Что такое квантовая механика. Основные принципы квантовой механики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

А.А. БЕРЗИН, В.Г. МОРОЗОВ

ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Учебное пособие

Москва – 2004

Введение

Квантовая механика появилась сто лет назад и оформилась в стройную физическую теорию примерно к 1930 году. В настоящее время она считается фундаментом наших знаний об окружающем мире. Довольно долго применение квантовой механики к прикладным задачам ограничивалось ядерной энергетикой (по большей части военной). Однако после того, как в 1948 году был изобретен транзистор

Один из основных элементов полупроводниковой электроники, а в конце 1950-х годов был создан лазер - квантовый генератор света, стало ясно, что открытия в квантовой физике имеют огромный практический потенциал и серьезное знакомство с этой наукой необходимо не только для профессиональных физиков, но и для представителей других специальностей - химиков, инженеров и даже биологов.

Поскольку квантовая механика все больше стала приобретать черты не только фундаментальной, но и прикладной науки, возникла проблема обучения ее основам студентов нефизических специальностей. С некоторыми квантовыми идеями студент впервые знакомится в курсе общей физики, но, как правило, это знакомство ограничивается не более чем случайными фактами и их сильно упрощенными объяснениями. С другой стороны, полный курс квантовой механики, читаемый на физических факультетах университетов, явно избыточен для тех, кто хотел бы приложить свои знания не к раскрытию тайн природы, а к решению технических и других практических задач. Трудность “адаптации” курса квантовой механики к потребностям обучения студентов прикладных специальностей была замечена давно и до сих пор полностью не преодолена, несмотря на многочисленные попытки создания “переходных” курсов, ориентированных на практические применения квантовых законов. Связано это со спецификой самой квантовой механики. Вопервых, для понимания квантовой механики от студента требуется основательное знание классической физики: механики Ньютона, классической теории электромагнетизма, специальной теории относительности, оптики и т.д. Во-вторых, в квантовой механике для правильного описания явлений в микромире приходится жертвовать наглядностью. Классическая физика оперирует более или менее наглядными понятиями; их связь с экспериментом относительно проста. Иное положение в квантовой механике. Как отметил Л.Д. Ландау, внесший значительный вклад в создание квантовой механики, “необходимо понять то, что мы уже не можем себе вообразить”. Обычно трудности при изучении квантовой механики принято объяснять ее довольно абстрактным математическим аппаратом, применение которого неизбежно из-за потери наглядности понятий и законов. Действительно, чтобы научиться решать квантовомеханические задачи, надо знать дифференциальные уравнения, достаточно свободно обращаться с комплексными числами, а также уметь делать многое другое. Все это, впрочем, не выходит за рамки математической подготовки студента современного технического вуза. Настоящая трудность квантовой механики связана не только и даже не столько с математикой. Дело в том, что выводы квантовой механики, как и любой физической теории, должны предсказывать и объяснятьреальные эксперименты , поэтому нужно научиться связывать абстрактные математические конструкции с измеряемыми физическими величинами и наблюдаемыми явлениями. Вырабатывается это умение каждым человеком индивидуально, в основном, путем самостоятельного решения задач и осмысления результатов. Еще Ньютон заметил: “при изучении наук примеры часто важнее правил”. В отношении квантовой механики эти слова содержат большую долю истины.

Предлагаемое читателю пособие основано на многолетней практике чтения в МИРЭА курса “Физика 4”, посвященного основам квантовой механики, студентам всех специальностей факультетов электроники и РТС и студентам тех специальностей факультета кибернетики, где физика относится к основным учебным дисциплинам. Содержание пособия и изложение материала обусловлены рядом объективных и субъективных обстоятельств. Прежде всего необходимо было учесть, что курс “Физика 4” рассчитан на один семестр. Поэтому из всех разделов современной квантовой механики отобраны те, которые непосредственно связаны с электроникой и квантовой оптикой - наиболее перспективными областями применения квантовой механики. Однако, в отличие от курсов общей физики и прикладных технических дисциплин, мы стремились изложить эти разделы в рамках единого и достаточно современного подхода с учетом возможностей студентов для его усвоения. Объем пособия превышает содержание лекций и практических занятий, так как в курсе “Физика 4” предусмотрено выполнение студентами курсовых работ или индивидуальных заданий, которые требуют самостоятельного изучения вопросов, не включенных в план лекций. Изложение этих вопросов в учебниках по квантовой механике, ориентированных на студентов физических факультетов университетов, часто превышает уровень подготовки студента технического вуза. Таким образом, настоящее пособие может быть использовано как источник материала для курсовых работ и индивидуальных заданий.

Важной частью пособия являются упражнения. Некоторые из них приводятся непосредственно в тексте, остальные помещены в конце каждого параграфа. Многие упражнения снабжены указаниями для читателя. В связи с отмеченной выше “необычностью” понятий и методов квантовой механики выполнение упражнений следует рассматривать как совершенно необходимый элемент изучения курса.

1. Физические истоки квантовой теории

1.1. Явления, противоречащие классической физике

Начнем с краткого обзора явлений, которые не смогла объяснить классическая физика и которые привели, в конце концов, к возникновению квантовой теории.

Спектр равновесного излучения черного тела. Напомним, что в физике

черным телом (часто говорят - “абсолютно черным телом”) называется тело, которое полностью поглощает падающее на него электромагнитное излучение любой частоты.

Абсолютно черное тело является, конечно, идеализированной моделью, однако ее можно реализовать с высокой точностью с помощью простого устройства

Замкнутой полости с малым отверстием, внутренние стенки которой покрыты веществом, хорошо поглощающим электромагнитное излучение, например, сажей (см. Рис. 1.1.). Если температура стенок T поддерживается постоянной, то в конце концов установится тепловое равновесие между веществом стенок

Рис. 1.1. и электромагнитным излучением в полости. Одной из проблем, которую активно обсуждали физики в конце XIX века, была такая: как распределена энергия равновесного излучения по

Рис. 1.2.

