Имитационное моделирование в экономике литература. Сущность метода имитационного моделирования

Образовательный консорциум
СРЕДНЕРУССКИЙ УНИВЕРСИТЕТ
НОУ ВПО Тульский институт управления и бизнеса
Кафедра “Информационные технологии”

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

Конспект лекций для студентов
специальности 080801 - “Прикладная информатика в экономике”

Профессор кафедры ИТ Анатолий Александрович Ильин

ЛЕКЦИЯ 1. КРАТКИЙ ЭКСКУРС В
СИСТЕМНЫЙ АНАЛИЗ.
1 ПОНЯТИЕ КОМПЬЮТЕРНОГО
МОДЕЛИРОВАНИЯ 5

1.1 Свойства сложных систем. Сложная система, как объект моделирования. Прикладной системный анализ - методология исследования сложных систем 5

1.2 Определение модели. Общая классификация основных видов моделирования. Компьютерное моделирование. Метод имитационного моделирования 7

1.3 Процедурно-технологическая схема построения и исследования моделей сложных систем. Основные понятия моделирования 9

1.4 Метод статистического моделирования на ЭВМ (метод Монте-Карло) 12

1.5 Выводы. Отличительные особенности моделей различных классов 13

ЛЕКЦИЯ 2. СУЩНОСТЬ МЕТОДА
ИМИТАЦИОННОГО
МОДЕЛИРОВАНИЯ 15

2.1 Метод имитационного моделирования и его особенности. Статическое и динамическое представление моделируемой системы 15

2.2 Понятие о модельном времени. Механизм продвижения модельного времени. Дискретные и непрерывные имитационные модели 17

2.3 Моделирующий алгоритм. Имитационная модель 18

2.4 Проблемы стратегического и тактического планирования имитационного эксперимента. Направленный вычислительный эксперимент на имитационной модели 18

2.5 Общая технологическая схема имитационного моделирования 21

2.6 Возможности, область применения имитационного моделирования 21

ЛЕКЦИЯ 3. ТЕХНОЛОГИЧЕСКИЕ ЭТАПЫ О СОЗДАНИЯ И О ИСПОЛЬЗОВАНИЯ ИМИТАЦИОННЫХ МОДЕЛЕЙ 23

3.1 Основные этапы имитационного моделирования. Общая технологическая схема 23

3.2 Формулировка проблемы и определение целей имитационного исследования 24

3.3 Разработка концептуальной модели объекта моделирования 27

3.4 Формализация имитационной модели 29

3.5 Программирование имитационной модели 31

3.6 Сбор и анализ исходных данных 31

3.7 Испытание и исследование свойств имитационной модели 32

3.8 Направленный вычислительный эксперимент на имитационной модели. Анализ результатов моделирования и принятие решений 33

ЛЕКЦИЯ 4. БАЗОВЫЕ КОНЦЕПЦИИ СТРУКТУРИЗАЦИИ И ФОРМАЛИЗАЦИИ ИМИТАЦИОННЫХ СИСТЕМ 34

4.1 Методологические подходы к построению дискретных имитационных моделей 34

4.2 Язык моделирования GPSS 35

4.2.1 40 лет в мире информационных технологий 35

4.2.3 Системы массового обслуживания 36

4.2.4 GPSS - транзактно-ориентированная система моделирования 38

4.2.5 Функциональная структура GPSS 38

4.3 Агрегативные модели 41

4.3.1 Кусочно-линейный агрегат 41

4.3.2 Схема сопряжения. Агрегативная система 43

4.3.3 Оценка агрегативных систем как моделей сложных систем 45

4.4 Сети Петри и их расширения 45

4.4.1 Описание структур моделируемых проблемных ситуаций в виде сетей Петри 45

4.4.2 Формальное и графическое представление сетей Петри 47

4.4.3 Динамика сетей Петри 48

4.4.4 Различные обобщения и расширения сетей Петри 50

4.4.5 Технология разработки моделей 51

4.5 Модели системной динамики 52

4.5.1 Общая структура моделей системной динамики. Содержание базовой концепции структуризации 53

4.5.2 Диаграммы причинно-следственных связей 59

4.5.3 Системные потоковые диаграммы моделей 59

ЛЕКЦИЯ 5. ИНСТРУМЕНТАЛЬНЫЕ
СРЕДСТВА АВТОМАТИЗАЦИИ
МОДЕЛИРОВАНИЯ 67

5.1 Назначение языков и систем моделирования 67

5.2 Классификация языков и систем моделирования, их основные характеристики 69

5.3 Технологические возможности систем моделирования 70

5.4 Развитие технологии системного моделирования 73

5.5 Выбор системы моделирования 76

ЛЕКЦИЯ 6. ИСПЫТАНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ ИМИТАЦИОННОЙ МОДЕЛИ 77

6.1 Комплексный подход к тестированию имитационной модели 77

6.2 Проверка адекватности модели 79

6.3 Верификация имитационной модели 81

6.4 Валидация данных имитационной модели 82

6.5 Оценка точности результатов моделирования 83

6.6 Оценка устойчивости результатов моделирования 83

6.7 Анализ чувствительности имитационной модели 84

6.8 Тактическое планирование имитационного эксперимента 85

ЛЕКЦИЯ 7. ТЕХНОЛОГИЯ ПОСТАНОВКИ И ПРОВЕДЕНИЯ НАПРАВЛЕННОГО ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА НА ИМИТАЦИОННОЙ МОДЕЛИ 89

7.2 Основные цели и типы вычислительных
экспериментов в имитационном моделировании 91

7.3 Основы теории планирования экспериментов.
Основные понятия: структурная, функциональная и экспериментальная модели 93

7.4 План однофакторного эксперимента и процедуры обработки результатов эксперимента 98

7.5 Факторный анализ, полный и дробный факторный эксперимент и математическая модель 100

7.6 Основные классы планов, применяемые в вычислительном эксперименте 108

7.7 Методология анализа поверхности отклика. Техника расчета крутого восхождения 111

СПИСОК ЛИТЕРАТУРЫ 119

ЛЕКЦИЯ 1. КРАТКИЙ ЭКСКУРС В
СИСТЕМНЫЙ АНАЛИЗ.
1 ПОНЯТИЕ КОМПЬЮТЕРНОГО
МОДЕЛИРОВАНИЯ

1.1 Свойства сложных систем. Сложная система, как объект моделирования. Прикладной системный анализ - методология исследования сложных систем

В настоящее время понятие "система" в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).

