирования реального объекта.

К примеру, имея математическое уравнение, которое описывает протекание анализируемого процесса, при изменении коэффициентов, начальных и промежуточных условий, можно предположить поведение объекта. Кроме того, можно создать достоверный прогноз поведения этого объекта или природного явления в определенных условиях. В случае нового набора исходных данных важно проводить новые вычислительные эксперименты.

Сравнение полученных данных

Чтобы осуществить адекватную проверку реального объекта либо созданной математической модели, а также оценить результаты исследований на вычислительной технике с результатами эксперимента, проведенного на натурном опытном образце, осуществляется сравнение результатов исследований.

От того, каково расхождение между сведениями, полученными в ходе исследований, зависит решение о построении готового образца либо о корректировке математической модели.

Подобный эксперимент дает возможность заменять натуральные дорогостоящие исследования расчетами на вычислительной технике, за минимальные временные сроки анализировать возможности применения объекта, выявлять условия его реальной эксплуатации.

Моделирование в средах

Например, в среде программирования используется три этапа математического моделирования. На этапе создания алгоритма и информационной модели определяют величины, которые будут являться входными параметрами, результатами исследования, выявляют их тип.

В случае необходимости составляют специальные математические алгоритмы в виде блок-схем, записываемые на определенном языке программирования.

Компьютерный эксперимент предполагает анализ полученных при расчетах результатов, их корректировку. Среди важных этапов подобного исследования отметим проведение тестирования алгоритма, анализ работоспособности программы.

Ее отладка подразумевает поиск и устранение ошибок, которые приводят к нежелательному результату, появлению погрешностей в вычислениях.

Тестирование предполагает проверку правильности функционирования программы, а также оценку достоверности отдельных ее компонентов. Процесс состоит в проверке работоспособности программы, ее пригодности для изучения определенного явления или объекта.

Электронные таблицы

Моделирование с помощью электронных таблиц позволяет охватывать большой объем задач в различных предметных направлениях. Их считают универсальным инструментом, который позволяет решать трудоемкую задачу по расчету количественных параметров объекта.

В случае такого варианта моделирования наблюдается некоторая трансформация алгоритма решения задачи, нет необходимости разрабатывать вычислительный интерфейс. При этом присутствует этап отладки, который включает в себя удаление ошибок данных, поиск связи между ячейками, выявление вычислительных формул.

По мере работы появляются и дополнительные задачи, например вывод результатов на бумажные носители, рациональное представление информации на компьютерном мониторе.

Последовательность действий

Осуществляется моделирование в электронных таблицах по определенному алгоритму. Сначала определяются цели исследования, выявляются основные параметры и связи, на основе полученной информации составляется конкретная математическая модель.

Для качественного рассмотрения модели используют начальные, промежуточные, а также конечные характеристики, дополняют их чертежами, схемами. С помощью графиков и диаграмм получают наглядное представление о результатах работы.

Моделирование в среде СУБД

Оно позволяет решать следующие задачи:

  • хранить информацию, проводить ее своевременное редактирование;
  • упорядочивать имеющиеся данные по конкретным признакам;
  • создавать разные критерии для подбора данных;
  • представлять имеющиеся сведения в удобном виде.

По мере разработки модели на базе исходных данных создаются оптимальные условия для описания характеристик объекта с помощью специальных таблиц.

При этом осуществляется сортировка информации, поиск и фильтрация данных, создание алгоритмов для проведения вычислений. С помощью компьютерной информационной панели можно создавать разные экранные формы, а также варианты для получения печатных бумажных отчетов о ходе эксперимента.

При несовпадении полученных результатов с планируемыми вариантами меняют параметры, проводят дополнительные исследования.

Применение компьютерной модели

Вычислительный эксперимент и компьютерное моделирование являются новыми научными методами исследования. Они позволяют модернизировать вычислительный аппарат, применяемый для построения математической модели, конкретизировать, уточнять, усложнять эксперименты.