частотам? Количественно это распределение описывается спектральной плотностью энергии излучения u ω . Произведениеu ω dω есть энергия электромагнитных волн в единице объема с частотами в интервале отω доω +dω . Спектральную плотность энергии можно измерить, анализируя спектр излучения из отверстия полости, изображенной на Рис. 1.1. Экспериментальная зависимостьu ω для двух значений температуры приведена на Рис. 1.2. С ростом температуры максимум кривой смещается в сторону высоких частот и при достаточно высокой температуре частотаω m может достигнуть области видимого глазом излучения. Тело начнет светиться, причем с дальнейшим ростом температуры цвет тела будет меняться от красного к фиолетовому.

Пока мы говорили об экспериментальных данных. Интерес к спектру излучения черного тела был вызван тем, что функция u ω может бытьточно вычислена методами классической статистической физики и электромагнитной теории Максвелла. Согласно классической статистической физике, в тепловом равновесии энергия любой системы распределяется равномерно по всем степеням свободы (теорема Больцмана). Каждая независимая степень свободы поля излучения - электромагнитная волна с определенной поляризацией и частотой. По теореме Больцмана средняя энергия такой волны в тепловом равновесии при температуреT равнаk B T , гдеk B = 1, 38· 10− 23 Дж/ K - постоянная Больцмана. Поэтому

где c - скорость света. Итак, классическое выражение для равновесной спектральной плотности излучения имеет вид

u ω=

k B T ω2

π2 c3

Эта формула есть знаменитая формула Рэлея-Джинса. В классической физике она являетсяточной и, в то же время, абсурдной. В самом деле, согласно ей, в тепловом равновесии при любой температуре имеются электромагнитные волны сколь угодно высоких частот (т. е. ультрафиолетовое излучение, рентгеновское излучение и даже смертельное для человека гамма-излучение), причем, чем выше частота излучения, тем больше энергии на него приходится. Очевидное противоречие между классической теорией равновесного излучения и экспериментом получило в физической литературе эмоциональное название -ультрафиолетовая

катастрофа . Отметим, что известный английский физик лорд Кельвин, подводя итоги развития физики в XIX веке, назвал задачу о равновесном тепловом излучении одной из главных нерешенных проблем.

Фотоэффект . Другим “слабым местом” классической физики оказался фотоэффект - выбивание электронов из вещества под действием света. Совершенно непонятным было то, что кинетическая энергия электронов не зависит от интенсивности света, которая пропорциональна квадрату амплитуды электрического поля

в световой волне и равна среднему потоку энергии, падающему на вещество. С другой стороны, энергия вылетающих электронов существенно зависит от частоты света и линейно растет с ростом частоты. Это также невозможно объяснить

в рамках классической электродинамики, поскольку поток энергии электромагнитной волны, согласно теории Максвелла, не зависит от ее частоты и полностью определяется амплитудой. Наконец, эксперимент показывал, что для каждого вещества существует так называемая красная граница фотоэффекта, т. е. минималь-

ная частота ω min , при которой начинается выбивание электронов. Еслиω < ω min , то свет с частотойω не выбьет ни одного электрона, независимо от интенсивности.

Эффект Комптона . Еще одно явление, которое не могла объяснить классическая физика, было открыто в 1923 году американским физиком А. Комптоном. Он обнаружил, что при рассеянии электромагнитного излучения (в рентгеновском диапазоне частот) на свободных электронах частота рассеянного излучения оказывается меньше, чем частота падающего излучения. Этот экспериментальный факт противоречит классической электродинамике, согласно которой частоты падающего и рассеянного излучения должны быть в точности равны. Чтобы убедиться в сказанном, не нужна сложная математика. Достаточно вспомнить классический механизм рассеяния электромагнитной волны заряженными частицами. Схема

рассуждений примерно такова. Переменное электрическое поле E (t ) =E 0 sinωt

падающей волны действует на каждый электрон силой F (t ) =−eE (t ), где−e -

(m e

заряд электрона

Электрон приобретает ускорение a (t ) =F (t )/m e

электрона), которое изменяется со временем с той же частотой ω , что и поле в падающей волне. Согласно классической электродинамике, заряд, движущийся с ускорением, излучает электромагнитные волны. Это и есть рассеянное излучение. Если ускорение изменяется со временем по гармоническому закону с частотойω , то излучаются волны с той же частотой. Появление рассеянных волн с частотами меньшими, чем частота падающего излучения, явно противоречит классической электродинамике.

Устойчивость атомов . В 1912 году произошло очень важное для всего дальнейшего развития естественных наук событие - была выяснена структура атома. Английский физик Э. Резерфорд, проводя эксперименты по рассеянию α -частиц в веществе, установил, что положительный заряд и практически вся масса атома сосредоточены в ядре с размерами порядка 10− 12 - 10− 13 см. Размеры ядра оказались ничтожно малы по сравнению с размерами самого атома (примерно 10− 8 см.). Для объяснения результатов своих экспериментов Резерфорд выдвинул гипотезу, что атом устроен аналогично солнечной системе: легкие электроны движутся по орбитам вокруг массивного ядра подобно тому, как планеты движутся вокруг Солнца. Силой, удерживающей электроны на орбитах, является сила кулоновского притяжения ядра. На первый взгляд такая “планетарная модель” кажется весьма

1 Символомe везде обозначаетсяположительный элементарный зарядe = 1, 602· 10− 19 Кл.

привлекательной: она наглядна, проста и вполне согласуется с экспериментальными результатами Резерфорда. Более того, на основе этой модели легко оценить энергию ионизации атома водорода, содержащего всего один электрон. Оценка дает неплохое согласие с экспериментальным значением энергии ионизации. К сожалению, понимаемая буквально, планетарная модель атома имеет неприятный недостаток. Дело в том, что с точки зрения классической электродинамики такой атом просто не может существовать; он нестабилен . Причина этого довольно проста: электрон движется по орбите с ускорением. Даже если величина скорости электрона не меняется, все равно есть ускорение, направленное к ядру (нормальное или “центростремительное” ускорение). Но, как уже отмечалось выше, заряд, движущийся с ускорением, должен излучать электромагнитные волны. Эти волны уносят энергию, поэтому энергия электрона убывает. Радиус его орбиты уменьшается и в конце концов электрон должен упасть на ядро. Простые вычисления, которые мы не будем приводить, показывают, что характерное “время жизни” электрона на орбите составляет примерно 10− 8 секунд. Таким образом, классическая физика не способна объяснить устойчивость атомов.