В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

1 Свойство: Целостность и членимость

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаимодействующих между собой элементов.

У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

2 свойство: Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней средой).

Под "связями" понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

3 свойство: Организация.

Свойство характеризуется наличием определенной организации - формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение). При исследовании сложных систем обычно отмечают: Сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;

Наличие управления, разветвленной информационной сети и интенсивных потоков информации;

Наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

4 свойство: Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Примеры СС в экономической сфере многочисленны: организационно - производственная система, предприятие; социально - экономическая система, например регион; и др.

СС, как объект моделирования, имеет следующие характерные особенности:

СС, как правило, уникальны. Существующие аналоги таких объектов заметно отличаются друг от друга. Следствием этого на практике является необходимость строить новые модели.

Слабая структурированность теоретических и фактических знаний о системе. Так как изучаемые системы уникальны, то процесс накопления и систематизации знаний о них затруднен. Слабо изучены сами процессы. При идентификации сложных систем присутствует большая доля субъективных экспертных знаний о системе. СС слабопредсказуемы или контриинтуитивны, как писал Форрестер.

Рассмотренные выше интегративные качества СС предопределяют важный методологический вывод: СС не сводится к простой совокупности элементов, расчленяя СС на отдельные части, изучая каждую из них в отдельности, нельзя познать свойства системы в целом. Поэтому описание отдельных подсистем необходимо выполнять с учетом их места во всей системе в целом, и наоборот, система в целом исследуется исходя из свойств отдельных подсистем. Одну из основных черт сложных систем составляет взаимодействие выделенных подсистем. Необходимо учитывать результат воздействия одной подсистемы на другую и их взаимодействие с внешней средой. Исследователи отмечают наличие большого числа взаимосвязанных подсистем, многомерность СС, обусловленную большим числом связей между подсистемами, что затрудняет идентификацию моделируемых объектов. Отметим также, что расчленение СС на подсистемы зависит от целей создания системы и взглядов исследователя на нее.

Разнородность подсистем и элементов, составляющих систему. Это определяется и многообразием природы (физической разнородностью подсистем, имеющих различную природу), и разнородностью математических схем, описывающих функционирование различных элементов, а также одних и тех же элементов на различных уровнях изучения.

Присутствует необходимость исследовать систему в динамике, с учетом поведенческих аспектов.

Случайность и неопределенность факторов, действующих в изучаемой системе. Учет этих факторов приводит к резкому усложнению задач и увеличивает трудоемкость исследований (необходимость получения представительного набора данных). Существует необходимость учета большого количества действующих в системе факторов.

Многокритериальность оценок процессов, протекающих в системе. Невозможность однозначной оценки (выбора единого обобщенного критерия) диктуется следующими обстоятельствами:

наличием множества подсистем, каждая из которых, вообще говоря, имеет свои цели, оценивается по своим локальным критериям;

множественностью показателей (при системном подходе иногда противоречивых, в этом случае, выбирается компромиссный вариант), характеризующих работу всей системы;

наличием неформализуемых критериев, используемых при принятии решений, основанных на практическом опыте лиц, принимающих решение.

При системном подходе процесс исследования СС носит итерационный характер. Исходная модель усложняется путем детализации. Однако создание полной модели СС (супермодели) бесполезно, т.к. она будет столь же сложна в изучении, как и система. Следствием этого является необходимость использования ансамбля (комплекса) моделей при анализе системы. Различные модели могут отражать как разные стороны функционирования системы, так и разные уровни отображения исследователем одних и тех же процессов.

Рассмотренные особенности исследования сложных систем обуславливают потребность в специальных способах построения и анализа моделей сложных систем. Традиционные аналитические модели здесь беспомощны -нужны специальные компьютерные технологии.

Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа - компьютерное моделирование. Имитационное моделирование является наиболее эффективным и универсальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

1.2 Определение модели. Общая классификация основных видов моделирования. Компьютерное моделирование. Метод имитационного моделирования

Определение 1. Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Определение 2. Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

Итак, в процессе моделирования всегда существует оригинал (объект) и модель, которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Моделирование появилось в человеческой деятельности со времен наскальной живописи и сооружения идолов, т.е. как только человечество стало стремиться к пониманию окружающей действительности; -и сейчас, по-существу, прогресс науки и техники находит свое наиболее точное выражение в развитии способности человека создавать модели объектов и понятий.

Исследуя современные СС, человечество придумало различные классы моделей. Развитие информационных технологий можно в известном смысле интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения: Информационные системы, Системы распознавания образов, Системы искусственного интеллекта, Системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования : концептуальное моделирование -представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков,

физическое моделирование -моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений;

структурно - функциональное моделями являются схемы (блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;

математическое (логико-математическое) моделирование - построение модели осуществляется средствами математики и логики;

имитационное (программное) моделирование - при котором логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все из перечисленных видов моделирования или отдельные приемы).