Среди самых перспективных для практического использования, проведения полноценного вычислительного эксперимента выделяют проектирование реакторов для мощных атомных станций. Кроме того, сюда относят создание магнитогидродинамических преобразователей электрической энергии, а также сбалансированного перспективного плана для страны, региона, отрасли.

Именно с помощью компьютерного и математического моделирования можно проводить проектирование приборов, необходимых для изучения термоядерных реакций, химических процессов.

Компьютерное моделирование и вычислительные эксперименты дают возможность сводить далеко «не математические» объекты к составлению и решению математической задачи.

Это открывает большие возможности для применения математического аппарата в системе с современной вычислительной техникой для решения вопросов, касающихся освоения космического пространства, «покорения» атомных процессов.

Именно моделирование стало одним из важнейших вариантов познания различных окружающих процессов и природных явлений. Это познание является сложным и трудоемким процессом, подразумевает применение системы различных видов моделирования, начиная с разработки уменьшенных моделей реальных объектов, завершая подбором специальных алгоритмов для проведения сложных математических вычислений.

В зависимости от того, какие процессы или явления будут анализироваться, подбираются определенные алгоритмы действий, математические формулы для вычислений. Компьютерное моделирование позволяет с минимальными затратами получать желаемый результат, важную информацию о свойствах и параметрах объекта либо явления.

Метод моделирования наиболее перспективный метод исследования требует от психолога определенного уровня математической подготовки. Здесь психические явления изучаются на основе приближенного образа реальности - ее модели. Модель дает возможность сосредоточить внимание психолога лишь на главных, наиболее существенных чертах психики. Модель - это полномочный представитель изучаемого объекта (психического явления, процесса мышления и др.). Конечно, лучше сразу получить целостное представление об изучаемом явлении. Но это, как правило, невозможно из-за сложности психологических объектов.

Модель связана со своим оригиналом соотношением подобия.

Познание оригинала с позиций психологии происходит через сложные процессы психического отражения. Оригинал и его психическое отражение соотносятся как объект и его тень. Полное познание объекта осуществляется последовательно, асимптотически, через длинную цепь познания приближенных образов. Вот эти приближенные образы и являются моделями познаваемого оригинала.

Необходимость моделирования возникает в психологии, когда:
- системная сложность объекта является непреодолимым препятствием для создания его целостного образа на всех уровнях детальности;
- требуется оперативное изучение психологического объекта в ущерб детальности оригинала;
- изучению подлежат психические процессы с высоким уровнем неопределенности и неизвестны закономерности, которым они подчиняются;
- требуется оптимизация исследуемого объекта путем варьирования входных факторов.

Задачи моделирования:

- описание и анализ психических явлений на различных уровнях их структурной организации;
- прогнозирование развития психических явлений;
- идентификация психических явлений, т. е. установление их сходства и различия;
- оптимизация условий протекания психических процессов.

Коротко о классификации моделей в психологии. Выделяют модели предметные и знаковые. Предметные имеют физическую природу и в свою очередь подразделяются на естественные и искусственные. Основу естественных моделей составляют представители живой природы: люди, животные, насекомые. Вспомним верного друга человека -собаку, послужившую моделью для изучения работы физиологических механизмов человека. В основе искусственных моделей лежат элементы «второй природы», созданные трудом человека. В качестве примера можно привести гомеостат Ф. Горбова и кибернометр Н. Обозова, служащие для исследования групповой деятельности.

Знаковые модели создаются на основе системы знаков, имеющих самую различную природу. Это:
- буквенно-цифровые модели, где в качестве знаков выступают буквы и цифры (такова, например, модель регуляции совместной деятельности Н. Н. Обозова);
- модели специальной символики (например, алгоритмические модели деятельности А. И. Губинского и Г. В. Суходольского в инженерной психологии или нотная запись для оркестрового музыкального произведения, в которой заложены все необходимые элементы, синхронизирующие сложную совместную работу исполнителей);
- графические модели, описывающие объект в виде кружков и линий связи между ними (первые могут выражать, например, состояния психологического объекта, вторые - возможные переходы из одного состояния в другое);
- математические модели, использующие разнообразный язык математических символов и имеющие свою классификационную схему;
- кибернетические модели построены на основе теории систем автоматического управления и имитации, теории информации и т. д.