Приведенные примеры не исчерпывают всех трудностей, с которыми встретилась классическая физика на рубеже XIX и XX веков. Другие явления, где ее выводы противоречит эксперименту, мы рассмотрим позже, когда будет развит аппарат квантовой механики и мы сможем сразу же дать правильное объяснение. Постепенно накапливаясь, противоречия между теорией и экспериментальными данными привели к осознанию того, что с классической физикой “не все в порядке” и необходимы совершенно новые идеи.

1.2. Гипотеза Планка о квантовании энергии осциллятора

В декабре 2000 года исполнилось сто лет квантовой теории. Эту дату связывают с работой Макса Планка, в которой он предложил решение проблемы равновесного теплового излучения. Для простоты Планк выбрал в качестве модели вещества стенок полости (см. Рис. 1.1.) систему заряженных осцилляторов, т. е. частиц, способных совершать гармонические колебания около положения равновесия. Если ω - собственная частота колебаний осциллятора, то он способен излучать и поглощать электромагнитные волны той же частоты. Пусть стенки полости на Рис. 1.1. содержат осцилляторы со всевозможными собственными частотами. Тогда, после установления теплового равновесия, средняя энергия, приходящаяся на электромагнитную волну с частотойω , должна быть равна средней энергии осциллятораE ω с той же собственной частотой колебаний. Вспоминая рассуждения, приведенные на стр. 5, запишем равновесную спектральная плотность излучения в таком виде:

1 На латыни слово “quantum” буквально означает “порция” или “кусок”.

В свою очередь, квант энергии пропорционален частоте осциллятора:

Некоторые люди предпочитают использовать вместо циклической частоты ω так называемую линейную частотуν =ω/ 2π , которая равна числу колебаний за секунду. Тогда выражение (1.6) для кванта энергии можно записать в виде

ε = h ν.

Величина h = 2π 6, 626176· 10− 34 Дж· с также называется постоянной Планка 1 .

Исходя из предположения о квантовании энергии осциллятора, Планк получил для спектральной плотности равновесного излучения следующее выражение2 :

π2 c3

e ω/kB T

− 1

В области низких частот (ω k B T ) формула Планка практически совпадает с формулой Релея-Джинса (1.3), а на высоких частотах (ω k B T ) спектральная плотность излучения, в соответствии с экспериментом, быстро стремится к нулю.

1.3. Гипотеза Эйнштейна о квантах электромагнитного поля

Хотя гипотеза Планка о квантовании энергии осциллятора “не вписывается” в классическую механику, ее можно было трактовать в том смысле, что, по-видимому, механизм взаимодействия света с веществом таков, что энергия излучения поглощается и испускается только порциями, величина которых дается формулой (1.5). В 1900 году о строении атомов практически ничего не было известно, поэтому сама по себе гипотеза Планка еще не означала полный отказ от классических законов. Более радикальную гипотезу высказал в 1905 году Альберт Эйнштейн. Анализируя закономерности фотоэффекта, он показал, что все они естественным образом объясняются, если принять, что свет определенной частотыω состоит из отдельных частиц (фотонов), обладающих энергией

1 Иногда, чтобы подчеркнуть, какая именно постоянная Планка имеется в виду, называют “перечеркнутой постоянной Планка”.

2 Теперь это выражение называется формулой Планка.

где A вых - работа выхода, т. е. энергия, необходимая для преодоления сил, удерживающих электрон в веществе1 . Зависимость энергии фотоэлектронов от частоты света, описываемая формулой (1.11), прекрасно согласовывалась с экспериментальной зависимостью, причем величина в этой формуле оказалась очень близка к значению (1.7). Отметим, что, приняв гипотезу фотонов, можно было объяснить и закономерности равновесного теплового излучения. Действительно, поглощение и излучение веществом энергии электромагнитного поля происходит квантамиω потому, что поглощаются и испускаются отдельные фотоны, имеющие именно такую энергию.

1.4. Импульс фотона

Введение представления о фотонах в какой-то степени возрождало корпускулярную теорию света. То, что фотон - “настоящая” частица, подтверждает анализ эффекта Комптона. С точки зрения фотонной теории рассеяние рентгеновских лучей можно представить как индивидуальные акты столкновений фотонов с электронами (см. Рис. 1.3.), в которых должны выполняться законы сохранения энергии и импульса.

Закон сохранения энергии в этом процессе имеет вид

соизмеримыми со скоростью света, поэтому

выражение для энергии электрона нужно

брать в релятивистском виде, т. е.

Eэл = me c2 ,

E эл=

m e 2c 4+ p 2c 2

где p - величина импульса электрона после столкновения с фотоном, аm

электрона. Закон сохранения энергии в эффекте Комптона выглядит так:

ω + me c2 = ω+

m e 2c 4+ p 2c 2

Между прочим, отсюда сразу видно, что ω < ω ; это наблюдается и в эксперименте. Чтобы записать закон сохранения импульса в эффекте Комптона, необходимо найти выражение для импульса фотона. Это можно сделать на основе следующих простых рассуждений. Фотон всегда движется со скоростью светаc , но, как известно из теории относительности, частица, движущаяся со скоростью света, должна

иметь нулевую массу. Так им образом, из общего выражения для релятивистской

энергии E =m 2 c 4 +p 2 c 2 следует, что энергия и импульс фотона связаны соотношениемE =pc . Вспоминая формулу (1.10), получаем

Теперь закон сохранения импульса в эффекте Комптона можно записать в виде

Решение системы уравнений (1.12) и (1.18), которое мы оставляем читателю (см. упражнение 1.2.), приводит к следующей формуле для изменения длины волны рассеянного излучения ∆λ =λ − λ :

называется комптоновской длиной волны частицы (массы m ), на которой происходит рассеяние излучения. Еслиm =m e = 0, 911· 10− 30 кг - масса электрона, тоλ C = 0, 0243· 10− 10 м. Результаты измерений ∆λ , проведенных Комптоном, а затем многими другими экспериментаторами, полностью согласуются с предсказаниями формулы (1.19), причем значение постоянной Планка, которая входит в выражение (1.20), совпадает со значениями, полученными из экспериментов по равновесному тепловому излучению и фотоэффекту.