Доминирующей тенденцией сегодня является взаимопроникновение всех видов моделирования, симбиоз различных информационных технологий в области моделирования, особенно для сложных приложений и комплексных проектов по моделированию. Так, например, имитационное моделирование включает в себя концептуальное моделирование (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) - для целей описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (натурного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования сегодня трактуется шире традиционного понятия "моделирование на ЭВМ", поэтому нуждается в уточнении.

Компьютерное моделирование -метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

К компьютерному моделированию относят: структурно-функциональное, имитационное.

Под термином "компьютерная модель", чаще всего понимают: Условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными; Отдельную программу (совокупность программ, программный комплекс) позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных факторов. Такие модели мы будем называть имитационными.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Кстати, возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального. Становление компьютерного моделирования связано с имитационным моделированием. Имитационное моделирование было исторически первым по -бравнению со структурно-функциональным, без компьютера никогда не существовало. Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем). Поэтому в освоении этого метода доминирующая роль отводится системным аналитикам. Сравним с моделированием на ЭВМ (например, математическим). Методологической основой здесь чаще всего являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и многие другие.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы. Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование сегодня предлагает совокупность методологических подходов и развитых технологических средств, используемых для подготовки и принятия решений экономического, организационного и социального или технического характера.

: Учеб. пособие / А. ... имитационного моделирования экономических процессов ; знать: теорию основных разделов имитационного моделирования экономических процессов : классификация имитационных моделей, общие...

Имитационное моделирование - метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Актуальность данной темы заключается в том, что имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В тоже время, благодаря своей близости по форме к физическому моделированию, это метод исследования доступен более широкому кругу пользователей.

Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе.

Цели проведения подобных экспериментов могут быть самыми различными - от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.

В процессе имитационного моделирования исследователь имеет дело с четырьмя основными элементами:

Реальная система;

Логико-математическая модель моделируемого объекта;

Имитационная (машинная) модель;

ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм задания модельного времени. Эти механизмы встроены в управляющие программы любой системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты.

Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) t0, которую называют модельным (или системным) временем.

Существуют два основных способа изменения t0:

Пошаговый (применяются фиксированные интервалы изменения

модельного времени);

Пособытийный (применяются переменные интервалы изменения

модельного времени, при этом величина шага измеряется интервалом

до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип t). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

Пособытийный метод (принцип “особых состояний”). В нем координаты времени меняются только когда изменяется состояние системы. В пособытийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение пособытийного метода предпочтительно в случае, если частота наступления событий невелика, тогда большая длина шага позволит ускорить ход модельного времени.

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло.

Из всего вышеизложенного можно сделать вывод, что имитационное моделирование позволяет учесть максимально возможное число факторов внешней среды для поддержки принятия управленческих решений и является наиболее мощным средством анализа инвестиционных рисков. Необходимость его применения в отечественной финансовой практике обусловлена особенностями российского рынка, характеризующегося субъективизмом, зависимостью от внеэкономических факторов и высокой степенью неопределенности.

Результаты имитации могут быть дополнены вероятностным и статистическим анализом и в целом обеспечивают менеджера наиболее полной информацией о степени влияния ключевых факторов на ожидаемые результаты и возможных сценариях развития событий.

БЕЛКООПСОЮЗ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БЕЛОРУССКИЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ

УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ»

________________________________________________

Кафедра информационно-вычислительных систем

Имитационное моделирование экономических процессов

Лекции для студентов заочного отделения

Гомель 2007

Тема 1. Введение в
1.1. Имитационное моделирование как метод исследования сложных систем

Основным методом исследования сложных систем является метод моделирования. Моделирование – это способ изучения объекта через рассмотрение подобного ему и более простого объекта, т.е. его модели. Модель – это образ реального объекта, который отражает его основные свойства и замещает объект в ходе исследования. (Т.е. о моделировании можно говорить лишь при использовании модели для познания оригинала: в игре ребенка с моделью паровоза новое знание относительно паровоза не рождается).

Модели бывают материальные (физические) и математические. Среди математических моделей выделяют два типа: аналитические и имитационные (рис.1).
Модели


Физические

Математические



Аналитические

Имитационные

Рис1. Классификация моделей
В аналитических моделях поведение сложной системы описывается в виде алгебраических, интегральных, дифференциальных и иных соотношений и логических условий. Наиболее простым примером аналитической модели является соотношение
, где S – расстояние, v – скорость перемещения, t – время.

Аналитическая модель требует введения ряда упрощений. Часто такое упрощение получается слишком грубым приближением действительности и результаты не могут быть применены на практике. Например, та же формула
будет применима для самолета, который достиг заданной скорости, но не подходит для описания движения по автостраде в час пик. В этих случаях исследователь вынужден использовать имитационное моделирование.

Имитационной моделью сложной системы называется программа (или алгоритм), позволяющая имитировать на компьютере поведение отдельных элементов системы и связи между ними в течение заданного времени моделирования.

В ходе выполнения этой программы можно значения определенных переменных интерпретировать как состояние системы в соответствующий момент времени, т.е. имитация рассматривается как наблюдение во времени за характеристиками системы.

Имитационное моделирование состоит в исследовании системы с помощью компьютерных (вычислительных) экспериментов на имитационной модели. Этот метод наиболее эффективен для исследования сложных систем, на функционирование которых оказывает существенное влияние случайные факторы (стохастических систем). В этом случае результат одного эксперимента на имитационной модели может рассматриваться лишь как оценка истинных характеристик системы. Требуется проведение большого числа экспериментов и статистическая обработка их результатов. Поэтому иногда имитационное моделирование называется также методом статистического моделирования.