Иногда модели пишут на языках программирования, но это долгий и дорогой процесс. Для моделирования можно использовать математические пакеты, но, как показывает опыт, в них обычно не хватает многих инженерных инструментов. Оптимальным является использование среды моделирования.

В нашем курсе в качестве такой среды выбрана . Лабораторные работы и демонстрации, которые вы встретите в курсе, следует запускать как проекты среды Stratum-2000.

Модель, выполненная с учётом возможности её модернизации, конечно, имеет недостатки, например, низкую скорость исполнения кода. Но есть и неоспоримые достоинства. Видна и сохранена структура модели, связи, элементы, подсистемы. Всегда можно вернуться назад и что-то переделать. Сохранен след в истории проектирования модели (но когда модель отлажена, имеет смысл убрать из проекта служебную информацию). В конце концов, модель, которая сдаётся заказчику, может быть оформлена в виде специализированного автоматизированного рабочего места (АРМа), написанного уже на языке программирования, внимание в котором уже, в основном, уделено интерфейсу, скоростным параметрам и другим потребительским свойствам, которые важны для заказчика. АРМ, безусловно, вещь дорогая, поэтому выпускается он только тогда, когда заказчик полностью оттестировал проект в среде моделирования, сделал все замечания и обязуется больше не менять своих требований.

Моделирование является инженерной наукой, технологией решения задач. Это замечание — очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина:

  • изучает способы решения задач, то есть является инженерной наукой;
  • является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области.

Смежными моделированию предметами являются: программирование, математика, исследование операций.

Программирование — потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения…), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм — один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно.

Какова разница между алгоритмом и моделью?

Алгоритм — это процесс решения задачи путём реализации последовательности шагов, тогда как модель — совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм — это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения.

модель + вопрос + дополнительные условия = задача .

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.

Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.

Проектирование — процесс создания объекта и его модели; моделирование — способ оценки результата проектирования; моделирования без проектирования не существует.

Смежными дисциплинами для моделирования можно признать электротехнику, экономику, биологию, географию и другие в том смысле, что они используют методы моделирования для исследования собственного прикладного объекта (например, модель ландшафта, модель электрической цепи, модель денежных потоков и т. д.).

В качестве примера посмотрим, как можно обнаружить, а потом описать закономерность.

Допустим, что нам нужно решить «Задачу о разрезаниях», то есть надо предсказать, сколько потребуется разрезов в виде прямых линий, чтобы разделить фигуру (рис. 1.16 ) на заданное число кусков (для примера достаточно, чтобы фигура была выпуклой).

Попробуем решить эту задачу вручную.

Из рис. 1.16 видно, что при 0 разрезах образуется 1 кусок, при 1 разрезе образуется 2 куска, при двух — 4, при трёх — 7, при четырёх — 11. Можете ли вы сейчас сказать наперёд, сколько потребуется разрезов для образования, например, 821 куска? По-моему, нет! Почему вы затрудняетесь? — Вам неизвестна закономерность K = f (P ) , где K — количество кусков, P — количество разрезов. Как обнаружить закономерность?

Составим таблицу, связывающую известные нам числа кусков и разрезов.

Пока закономерность не ясна. Поэтому рассмотрим разности между отдельными экспериментами, посмотрим, чем отличается результат одного эксперимента от другого. Поняв разницу, мы найдём способ перехода от одного результата к другому, то есть закон, связывающий K и P .

Уже кое-какая закономерность проявилась, не правда ли?

Вычислим вторые разности.

Теперь все просто. Функция f называется производящей функцией . Если она линейна, то первые разности равны между собой. Если она квадратичная, то вторые разности равны между собой. И так далее.

Функция f есть частный случай формулы Ньютона:

Коэффициенты a , b , c , d , e для нашей квадратичной функции f находятся в первых ячейках строк экспериментальной таблицы 1.5.