После появления фотонной теории света и ее успехов в объяснении ряда явлений возникла странная ситуация. В самом деле, попробуем ответить на вопрос: что же такое свет? С одной стороны, в фотоэффекте и эффекте Комптона он ведет себя как поток частиц - фотонов, но, с другой стороны, явления интерференции и дифракции столь же упорно показывают, что свет - электромагнитныеволны . На основе “макроскопического” опыта мы знаем, что частица - это объект, имеющий конечные размеры и движущийся по определенной траектории, а волна заполняет область пространства, т. е. является непрерывным объектом. Как совместить эти две взаимно исключающие точки зрения на одну и ту же физическую реальность - электромагнитное излучение? Парадокс “волна–частица” (или, как предпочитают говорить философы, корпускулярно-волновой дуализм) для света был объяснен лишь в квантовой механике. Мы вернемся к нему после того, как познакомимся с основами этой науки.

1 Напомним, что модуль волнового вектора называется волновым числом.

Упражнения

1.1. Используя формулу Эйнштейна (1.11), объяснить существование красной границы вещества. ω min для фотоэффекта. Выразить ω min через работу выхода электрона из

1.2. Вывести выражение (1.19) для изменения длины волны излучения в эффекте Комптона.

Указание: Разделив равенство (1.14) наc и используя соотношение между волновым числом и частотой (k =ω/c ), запишем

p2 + m2 e c2 = (k − k) + me c.

После возведения в квадрат обеих частей, получим

где ϑ - угол рассеяния, показанный на Рис. 1.3. Приравняв правые части (1.21) и (1.22), приходим к равенству

me c(k − k) = kk(1 −cos ϑ) .

Остается умножить это равенство на 2π , разделить наm e ckk и перейти от волновых чисел к длинам волн (2π/k =λ ).

2. Квантование энергии атома. Волновые свойства микрочастиц

2.1. Теория атома Бора

Прежде чем перейти непосредственно к изучению квантовой механики в ее современном виде, мы кратко обсудим первую попытку применить идею Планка о квантовании к проблеме строения атома. Речь пойдет о теории атома, предложенной в 1913 году Нильсом Бором. Основная цель, которую ставил перед собой Бор, состояла в том, чтобы объяснить удивительно простую закономерность в спектре излучения атома водорода, которую сформулировал Ритц в 1908 году в виде так называемого комбинационного принципа. Согласно этому принципу, частоты всех линий в спектре водорода можно представить как разности некоторых величинT (n ) (“термов”), последовательность которых выражается через целые числа.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.

Наименование параметра Значение
Тема статьи: ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.
Рубрика (тематическая категория) Механика

В 1900 ᴦ. немецкий физик Макс Планк предположил, что излучение и поглощение света веществом происходит конечными порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения:

где - частота испускаемого (или поглощаемого) излучения, а h – универсальная постоянная, называемая постоянной Планка. По современным данным

h = (6,62618 0,00004)∙ 10 -34 Дж∙с.

Гипотеза Планка явилась отправным пунктом возникновения квантовых представлений, положенных в основу принципиально новой физики – физики микромира, называемой квантовой физикой. Огромную роль в ее становлении сыграли глубокие идеи датского физика Нильса Бора и его школы. В корне квантовой механики лежит непротиворечивый синтез корпускулярных и волновых свойств материи. Волна – весьма протяженный в пространстве процесс (вспомните волны на воде), а частица - ϶ᴛᴏ намного более локальный, чем волна, объект. Свет при определœенных условиях ведет себя не как волна, а как поток частиц. В то же время элементарные частицы обнаруживают подчас волновые свойства. В рамках классической теории невозможно объединить волновые и корпускулярные свойства. По этой причине создание новой теории, описывающей закономерности микромира, привело к отказу от обычных представлений, справедливых для макроскопических объектов.

С квантовой точки зрения и свет, и частицы представляют из себясложные объекты, обнаруживающие как волновые, так и корпускулярные свойства (так называемый корпускулярно-волновой дуализм). Создание квантовой физики было стимулировано попытками осмыслить строение атома и закономерности спектров излучения атомов.

В конце 19 века было обнаружено, что при падении света на поверхность металла, из последней испускаются электроны. Это явление назвали фотоэффектом.

В 1905 ᴦ. Эйнштейн объяснил фотоэффект на базе квантовой теории. Он ввел предположение о том, что энергия в пучке монохроматического света состоит из порций, величина которых равна h . Физическая размерность величины h равна время∙энергия=длина∙импульс=момент количества движения. Такой размерностью обладает величина, называемая действием, и в связи с этим h называют элементарным квантом действия. Согласно Эйнштейну, электрон в металле, поглотив такую порцию энергии, совершает работу выхода из металла и приобретает кинœетическую энергию

Е к =h − А вых.

Это уравнение Эйнштейна для фотоэффекта.

Дискретные порции света позже (в 1927 ᴦ.) были названы фотонами .

В науке при определœении математического аппарата всœегда следует исходить из характера наблюдаемых экспериментальных явлений. Немецкий физик Шредингер добился грандиозных достижений, попробовав другую стратегию научного поиска: сначала математика, а затем понимание ее физического смысла и в результате интерпретация природы квантовых явлений.