К достоинствам имитационного моделирования можно отнести:

1) свободу от каких-либо ограничений на класс решаемых задач;

2) наглядность;

3) возможность исследования системы на различных уровнях детализации;

4) возможность контроля над характеристиками системы в динамике.

Недостатки имитационного моделирования:


  1. дороговизна;

  2. большой расход машинного времени;

  3. результаты исследования обладают меньшей степенью общности по сравнению с аналитическими моделями;

  4. не существует надежных методов оценки адекватности имитационной модели.
Эти недостатки несколько смягчаются с развитием вычислительной техники и ряда программных продуктов для автоматизации разработки и исследования имитационных моделей. Таким образом, применение имитационного моделирования нужно сводить к разумному минимуму. Такое применение целесообразно:

  1. в случаях “безысходности”, когда сложность ситуации превосходит возможности аналитических методов;

  2. если не существует четкой постановки задачи исследования и идет процесс познания объекта моделирования (модель служит средством изучения явления);

  3. когда необходимо контролировать протекание процессов в системе путем замедления или ускорения явлений в ходе имитации;

  4. при подготовке специалистов и приобретении ими навыков в эксплуатации новой техники.
Метод имитационного моделирования разрабатывался прежде всего для исследования систем массового обслуживания (систем с очередями). Об этом свидетельствует содержание первой отечественной монографии по моделированию: Бусленко Н.П., Шрейдер Ю.А. Метод статистических испытаний и его реализация на электронных цифровых машинах. – М.:Наука, 1962., а также книга признанного классика GPSS Томаса Шрайбера: Моделирование на GPSS, 1980г.

Также одной из первых областей применения имитационного моделирования явилось управление запасами, что было обусловлено сложностью вероятностных задач этого вида и их практической важностью. Здесь можно упомянуть работы:

1957 – Робинсон – об иерархической системе складов нефтепродуктов;

1961 – Берман – о перераспределении запасов;

1964 – Джислер – о снабжении авиационных баз.

^ 1.2. Этапы имитационного моделирования

Трудоемкость имитационного моделирования делает особо важными вопросы технологии и организации работ. По оценкам специалистов США, разработка даже простых моделей оценивается в 5-6 человеко-месяцев (30 тыс. долларов), а сложных – на два порядка больше

В типичном случае процесс моделирования проходит следующие фазы:

1) Описание системы и разработка концептуальной модели.

2) Подготовка данных.

3) Разработка моделирующего алгоритма и построение имитационной модели.

4) Оценка адекватности.

5) Планирование экспериментов.

6) Планирование прогонов.

7) Машинный эксперимент.

8) Анализ и интерпретация результатов.

9) Принятие решений относительно исследуемого объекта.

10) Документирование.

Перечисленные этапы могут перекрываться по времени (например, документирование должно вестись с первых дней работы над проектом) и охвачены многочисленными обратными связями.

^ Описание системы включает уточнение ее границ с внешней средой, характеристики внешних воздействий, состава внешних и внутренних связей, выбор показателей эффективности, постановку задачи на исследование. Концептуальная модель представляет собой упрощенное математическое или алгоритмическое описание сложной системы.

^ Подготовка исходных данных состоит в сборе и обработке данных наблюдений за моделируемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений (среднего, дисперсии и т.п.). К подготовке исходных данных можно отнести и сбор информации о предполагаемых изменениях в нагрузке системы (или о прогнозируемой нагрузке).

^ Разработка имитационной модели заключается в записи ее на одном из языков программирования (общецелевом или специализированном), трансляции и отладке программы модели. Следует стремиться к блочному (модульному) построению программы, позволяющему независимо вносить изменения в отдельные модули и повторно использовать ранее созданные модули.

^ Оценка адекватности модели заключается в проверке:


  1. полноты учета основных факторов и ограничений, влияющих на работу системы;

  2. согласия постулируемых законов распределения с первичными данными;

  3. синтаксической корректности программы моделирования;

  4. соответствия результатов имитационного моделирования и известного аналитического решения (при условиях существования этого решения);

  5. осмысленности результатов в нормальных условиях и в предельных случаях.
^ Планирование экспериментов определяет совокупность исследуемых вариантов и стратегию их перебора. При этом учитываются: цель проекта (анализ или оптимизация); степень достоверности исходных данных (при малой достоверности необходимы дополнительные исследования чувствительности модели к изменению параметров); ресурсы календарного и машинного времени. На этом этапе полезно применение общей теории планирования экспериментов.

^ Планирование прогонов имеет целью получить возможно лучшие статистические оценки исследуемых показателей: несмещенные, с минимальной дисперсией. При этом объем вычислительных работ обычно ограничен (ограничено время на постановку экспериментов). Отдельным прогоном называется однократное выполнение программы имитационной модели, в котором модельное время монотонно возрастает.

Очень часто моделирование имеет целью получение стационарных характеристик, т.е. соответствующих типичным условиям работы. Поэтому важен вопрос определения длительности разгонного участка и времени вхождения в стационарный режим во время одного прогона. Этот момент обычно определяется экспериментально. Статистика, накопленная за время разгона, не должна учитываться в расчетах.

Важно правильно задать критерий останова прогона (например, рассчитать время моделирования, которое достаточно для получения достаточно точных характеристик системы). К этому этапу относятся вопросы уменьшения или исключения корреляции результатов, уменьшения дисперсии результатов, задания начальных условий моделирования.

Этапы 7-9 в дополнительных пояснениях не нуждаются.

Документирование должно сопровождать весь процесс разработки модели и хода экспериментов. Оно облегчает взаимодействие участников процесса моделирования, обеспечивает возможность использования модели в будущем в других разработках.
^ 1.3. Программное обеспечение имитационного моделирования

Одно из наиболее важных решений, которые приходится принимать разработчику имитационных моделей, касается выбора программного обеспечения. Если программное обеспечение недостаточно гибко или с ним сложно работать, то имитация может дать неправильные результаты или будет вообще невыполнима.