Итак, закономерность есть, и она такова:

K = a + b · p + c · p · (p – 1)/2 = 1 + p + p · (p – 1)/2 = 0.5 · p 2 + 0.5 · p + 1 .

Теперь, когда закономерность определена, можно решить обратную задачу и ответить на поставленный вопрос: сколько надо выполнить разрезов, чтобы получить 821 кусок? K = 821 , K = 0.5 · p 2 + 0.5 · p + 1 , p = ?

Решаем квадратное уравнение 821 = 0.5 · p 2 + 0.5 · p + 1 , находим корни: p = 40 .

Подведём итоги (обратите на это внимание!).

Сразу угадать решение мы не смогли. Поставить эксперимент оказалось затруднительно. Пришлось построить модель, то есть найти закономерность между переменными. Модель получилась в виде уравнения. Добавив к уравнению вопрос и уравнение, отражающее известное условие, образовали задачу. Поскольку задача оказалась типового вида (канонического), то её удалось решить одним из известных методов. Поэтому задача оказалась решена.

И ещё очень важно отметить, что модель отражает причинно-следственные связи. Между переменными построенной модели действительно есть крепкая связь. Изменение одной переменной влечёт за собой изменение другой. Мы ранее сказали, что «модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта, установить связь причины и следствия между собой». Это означает, что модель позволяет определить причины явлений, характер взаимодействия её составляющих. Модель связывает причины и следствия через законы, то есть переменные связываются между собой через уравнения или выражения.

Но!!! Сама математика не даёт возможности выводить из результатов экспериментов какие-либо законы или модели , как это может показаться после рассмотренного только что примера. Математика это только способ изучения объекта, явления, и, причём, один из нескольких возможных способов мышления. Есть ещё, например, религиозный способ или способ, которым пользуются художники, эмоционально-интуитивный, с помощью этих способов тоже познают мир, природу, людей, себя.

Итак, гипотезу о связи переменных А и В надо вносить самому исследователю, извне, сверх того. А как это делает человек? Посоветовать внести гипотезу легко, но как научить этому, объяснить это действо, а значит, опять-таки как его формализовать? Подробно мы покажем это в будущем курсе «Моделирование систем искусственного интеллекта».

А вот почему это надо делать извне, отдельно, дополнительно и сверх того, поясним сейчас. Носит это рассуждение имя Геделя, который доказал теорему о неполноте — нельзя доказать правильность некоторой теории (модели) в рамках этой же теории (модели). Посмотрите ещё раз на рис. 1.12 . Модель более высокого уровня преобразует эквивалентно модель более низкого уровня из одного вида в другой. Или генерирует модель более низкого уровня по эквивалентному опять же её описанию. А вот саму себя она преобразовать не может. Модель строит модель. И эта пирамида моделей (теорий) бесконечна.

А пока, чтобы «не подорваться на ерунде», вам надо быть настороже и проверять все здравым смыслом. Приведём пример, старую известную шутку из фольклора физиков.

В данной работе мы предлагаем как можно подробно разобрать тему моделирования в информатике. Этот раздел имеет большое значение для подготовки будущих специалистов в сфере информационных технологий.

Для решения любой задачи (производственной или научной) информатика использует следующую цепочку:

В ней стоит уделить особое внимание понятию «модель». Без наличия данного звена решение задачи не будет возможным. Зачем же используется модель и что под данным термином понимается? Об этом мы и поговорим в следующем разделе.

Модель

Моделирование в информатике - это составление образа какого-либо реально существующего объекта, который отражает все существенные признаки и свойства. Модель для решения задачи необходима, так как она, собственно, и используется в процессе решения.

В школьном курсе информатики тема моделирования начинает изучаться еще в шестом классе. В самом начале детей необходимо познакомить с понятием модели. Что это такое?

  • Упрощенное подобие объекта;
  • Уменьшенная копия реального объекта;
  • Схема явления или процесса;
  • Изображение явления или процесса;
  • Описание явления или процесса;
  • Физический аналог объекта;
  • Информационный аналог;
  • Объект-заменитель, отражающий свойства реального объекта и так далее.