Было ясно, что уравнения квантовой механики должны быть волновыми (ведь квантовые объекты обладают волновыми свойствами). Эти уравнения должны иметь дискретные решения (квантовым явлениям присущи элементы дискретности). Такого рода уравнения были известны в математике. Ориентируясь на них, Шредингер предложил использовать понятие волновой функции ʼʼψʼʼ. Для частицы, свободно движущейся вдоль оси Х, волновая функция ψ=е - i|h(Et-px) , где р - импульс, х - координата͵ Е-энергия, h-постоянная Планка. Функция ʼʼψʼʼ принято называть волновой потому, что для ее описания используется экспоненциальная функция.

Состояние частицы в квантовой механике описывается волновой функцией, позволяющей определить лишь вероятность нахождения частицы в данной точке пространства. Волновая функция описывает не сам объект и даже не его потенциальные возможности. Операции с волновой функцией позволяют вычислить вероятности квантово-механических событий.

Основополагающими принципами квантовой физики являются принципы суперпозиции, неопределœенности, дополнительности и тождественности.

Принцип суперпозиции в классической физике позволяет получить результирующий эффект от наложения (суперпозиции) нескольких независимых воздействий как сумму эффектов, вызываемых каждым воздействие в отдельности. Он справедлив для систем или полей, описываемых линœейными уравнениями. Этот принцип очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или несколькими волновыми функциями ψ 1, ψ 2 ,…ψ ń , то она может находиться в состоянии, описываемом любой линœейной комбинацией этих функций:

Ψ=c 1 ψ 1 +c 2 ψ 2 +….+с n ψ n ,

где с 1 , с 2 ,…с n – произвольные комплексные числа.

Принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн:

S = S 1 +S 2 +….+S n ,

где S 1 , S 2,….. S n – возмущения, вызываемые волной. В случае негармонической волны ее можно представить как сумму гармонических волн.

Принцип неопределœенности состоит в том, что невозможно одновременно определить две характеристики микрочастицы, к примеру, скорости и координаты. Он отражает двойственную корпускулярно-волновую природу элементарных частиц. Погрешности, неточности, ошибки при одновременном определœении в эксперименте дополнительных величин связаны соотношением неопределœенностей, установленным в 1925ᴦ. Вернером Гейзенбергом. Соотношение неопределœенностей состоит в том, что произведение неточностей любых пар дополнительных величин (к примеру, координаты и проекции импульса на нее, энергии и времени) определяется постоянной Планка h. Соотношения неопределœенностей свидетельствуют о том, что чем определœеннее значение одного из параметров, входящих в соотношения, тем неопределœеннее значение другого параметра и наоборот. Имеется в виду, что параметры измеряются одновременно.

Классическая физика приучила к тому, что всœе параметры объектов и происходящих с ними процессов бывают измерены одновременно с какой угодно точностью. Это положение опровергается квантовой механикой.

Датский физик Нильс Бор пришел к выводу, что квантовые объекты относительны к средствам наблюдения. О параметрах квантовых явлений можно судить лишь после их взаимодействия со средствами наблюдения, ᴛ.ᴇ. с приборами. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят эти явления. При этом приходится учитывать, что приборы, которые используются для измерения параметров, разнотипны. Данные, полученные при разных условиях опыта͵ должны рассматриваться как дополнительные в том смысле, что только совокупность разных измерений может дать полное представление о свойствах объекта. В этом и состоит содержание принципа дополнительности.

В классической физике измерение считалось не возмущающим объект исследования. Измерение оставляет объект неизменным. Согласно квантовой механике, каждое отдельно проведенное измерение разрушает микрообъект. Чтобы провести новое измерение, приходится заново готовить микрообъект. Это усложняет процесс синтеза измерений. В этой связи Бор утверждает взаимодополнительность квантовых измерений. Данные классических измерений не взаимодополнительны, они имеют самостоятельный смысл независимо друг от друга. Взаимодополнение имеет место там, где исследуемые объекты неотличимы друг от друга и взаимосвязаны между собой.

Бор соотносил принцип дополнительности не только с физическими науками: ʼʼцельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описанияʼʼ. По мысли Бора, возможности живых существ столь многообразны и так тесно взаимосвязаны, что при их изучении вновь приходится обращаться к процедуре взаимодополнения данных наблюдений. При этом, эта мысль Бора не получила должного развития.

Особенности и специфика взаимодействий между компонентами сложных микро- и макросистем. а также внешних взаимодействий между ними приводит к громадному их многообразию. Для микро- и макросистем характерна индивидуальность, каждая система описывается присущей только ей совокупностью всœевозможных свойств. Можно назвать различия между ядром водорода и урана, хотя оба относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системы.

При этом можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом и другими внутренними характеристиками. К примеру, всœе электроны Вселœенной считаются тождественными. Тождественные частицы подчиняются принципу тождественности – фундаментальному принципу квантовой механики, согласно которому: состояния системы частиц, получающихся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте.

Этот принцип – основное различие между классической и квантовой механикой. В квантовой механике тождественные частицы лишены индивидуальности.

СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Первые представления о строении вещества возникли в Древней Греции в 6-4 в.в. до н.э. Аристотель считал вещество непрерывным, ᴛ.ᴇ. его можно дробить на сколько угодно малые части, но так и не дойти до мельчайшей частицы, которая дальше не делилась бы. Демокрит считал, что всœе в мире состоит из атомов и пустоты. Атомы – мельчайшие частицы вещества, значит ʼʼнеделимыеʼʼ, и в представлении Демокрита атомы это сферы с зубчатой поверхностью.

Такое мировоззрение существовало вплоть до конца 19 века. В 1897ᴦ. Джозеф Джон Томсон (1856-1940ᴦ.ᴦ.), родной сын У.Томсона, дважды лауреат Нобелœевской премии открыл элементарную частицу, которая была названа электроном. Было установлено, что электрон вылетает из атомов и имеет отрицательный электрический заряд. Величина заряда электрона е =1,6.10 -19 Кл (Кулон), масса электрона m =9,11.10 -31 кᴦ.