Программное обеспечение, используемое для создания имитационных моделей, можно классифицировать следующим образом (см.рис.2):


^ ПО имитационного моделирования


Универсальные языки программирования



^ Языки имитационного моделирования

Проблемно-ориентированные системы имитационного моделирования

Рис.2 . Классификация ПО имитационного моделирования

Универсальные языки моделирования позволяют достичь гибкости при разработке модели, а также их высокого быстродействия. Их знает большинство разработчиков. Однако затраты времени и средств на разработку и отладку модели гораздо выше, чем при использовании специальных систем имитационного моделирования. Обычно универсальные языки применяют для создания уникальных моделей, когда важна скорость выполнения программы (работа в реальном времени), например в оборонной сфере.

^ Системы имитационного моделирования по сравнению с универсальными языками программирования имеют несколько преимуществ:


  1. Они автоматически предоставляют функциональные возможности, которые требуются для создания имитационных моделей:

  1. генераторы случайных чисел;

  2. продвижение модельного времени;

  3. добавление и удаление записей из списка событий;

  4. сбор выходных статистических данных и создание отчета с результатами

  5. и т.д.
Это позволяет сократить время, требуемое для программирования и общую стоимость проекта.

  1. Основные конструкции систем имитационного моделирования больше подходят для создания имитационных моделей, чем конструкции универсальных языков программирования (естественная среда моделирования).

  2. Системы имитационного моделирования обеспечивают более совершенный механизм обнаружения ошибок имитации.
Исторически системы имитационного моделирования разделились на два основных типа: языки имитационного моделирования и проблемно - ориентированные системы моделирования.

^ Языки моделирования по своей природе универсальны, они предполагают написание кода модели. Хотя некоторые языки могут быть ориентированы на решение конкретного вида задач (например, моделирование СМО), но при этом спектр решаемых задач достаточно широк.

^ Проблемно-ориентированные системы моделирования предназначены для решения определенной задачи. В них модель разрабатывается не с помощью программирования, а с использованием графики, диалоговых окон и раскрывающихся меню. Они проще для изучения, но не могут обеспечить достаточную гибкость моделирования.

Многообразие систем имитационного моделирования (сейчас их известно более 500) вызвано применением имитационного моделирования в различных предметных областях, ориентацией на различные типы систем (дискретные или непрерывные), использованием различных типов компьютеров и способов имитации.
Тема 2. Основные понятия имитационного моделирования
^ 2.1. Пример моделируемой системы

Основные понятия моделирования будем рассматривать на примере простой системы массового обслуживания с одним обслуживающим устройством и одной очередью. Таким обслуживающим устройством может быть продавец в маленьком магазине, билетер в театральной кассе, кладовщик на складе или центральный процессор в вычислительной системе. В литературе обслуживающее устройство может называться также прибором или каналом обслуживания. Пусть для определенности мы будем рассматривать парикмахерскую с одним креслом. Обслуживающим устройством является парикмахер. Клиенты приходят в парикмахерскую в случайные моменты времени, ждут своей очереди на обслуживание (если в этом возникает необходимость). Их обслуживают по принципу “первый пришел – первым обслужен”. После этого они уходят. Схематично структура этой системы показана на рис.3.


Приход

мени выбран 1 ч, а в качестве масштаба задать число 7200, то модель будет выполняться медленнее реального процесса. Причем 1 ч реально­ го процесса будет моделироваться в ЭВМ в течение 2 ч, т.е. примерно в 2 раза медленнее. Относительный масштаб в этом случае равен 2:1

(см. масштаб времени).

Имитационная модель (simulation model) - специальный про­ граммный комплекс, позволяющий имитировать деятельность какоголибо сложного объекта. Он запускает в компьютере параллельные взаимодействующие вычислительные процессы, которые являются по своим временным параметрам (с точностью до масштабов времени и пространства) аналогами исследуемых процессов. В странах, занимаю­ щих лидирующее положение в создании новых компьютерных систем и технологий, научное направление Computer Science ориентируется именно на такую трактовку имитационного моделирования, а в про­ граммах магистерской подготовки по данному направлению имеется соответствующая учебная дисциплина.

Имитационное моделирование (simulation) - распространенная разновидность аналогового моделирования, реализуемого с помощью набора математических инструментальных средств, специальных ими­ тирующих компьютерных программ и технологий программирования, позволяющих посредством процессов-аналогов провести целенаправ­ ленное исследование структуры и функций реального сложного процес­ са в памяти компьютера в режиме «имитации», выполнить оптимиза­ цию некоторых его параметров.

Имитационное (компьютерное) моделирование экономических процессов - обычно применяется в двух случаях:

1) для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных (компьютерных) технологий;

2) при проведении экспериментов с дискретно-непрерывными мо­ делями сложных экономических объектов для получения и «наблюде­ ния» их динамики в экстренных ситуациях, связанных с рисками, на­ турное моделирование которых нежелательно или невозможно.

Клапан, перекрывающий путь транзактам - тип узла имитаци­ онной модели. Имеет наименование key. Если на клапан воздействовать сигналом hold из какого-либо узла, то клапан перекрывается и транзакты не могут через него проходить. Сигнал rels из другого узла открыва­ ет клапан.

Коллективное управление процессом моделирования - особый вид эксперимента с имитационной моделью, применяемый в деловых играх и в учебно-тренировочных фирмах.

Компьютерное моделирование имитационное моделирование.