Модель - это очень широкое понятие, как это уже стало ясно из вышеперечисленного. Важно отметить, что все модели принято делить на группы:

  • материальные;
  • идеальные.

Под материальной моделью понимают предмет, основанный на реально существующем объекте. Это может быть какое-либо тело или процесс. Данную группу принято подразделять еще на два вида:

  • физические;
  • аналоговые.

Такая классификация носит условный характер, ведь четкую границу между двумя этими подвидами провести очень трудно.

Идеальную модель охарактеризовать еще труднее. Она связаны с:

  • мышлением;
  • воображением;
  • восприятием.

К ней можно отнести произведения искусства (театр, живопись, литература и так далее).

Цели моделирования

Моделирование в информатике - это очень важный этап, так как он преследует массу целей. Сейчас предлагаем с ними познакомиться.

В первую очередь моделирование помогает познать окружающий нас мир. Испокон веков люди накапливали полученные знания и передавали их своим потомкам. Таким образом появилась модель нашей планеты (глобус).

В прошлые века осуществлялось моделирование несуществующих объектов, которые сейчас прочно закрепились в нашей жизни (зонт, мельница и так далее). В настоящее время можелирование направлено на:

  • выявление последствий какого-либо процесса (увеличения стоимости проезда или утилизации химических отходов под землей);
  • обеспечение эффективности принимаемых решений.

Задачи моделирования

Информационная модель

Теперь поговорим еще об одном виде моделей, изучаемых в школьном курсе информатики. Компьютерное моделирование, которое необходимо освоить каждому будущему IT-специалисту, включает в себя процесс реализации информационной модели при помощи компьютерных средств. Но что это такое, информационная модель?

Она представляет собой целый перечень информации о каком-либо объекте. Что данная модель описывает, и какую полезную информацию несет:

  • свойства моделируемого объекта;
  • его состояние;
  • связи с окружающим миром;
  • отношения с внешними объектами.

Что может служить информационной моделью:

  • словесное описание;
  • текст;
  • рисунок;
  • таблица;
  • схема;
  • чертеж;
  • формула и так далее.

Отличительная особенность информационной модели заключается в том, что ее нельзя потрогать, попробовать на вкус и так далее. Она не несет материального воплощения, так как представлена в виде информации.

Системный подход к созданию модели

В каком классе школьной программы изучается моделирование? Информатика 9 класса знакомит учеников с данной темой более подробно. Именно в этом классе ребенок узнает о системном подходе моделирования. Предлагаем об этом поговорить немного подробнее.

Начнем с понятия «система». Это группа взаимосвязанных между собой элементов, которые действуют совместно для выполнения поставленной задачи. Для построения модели часто пользуются системным подходом, так как объект рассматривается как система, функционирующая в некоторой среде. Если моделируется какой-либо сложный объект, то систему принято разбивать на более мелкие части - подсистемы.

Цель использования

Сейчас мы рассмотрим цели моделирования (информатика 11 класс). Ранее говорилось, что все модели делятся на некоторые виды и классы, но границы между ними условны. Есть несколько признаков, по которым принято классифицировать модели: цель, область знаний, фактор времени, способ представления.

Что касается целей, то принято выделять следующие виды:

  • учебные;
  • опытные;
  • имитационные;
  • игровые;
  • научно-технические.

К первому виду относятся учебные материалы. Ко второму уменьшенные или увеличенные копии реальных объектов (модель сооружения, крыла самолета и так далее). позволяет предугадать исход какого-либо события. Имитационное моделирование часто применяется в медицине и социальной сфере. Наример, модель помогает понять, как люди отреагируют на ту или иную реформу? Прежде чем сделать серьезную операцию человеку по пересадке органа, было проведено множество опытов. Другими словами, имитационная модель позволяет решить проблему методом «проб и ошибок». Игровая модель - это своего рода экономическая, деловая или военная игра. С помощью данной модели можно предугадать поведение объекта в разных ситуациях. Научно-техническую модель используют для изучения какого-либо процесса или явления (прибор имитирующий грозовой разряд, модель движения планет Солнечной системы и так далее).