После открытия электрона Томсон в 1903 году выдвинул гипотезу о том, что атом представляет собой сферу, по которой размазан положительный заряд, и в виде изюминок вкраплены электроны с отрицательными зарядами. Положительный заряд равен отрицательному, в целом атом электрически нейтрален (суммарный заряд равен 0).

В 1911 году проводя опыт, Эрнст Резерфорд установил, что положительный заряд не размазан по объёму атома, а занимает лишь небольшую его часть. После этого им была выдвинута модель атома, которая впоследствии получила название планетарной. Согласно этой модели атом действительно представляет собой сферу, в центре которой расположен положительный заряд, занимая малую часть этой сферы – порядка 10 -13 см. Отрицательный заряд находится на внешней, так называемой электронной оболочке.

Более совершенную квантовую модель атома предложил датский физик Н.Бор в 1913 году, работавший в лаборатории Резерфорда. Он взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Οʜᴎ сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определœенной орбите, с определœенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е 1 , Е 2 ,…Е n . Всякое изменение энергии в результате испускания или поглощения электромагнитного излучения может происходить скачком из одного состояния в другое.

2. При переходе электрона с одной стационарной орбиты на другую, происходит испускание или поглощение энергии. В случае если при переходе электрона с одной орбиты на другую энергия атома изменяется от Е m до Е n , то hv = Е m - Е n , где v – частота излучения.

Эти постулаты Бор использовал для расчета простейшего атома водорода,

Область, в которой сосредоточен положительный заряд, принято называть ядром. Было предположение, что ядро состоит из положительных элементарных частиц. Эти частицы, названные протонами (в переводе с греческого протон означает первый), были обнаружены Резерфордом в 1919 году. Их заряд по модулю равен заряду электрона (но положительный), масса протона равна 1,6724.10 -27 кᴦ. Существование протона было подтверждено в результате проведения искусственной ядерной реакции превращения азота в кислород. Атомы азота облучались ядрами гелия. В результате получался кислород и протон. Протон это стабильная частица.

В 1932 году Джеймсом Чадвиком была открыта частица, которая не имела электрического заряда и обладала массой, почти равной массе протона. Эта частица была названа нейтроном. Масса нейтрона равна 1,675.10 -27 кᴦ. Нейтрон был открыт в результате облучения α-частицами пластинки из бериллия. Нейтрон является нестабильной частицей. Отсутствие заряда объясняет его легкую способность проникать в ядра атомов.

Открытие протона и нейтрона привело к созданию протонно-нейтронной модели атома. Она была предложена в 1932 году советскими физиками Иваненко, Гапоном и немецким физиком Гейзенбергом. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода, ĸᴏᴛᴏᴩᴏᴇ состоит из одного протона.

Заряд ядра определяется количеством в нем протонов и обозначается символом Z . Вся масса атома заключена в массе его ядра и определяется массой входящих в него протонов и нейтронов, поскольку масса электрона ничтожно мала по сравнению с массами протона и нейтрона. Порядковый номер в периодической таблице Менделœеева соответствует заряду ядра данного химического элемента. Массовое число атома А равно массе нейтронов и протонов: А=Z+N , где Z – количество протонов, N – количество нейтронов. Условно любой элемент обозначается символом: А Х z .

Существуют ядра, которые содержат одинаковое число протонов, но разное число нейтронов, ᴛ.ᴇ. отличающиеся массовым числом. Такие ядра называются изотопами. К примеру, 1 Н 1 - обычный водород, 2 Н 1 - дейтерий, 3 Н 1 - тритий. Наибольшей устойчивостью обладают ядра, в которых число протонов равно числу нейтронов или тех и других одновременно = 2, 8, 20, 28, 50, 82, 126 – магические числа.

Размеры атома приблизительно 10 -8 см. Атом состоит из ядра размером в 10-13 см. Между ядром атома и границей атома находится огромное пространство по масштабам в микромире. Плотность в ядре атома огромна, приблизительно 1,5·108 т/см 3 . Химические элементы с массой А<50 называются легкими, а с А>50 – тяжелыми. В ядрах тяжелых элементов тесновато, ᴛ.ᴇ. создается энергетическая предпосылка для их радиоактивного распада.

Энергия, необходимая для расщепления ядра на составляющие его нуклоны, называют энергией связи. (Нуклоны – обобщенное название протонов и нейтронов и в переводе на русский язык означает ʼʼядерные частицыʼʼ):

Е св = Δm∙с 2 ,

где Δm – дефект массы ядра (разница между массами нуклонов, образующих ядро, и массой ядра).

В 1928ᴦ. физиком-теоретиком Дираком была предложена теория электрона. Элементарные частицы могут вести себя подобно волне – они обладают корпускулярно-волновым дуализмом. Теория Дирака дала возможность определить, когда электрон ведет себя как волна, а когда – как частица. Он заключил, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица позже была обнаружена в 1932 году и названа позитроном. Американский физик Андерсен на фотографии космических лучей обнаружил след частицы, аналогичный электрону, но с положительным зарядом.

Из теории следовало, что электрон и позитрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, ᴛ.ᴇ. квантов электромагнитного излучения. Возможен и обратный процесс, когда фотон, взаимодействуя с ядром, превращается в пару электрон – позитрон. Каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружить частицу в определœенном объёме.

В 50-х годах ХХ века было доказано существование антипротона и антинœейтрона.

Еще 30 лет назад полагали, что нейтроны и протоны – элементарные частицы, но эксперименты по взаимодействию движущихся с большими скоростями протонов и электронов показали, что протоны состоят из еще более мелких частиц. Эти частицы впервые исследовал Гелл Манн и назвал их кварками. Известно несколько разновидностей кварков. Предполагают, что существует 6 ароматов: U – кварк (up), d-кварк (down), странный кварк(strange), очарованный кварк (charm), b - кварк (beauty) , t-кварк (truth)..