Максимально ускоренный масштаб времени - масштаб, задавае­ мый числом «ноль». Время моделирования определяется чисто процес­ сорным временем выполнения модели. Относительный масштаб в этом случае имеет очень малую величину; его практически невозможно оп­ ределить {см. масштаб времени).

Масштаб времени - число, которое задает длительность моделиро­ вания одной единицы модельного времени, пересчитанной в секунды, в секундах астрономического реального времени при выполнении моде­ ли. Относительный масштаб времени - это дробь, показывающая, сколько единиц модельного времени помещается в одной единице про­ цессорного времени при выполнении модели в компьютере.

Менеджер (или распорядитель) ресурсов - тип узла имитацион­ ной модели. Имеет наименование manage. Управляет работой узлов ти­ па attach. Для правильной работы модели достаточно иметь один узелменеджер: он обслужит все склады без нарушения логики модели. Что­ бы различить статистику по разным складам перемещаемых ресурсов, можно использовать несколько узлов-менеджеров.

Метод Монте-Карло - метод статистических испытаний, проводи­ мых с помощью ЭВМ и программ - датчиков псевдослучайных вели­ чин. Иногда название этого методаошибочно применяется в качестве синонимаимитационного моделирования.

Моделируюшая система (система моделирования - simulation system) - специальное программное обеспечение, предназначенное для создания имитационных моделей и обладающее следующими свойствами:

возможностью применения имитационных программ совместно со специальными экономико-математическими моделями и методами, ос­ нованными на теории управления;

инструментальными методами проведения структурного анализа сложного экономического процесса;

способностью моделирования материальных, денежных и инфор­ мационных процессов и потоков в рамках единой модели, в общем мо­ дельном времени;

возможностью введения режима постоянного уточнения при по­ лучении выходных данных (основных финансовых показателей, вре­ менных и пространственных характеристик, параметров рисков и др.) и проведении экстремального эксперимента.

Нормальный закон - закон распределения случайных величин, имеющий симметричный вид (функция Гаусса). В имитационных моде­ лях экономических процессов используется для моделирования слож­ ных многоэтапных работ.

Обобщенный закон Эрланга - закон распределения случайных ве­ личин, имеющий несимметричный вид. Занимает промежуточное поло­ жение между экспоненциальным и нормальным. В имитационных мо­ делях экономических процессов используется для моделирования слож­ ных групповых потоков заявок (требований, заказов).

Очередь (с относительными приоритетами или без приорите­ тов) - тип узла имитационной модели. Имеет наименование queue. Если приоритеты не учитываются, то транзакты упорядочиваются в очереди в порядке поступления. Когда приоритеты учитываются, транзакт попа­ дает не в «хвост» очереди, а в конец своей приоритетной группы. При­ оритетные группы упорядочиваются от «головы» очереди к «хвосту» в порядке уменьшения приоритета. Если транзакт попадает в очередь и не имеет своей приоритетной группы, то группа с таким приоритетом сра­ зу возникнет: в ней будет один вновь поступивший транзакт.

Очередь с пространственно-зависимыми приоритетами- тип узла имитационной модели. Имеет наименование dynam. Транзакты, попадающие в такую очередь, привязаны к точкам пространства. Оче­ редь обслуживается специальным узлом ргос, работающим в режиме пространственных перемещений. Смысл обслуживания транзактов: не­ обходимо посетить все точки пространства, с которыми связаны (или из которых поступили) транзакты. При поступлении каждого нового транзакта, если он не единственный в очереди, происходит переупорядоче­ ние очереди таким образом, чтобы суммарный путь посещения точек был минимальным (не следует считать, что при этом решается «задача коммивояжера»). Рассмотренное правило работы узла dynam в литера­ туре называется «алгоритмом скорой помощи».

Произвольный структурный узел - тип узла имитационной мо­ дели. Имеет наименование down. Необходим для упрощения очень сложного слоя модели - для «развязывания» запутанной схемы, нахо­ дящейся на одном слое, по двум разным уровням (или слоям).

Пропорционально ускоренный масштаб времени - масштаб, за­ даваемый числом, вьфаженным в секундах. Это число меньше выбран­ ной единицы модельного времени. Например, если в качестве единицы модельного времени выбрать 1 ч, а в качестве масштаба задать число 0,1, то модель будет выполняться быстрее реального процесса. Причем 1 ч реального процесса будет моделироваться в ЭВМ в течение 0,1 с (с учетом погрешностей), т.е. примерно в 36 000 раз быстрее. Относитель­ ный масштаб равен 1:36 000 (см. масштаб времени).

Пространственная динамика - разновидность динамики развития процесса, позволяющей наблюдать во времени пространственные пере­ мещения ресурсов. Изучается в имитационных моделях экономических (логистических) процессов, а также транспортных систем.

Пространство - объект модели, имитирующий географическое пространство (поверхность Земли), декартова плоскость (можно ввести и другие). Узлы, транзакты и ресурсы могут быть привязаны к точкам пространства или мигрировать в нем.

Равномерный закон - закон распределения случайных величин, имеющий симметричный вид (прямоугольник). В имитационных моде­ лях экономических процессов иногда используется для моделирования простых (одноэтапных) работ, в военном деле - для моделирования сроков прохождения пути подразделениями, времени рытья окопов и строительства фортификационных сооружений.

Распорядитель финансов - тип узла имитационной модели «глав­ ный бухгалтер». Имеет наименование direct. Управляет работой узлов типа send. Для правильной работы модели достаточно одного узла direct: он обслужит все счета без нарушения логики модели. Чтобы раз­ личить статистику по разным участкам моделируемой бухгалтерии, можно использовать несколько узлов direct.