Область знаний

В каком классе учеников более подробно знакомят с моделированием? Информатика 9 класса делает упор на подготовку своих учеников к экзаменам для поступления в высшие учебные заведения. Так как в билетах ЕГЭ и ГИА встречаются вопросы по моделированию, то сейчас необходимо как можно подробнее рассмотреть эту тему. И так, как происходит классификация по области знаний? По данному признаку выделяют следующие виды:

  • биологические (например, искусственно вызванные у животных болезни, генетические нарушения, злокачественные новообразования);
  • поведения фирмы, модель формирования рыночной цены и так далее);
  • исторические (генеалогическое дерево, модели исторических событий, модель римского войска и тому подобное);
  • социологические (модель личного интереса, поведение банкиров при адаптации к новым экономическим условиям) и так далее.

Фактор времени

По данной характеристике различают два вида моделей:

  • динамические;
  • статические.

Уже, судя по одному названию, не трудно догадаться, что первый вид отражает функционирование, развитие и изменение какого-либо объекта во времени. Статическая наоборот способна описать объект в какой-то конкретный момент времени. Этот вид иногда называют структурным, так как модель отражает строение и параметры объекта, то есть дает срез информации о нем.

Примерами являются:

  • набор формул, отражающих движение планет Солнечной системы;
  • график изменения температуры воздуха;
  • видеозапись извержения вулкана и так далее.

Примерами статистической модели служат:

  • перечень планет Солнечной системы;
  • карта местности и так далее.

Способ представления

Для начала очень важно сказать, что все модели имеют вид и форму, они всегда из чего-то делаются, как-то представляются или описываются. По данному признаку принято таким образом:

  • материальные;
  • нематериальные.

К первому виду относятся материальные копии существующих объектов. Их можно потрогать, понюхать и так далее. Они отражают внешние или внутренние свойства, действия какого-либо объекта. Для чего нужны материальные модели? Они используются для экспериментального метода познания (опытного метода).

К нематериальным моделям мы уже тоже обращались ранее. Они используют теоретический метод познания. Такие модели принято называть идеальными либо абстрактными. Эта категория делится еще на несколько подвидов: воображаемые модели и информационные.

Информационные модели приводят перечень различной информации об объекте. В качестве информационной модели могут выступать таблицы, рисунки, словесные описания, схемы и так далее. Почему данную модель называют нематериальной? Все дело в том, что ее нельзя потрогать, так как она не имеет материального воплощения. Среди информационных моделей различают знаковые и наглядные.

Воображаемая модель - это один из Это творческий процесс, проходящий в воображении человека, который предшествует созданию материального объекта.

Этапы моделирования

Тема по информатике 9 класса «Моделирование и формализация» имеет большой вес. Она обязательна к изучению. В 9-11 классе преподаватель обязан познакомить учеников с этапами создания моделей. Этим мы сейчас и займемся. Итак, выделяют следующие этапы моделирования:

  • содержательная постановка задачи;
  • математическая постановка задачи;
  • разработки с использованием ЭВМ;
  • эксплуатация модели;
  • получение результата.

Важно отметить, что при изучении всего, что окружает нас, используется процессы моделирования, формализации. Информатика - это предмет, посвященный современным методам изучения и решения каких-либо проблем. Следовательно, упор делается на модели, которые можно реализовать при помощи ЭВМ. Особое внимание в этой теме следует уделить пункту разработки алгоритма решения при помощи электронно-вычислительных машин.

Связи между объектами

Теперь поговорим немного о связях между объектами. Всего выделяют три вида:

  • один к одному (обозначается такая связь односторонней стрелкой в одну или в другую сторону);
  • один ко многим (множественная связь обозначается двойной стрелкой);
  • многие ко многим (такая связь обозначается двойной стрелкой).

Важно отметить, что связи могут быть условными и безусловными. Безусловная связь предполагает использование каждого экземпляра объекта. А в условной задействованы только отдельные элементы.