Кварк каждого аромата имеет один из трех цветов: красный, зелœеный, синий. Это просто обозначение, т.к. размер кварков намного меньше длины волны видимого света и в связи с этим цвета у них нет.

Рассмотрим некоторые характеристики элементарных частиц. В квантовой механике каждой частице приписывают особый собственный механический момент, который не связан ни с перемещением ее в пространстве, ни с ее вращением. Этот собственный механический момент наз. спином . Так, в случае если повернуть электрон на 360 о, то следовало бы ожидать, что он вернется в исходное состояние. При этом исходное состояние будет достигнуто только при еще одном повороте на 360 о. Т.е., чтобы вернуть электрон в исходное состояние, его нужно повернуть на 720 о, по сравнению со спином мы воспринимаем мир лишь наполовину. Пример, на двойной проволочной петле бусинка вернется в исходное положение при повороте на 720 о. Такие частицы обладают полуцелым спином ½. Спин дает нам сведения, как выглядит частица, в случае если смотреть на нее с разных сторон. К примеру, частица со спином ʼʼ0ʼʼ похожа на точку: она выглядит одинаково со всœех сторон. Частицу со спином ʼʼ1ʼʼ можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает прежний вид при повороте на 360 о. Частицу со спином ʼʼ2ʼʼ можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется с полуоборота (180 о). Частицы с более высоким спином возвращаются в исходное состояние при повороте на еще меньшую часть полного оборота.

Частицы с полуцелым спином называются фермионами, а частицы с целым спином – бозонами. До недавнего времени считалось, что бозоны и фермионы есть единственно возможные виды неразличимых частиц. На самом делœе существует ряд промежуточных возможностей, а фермионы и бозоны - лишь два предельных случая. Такой класс частиц называют энионами.

Частицы вещества подчиняются принципу запрета Паули, открытому в 1923 году австрийским физиком Вольфганом Паули. Принцип Паули гласит: в системе двух одинаковых частиц с полуцелыми спинами в одном и том же квантовом состоянии не может находиться более одной частицы. Для частиц с целым спином ограничений нет. Это значит, что две одинаковые частицы не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределœенности. В случае если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не могут находиться долго в точках с этими координатами.

В квантовой механике предполагается, что всœе силы и взаимодействия между частицами переносятся частицами с целочисленным спином, равным 0,1,2. Это происходит следующим образом: к примеру, частица вещества испускает частицу, которая является переносчиком взаимодействия (к примеру, фотон). В результате отдачи скорость частицы меняется. Далее частица-переносчик ʼʼналетаетʼʼ на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как-будто между этими двумя частицами вещества действует сила. Частицы–переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что, в отличие от реальных, их нельзя зарегистрировать при помощи детектора частиц. При этом они существуют, потому что они создают эффект, поддающийся измерению.

Частицы-переносчики можно классифицировать на 4 типа исходя из величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействуют и от того, с какими частицами они взаимодействуют:

1) Гравитационная сила. Всякая частица находится под действием гравитационной силы, величина которой зависит от массы и энергии частицы. Это слабая сила. Гравитационные действуют на больших расстояниях и всœегда являются силами притяжения. Так, к примеру, гравитационное взаимодействие удерживает планеты на их орбитах и нас на Земле.

В квантовомеханическом подходе к гравитационному полю считается, что сила, действующая между частицами материи, переносится частицей со спином ʼʼ2ʼʼ, которая принято называть гравитоном. Гравитон не обладает собственной массой и в связи с этим переносимая им сила, является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Солнце и Земля обмениваются гравитонами. Эффект от обмена этими виртуальными частицами поддается измерению, потому что данный эффект – вращение Земли вокруг Солнца.

2) Следующий вид взаимодействия создается электромагнитными силами , которые действуют между электрически заряженными частицами. Электромагнитное взаимодействие намного сильнее гравитационного: электромагнитная сила, действующая между двумя электронами, примерно в 10 40 раз больше гравитационной силы. Электромагнитное взаимодействие обуславливает существование стабильных атомов и молекул (взаимодействие между электронами и протонами). Переносчиком электромагнитного взаимодействия выступает фотон.

3) Слабое взаимодействие . Оно отвечает за радиоактивность и существует между всœеми частицами вещества со спином ½ . Слабое взаимодействие обеспечивает долгое и ровное горение нашего Солнца, дающего энергию для протекания всœех биологических процессов на Земле. Переносчиками слабого взаимодействия являются три частицы - W ± и Z 0 -бозоны. Οʜᴎ были открыты лишь в 1983ᴦ. Радиус слабого взаимодействия чрезвычайно мал, в связи с этим его переносчики должны обладать большими массами. В соответствии с принципом неопределœенности время жизни частиц с такой большой массой должно быть чрезвычайно коротким-10 -26 с.

4) Сильное взаимодействие представляет собой взаимодействие, ĸᴏᴛᴏᴩᴏᴇ удерживает кварки внутри протонов и нейтронов, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается частица со спином ʼʼ1ʼʼ, которая принято называть глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. Кварки, благодаря глюонам, связываются парами или тройками. Сильное взаимодействие при высоких энергиях ослабевает и кварки и глюоны начинают вести себя как свободные частицы. Это свойство называют асимптотической свободой. В результате экспериментов на мощных ускорителях получены фотографии треков (следов) свободных кварков, родившихся в результате столкновения протонов и антипротонов высокой энергии. Сильное взаимодействие обеспечивает относительную стабильность и существование ядер атомов. Сильное и слабое взаимодействие характерно для процессов микромира, ведущих к взаимопревращениям частиц.

Сильные и слабые взаимодействия стали известны человеку только в первой трети 20 века в связи с изучением радиоактивности и осмыслением результатов бомбардировок атомов различных элементов α-частицами. α-частицы выбивают и протоны, и нейтроны. Цель рассуждений привела физиков к убеждению, что протоны и нейтроны сидят в ядрах атомов, будучи крепко связанными друг с другом. Налицо сильные взаимодействия. С другой стороны, радиоактивные вещества испускают α-, β- и γ-лучи. Когда в 1934 году Ферми создал первую достаточно адекватную экспериментальным данным теорию, то ему пришлось предположить наличие в ядрах атомов незначительных по своим интенсивностям взаимодействий, которые и стали называть слабыми.