Реальный масштаб времени - масштаб, задаваемый числом, вы­ раженным в секундах. Например, если в качестве единицы модельного времени выбрать 1 ч, а в качестве масштаба задать число 3600, то модель будет выполняться со скоростью реального процесса, а интерва­ лы времени между событиями в модели будут равны интервалам време­ ни между реальными событиями в моделируемом объекте (с точностью до поправок на погрешности при задании исходных данных). Отно­ сительный масштаб времени в этом случае равен 1:1(см. масштаб времени).

Ресурс - типовой объект имитационной модели. Независимо от его природы в процессе моделирования может характеризоваться тремя общими параметрами: мощностью, остатком и дефицитом. Разновидно­ сти ресурсов: материальные (базируемые, перемещаемые), информаци­ онные и денежные.

Сигнал - специальная функция, выполненная транзактом, находя­ щимся в одном узле в отношении другого узла для изменения режима работы последнего.

Система имитационного моделирования - иногда применяется как аналог термина моделирующая система (не вполне удачный пере­ вод на русский язык термина simulation system).

Склад перемещаемых ресурсов - тип узла имитационной модели. Имеет наименование attach. Представляет хранилище какого-либо коли-

чества однотипного ресурса. Единицы ресурсов в нужном количестве выделяются транзактам, поступающим в узел attach, если остаток по­ зволяет выполнить такое обслуживание. В противном случае возникает очередь. Транзакты, получивщие единицы ресурса, вместе с ними миг­ рируют по графу и возвращают их по мере необходимости разньши способами: либо все вместе, либо небольишми партиями, либо поппучно. Корректность работы склада обеспечивает специальный узел - ме­ неджер.

Событие - динамический объект модели, представляющий факт выхода из узла одного транзакта. События всегда происходят в опреде­ ленные моменты времени. Они могут быть связаны и с точкой про­ странства. Интервалы между двумя соседними событиями в модели - это, как правило, случайные величины. Разработчик модели практиче­ ски не может управлять событиями вручную (например, из программы). Поэтому функция управления событиями отдана специальной управ­ ляющей программе - координатору, автоматически внедряемому в со­ став модели.

Структурный анализ процесса - формализация структуры слож­ ного реального процесса путем разложения его на подпроцессы, выпол­ няющие определенные функции и имеющие взаимные функциональные связи согласно легенде, разработанной рабочей экспертной группой. Выявленные подпроцессы, в свою очередь, могут разделяться на другие функциональные подпроцессы. Структура общего моделируемого про­ цесса может быть представлена в виде графа, имеющего иерархическую многослойную структуру. В результате появляется формализованное изображение имитационной модели в графическом виде.

Структурный узел выделения ресурсов - тип узла имитационной модели. Имеет наименование rent. Предназначен для упрощения той части имитационной модели, которая связана с работой склада. Работа склада моделируется на отдельном структурном слое модели. Обраще­ ния на этот слой в нужные входы происходят с других слоев из узла rent без их объединения.

Структурный узел финансово-хозяйственных платежей- тип узла имитационной модели. Имеет наименование pay. Предназначен для упрощения той части имитационной модели, которая связана с работой бухгалтерии. Работа бухгалтерии моделируется на отдельном структур­ ном слое модели. Обращения на этот слой в нужные входы происходят с других слоев из узла pay, без объединения этих слоев.

Счет бухгалтерского учета - тип узла имитационной модели. Име­ ет наименование send. Транзакт, который входит в такой узел, является запросом на перечисление денег со счета на счет или на бухгалтерскую проводку. Правильность работы со счетами регулируется специальным

узлом direct, который имитирует работу бухгалтерии. Если в узле send остаток денег достаточен, чтобы выполнить перечисление на другой счет, то перечисление выполняется. В противном случае в узле send об­ разуется очередь необслуженных транзактов.

Терминатор - тип узла имитационной модели. Имеет наименова­ ние term. Транзакт, поступающий в терминатор, уничтожается. В тер­ минаторе фиксируетсявремя жизни транзакта.

Транзакт - динамический объект имитационной модели, представ­ ляющий формальный запрос на какое-либо обслуживание. В отличие от обычных заявок, которые рассматриваются при анализе моделей массо­ вого обслуживания, имеет набор динамически изменяющихся особых свойств и параметров. Пути миграции транзактов по графу модели оп­ ределяются логикой функционирования компонентов модели в узлах сети.

Треугольный закон - закон распределения случайных величин, имеющего симметричный вид (равнобедренный треугольник) иди не­ симметричный вид (треугольник общего вида). В имитационных моде­ лях информационных процессов иногда используется для моделирова­ ния времени доступа к базам данных.

Узел обслуживания с многими параллельными каналами - тип узла имитационной модели. Имеет наименование serv. Обслуживание может быть в порядке поступления транзакта в освободившийся канал либо по правилу абсолютных приоритетов (с прерыванием обслужива­ ния).

Узлы - объекты имитационной модели, представляющие центры обслуживания транзактов в графе имитационной модели (но необяза­ тельно массового обслуживания). В узлах транзакты могут задержи­ ваться, обслуживаться, порождать семейства новых транзактов, унич­ тожать другие трашакты. В каждом узле порождается независимый процесс. Вычислительные процессы выполняются параллельно и коор­ динируют друг друга. Они выполняются в едином модельном времени, в одном пространстве, учитывают временную, пространственную и фи­ нансовую динамику.

Управляемый генератор транзактов (или размножитель) - тип узла имитационной модели. Имеет наименование creat. Позволяет соз­ давать новые семейства транзактов.

Управляемый процесс (непрерывный или пространственный) - тип узла имитационной модели. Имеет наименование ргос. Этот узел работает в трех взаимно исключающих режимах:

моделирования управляемого непрерывного процесса (например,

в реакторе);

доступа к оперативным информационным ресурсам;

пространственных перемещений (например, вертолета).

Управляемый терминатор транзактов - тип узла имитационной

модели. Имеет наименование delet. В нем уничтожается (или поглоща­ ется) заданное число транзактов, принадлежащих конкретному семейст­ ву. Требование на такое действие содержится в уничтожающем транзакте, поступающем на вход узла delet. Он ждет поступления в узел тран­ зактов указанного семейства и уничтожает их. После поглощения унич­ тожающий транзакт покидает узел.

Финансовая динамика - разновидность динамики развития про­ цесса, позволяющей наблюдать во времени изменения ресурсов, денеж­ ных средств, основных результатов деятельности объекта экономики, причем параметры измеряются в денежных единицах. Изучается в ими­ тационных моделях экономических процессов.

Экспоненциальный закон - закон распределения случайных вели­ чин, имеющего ярко выраженный несимметричный вид (затухающая экспонента). В имитационных моделях экономических процессов ис­ пользуется для моделирования интервалов поступления заказов (зая­ вок), поступающих в фирму от многочисленных клиентов рынка. В тео­ рии надежности применяется для моделирования интервала времени между двумя последовательными неисправностями. В связи и компью­ терных науках - для моделирования информационных потоков (пуассоновские потоки).

ЛИТЕРАТУРА

1. Анфилатов В. С, Емельянов А. А., Кукушкин А. А.Системный анализ в управлении / Под ред. А.А. Емельянова. - М.: Финансы и статистика, 2001. - 368 с.

2. Берлянт А. М. Картография. - М.; Аспект Пресс, 2001. - 336 с.

3. Бусленко Н. П. Моделирование сложных систем. - М.: Наука, 1978.-399 с.

4. Варфоломеев В. И. Алгоритмическое моделирование элемен­ тов экономических систем. - М.: Финансы и статистика, 2000. - 208 с.

5. Гаджинский А. М. Практикум по логистике. - М.: Маркетинг, 2001.-180 с.

б.Дийкстра Э. Взаимодействие последовательных процессов // Язьпси программирования / Под ред. Ф. Женюи. - М.: Мир, 1972. -

С. 9-86.

7. Дубров А. М., Шитарян В. С, Трошин Л. И. Многомерные статистические методы. - М.: Финансы и статистика, 2000. - 352 с.

^.Емельянов А. А. Имитационное моделирование в управлении рисками. - СПб.: Инжэкон, 2000. - 376 с.

9. Емельянов А. А., Власова Е. А.Имитационное моделирование в экономических информационных системах. - М.: Изд-во МЭСИ, 1998.-108 с.

10. Емельянов А. А., Мошкина Н. Л., Сныков В. П. Автоматизиро­ ванное составление оперативных расписаний при обследовании рай­ онов экстремально высокого загрязнения // Загрязнение почв и сопредельньк сред. Вьт. 7. - СПб: Гидрометеоиздат, 1991. - С. 46-57.

11. Каляное Г. Н. CASE структурный системный анализ (автома­ тизация и применение). - М.: Лори, 1996. - 241 с.

12. КлейнрокЛ. Коммуникационные сети. Стохастические пото­ ки и задержки сообщений. - М.: Наука, 1970. - 255 с.

13. Щтуглински Д., Уингоу С, Шеферд Дж. Программирование на Microsoft Visual С-н- 6.0 для профессионалов. - СПб.: Питер, Рус­ ская редакция, 2001. - 864 с.

14. Кузин Л. Т., Плужников Л. К, Белов Б. N. Математические методы в экономике и организации производства. - М.: Издгво МИФИ, 1968.-220 с.

15. Налимов В. Д,Чернова И. А. Статистические методы плани­ рования экстремальных экспериментов. - М.: Наука, 1965. - 366 с.

16. Нейлор Т. Машинные имитационные эксперименты с моде­ лями экономических систем. - М.: Мир, 1975. - 392 с.

17. Ойхман Е. Г., Попов Э. В. Реинжиниринг бизнеса. - М.: Фи­ нансы и статистика, 1997. - 336 с.

18. Прицкер А. Введение в имитационное моделирование и язык СЛАМ-П. - М.: Мир, 1987. - 544 с.

19. Саати Т. Элементы теории массового обслуживания и ее приложения. - М.: Сов. радио, 1970. - 377 с.

20. Черемных С. В., Семенов И. О., Ручкин В. С. Структурный анализ систем:ГОЕР-технология.- М.: Финансы и статистика, 2001. - 208 с.

21. Чичерин И. Н. Стоимость права аренды земельного участка и взаимодействие с инвесторами // Экономические информационные системы на пороге XXI века. - М.: Изд-во МЭСИ, 1999. - С. 229232.

22. Шеннон Р. Е. Имитационное моделирование систем: наука и искусство. - М: Мир, 1978. - 420 с.

23. Шрайбер Т. Дж. Моделирование на GPSS. - М.: Машино­ строение, 1979. - 592 с.

ПРЕДИСЛОВИЕ

ВВЕДЕНИЕ

Глава 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИМИТАЦИОННОГО

1.3. Использование законов распределения случай­ ных величин при имитации экономических

процессов

1.4. Нетрадиционные сетевые модели и временные

диаграммы интервалов активности

Вопросы для самопроверки

КОНЦЕПЦИЯ И ВОЗМОЖНОСТИ

ОБЪЕКТНО-ОРИЕНТИРОВАННОЙ

МОДЕЛИРУЮЩЕЙ СИСТЕМЫ

Основные объекты модели

2.2. Моделирование работы с материальными ре­

11митация информационных ресурсов

Денежные ресурсы

Моделирование пространственной динамики...

2.6. Управление модельным временем

Вопросы для самопроверки