Сейчас принимаются попытки объединœения электромагнитного, слабого и сильного взаимодействия, чтобы в результате получилась так называемая ТЕОРИЯ ВЕЛИКОГО ОБЪЕДИНЕНИЯ . Эта теория проливает свет на само наше существование. Не исключено, что наше существование есть следствие образования протонов. Такая картина начала Вселœенной представляется наиболее естественной. Земное вещество в основном состоит из протонов, но в нем нет ни антипротонов, ни антинœейтронов. Эксперименты с космическими лучами показали, что то же самое справедливо и для всœего вещества в нашей Галактике.

Характеристики сильного, слабого, электромагнитного и гравитационного взаимодействий приведена в таблице.

Порядок интенсивности каждого взаимодействия, указанный в таблице, определœен по отношению к интенсивности сильного взаимодействия, принятого за 1.

Приведем классификацию наиболее известных в настоящее время элементарных частиц.

ФОТОН. Масса покоя и электрический заряд его равны 0. Фотон имеет целочисленный спин и является бозоном.

ЛЕПТОНЫ. Этот класс частиц не участвует в сильном взаимодействии, но обладает электромагнитными, слабыми и гравитационными взаимодействиями. Лептоны имеют полуцелый спин и относятся к фермионам. Элементарным частицам, входящим в эту группу, приписывается некоторая характеристика, называемая лептонным зарядом. Лептонный заряд, в отличие от электрического, не является источником какого-либо взаимодействия, его роль пока полностью не выяснена. Значение лептонного заряда у лептонов L=1, у антилептонов L= -1, всœех остальных элементарных частиц L=0.

МЕЗОНЫ. Это нестабильные частицы, которым присуще сильное взаимодействие. Название ʼʼмезоныʼʼ означает ʼʼпромежуточныйʼʼ и обусловлено тем, что первоначально открытые мезоны имели массу большую, чем у электрона, но меньшую, чем у протона. Сегодня известны мезоны, массы которых больше массы протонов. Все мезоны имеют целый спин и, следовательно являются бозонами.

БАРИОНЫ. В данный класс входит группа тяжелых элементарных частиц с полуцелым спином (фермионы) и массой, не меньшей массы протона. Единственным стабильным барионом является протон, нейтрон стабилен лишь внутри ядра. Для барионов характерны 4 вида взаимодействия. В любых ядерных реакциях и взаимодействиях их общее число остается неизменным.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ. - понятие и виды. Классификация и особенности категории "ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ." 2017, 2018.

ПЛАН

ВВЕДЕНИЕ 2

1. ИСТОРИЯ СОЗДАНИЯ КВАНТОВОЙ МЕХАНИКИ 5

2. МЕСТО КВАНТОВОЙ МЕХАНИКИ СРЕДИ ДРУГИХ НАУК О ДВИЖЕНИИ. 14

ЗАКЛЮЧЕНИЕ 17

ЛИТЕРАТУРА 18

Введение

Квантовая механика - теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах. Законы квантовой механики (в дальнейшем К.м.) составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.

Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Квантовая механика становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

1. История создания квантовой механики

В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классической теории электромагнитного поля (классической электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (дуализм света); вторая - с невозможностью объяснить на основе классических представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счете, к открытию законов К. м.

Впервые квантовые представления (в т. ч. квантовая постоянная h ) были введены в физику в работе М. Планка (1900), посвященной теории теплового излучения.

Существовавшая к тому времени теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическое) равновесие между излучением и веществом не может быть достигнуто, т.к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классической теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определенными порциями энергии - квантами. Величина такого кванта энергии зависит от частоты света n и равна E = h n. От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в двух ее формах (1927).

Первая начинается с работы Эйнштейна (1905), в которой была дана теория фотоэффекта - явления вырывания светом электронов из вещества.

В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями - квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету - что сам свет состоит из отдельных порций - световых квантов (которые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний n волны соотношением Планка E = h n.

Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Кинематика такого столкновения определяется законами сохранения энергии и импульса, причем фотону наряду с энергией E = h n следует приписать импульс р = h / l = h n / c , где l - длина световой волны.

Энергия и импульс фотона связаны соотношением E = cp, справедливым в релятивистской механике для частицы с нулевой массой. Т. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. В этом проявляется дуализм света, его сложная корпускулярно-волновая природа.

Дуализм содержится уже в формуле E = h n , не позволяющей выбрать какую-либо одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой - частота n является характеристикой волны. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других - корпускулярную. По существу разрешение этого противоречия и привело к созданию физических основ квантовой механики.

В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от ее природы, следует поставить в соответствие волну, длина которой L связана с импульсом частицы р соотношением. По этой гипотезе не только фотоны, но и все «обыкновенные частицы» (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в явлении дифракции.

В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у других частиц, и справедливость формулы де Бройля была подтверждена экспериментально

В 1926 Э. Шрёдингер предложил уравнение, описывающее поведение таких «волн» во внешних силовых полях. Так возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерялитивистской К. м.

В 1928 П. Дирак сформулировал релятивистское уравнение, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных уравнений релятивистской квантовой механики.

Вторая линия развития начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (колебательных систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучения веществом происходят квантами энергии h n. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантована, т. е. разность соседних уровней энергии (энергий, которыми может обладать осциллятор) должна равняться h n, где n - частота колебаний атомов.

Теория Эйнштейна, уточнённая П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.

В 1913 Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны.

Рассмотрение такого движения на основе классических представлений приводило к парадоксальному результату - невозможности стабильного существования атомов: согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию. Радиус его орбиты должен уменьшится и за время порядка 10 –8 сек электрон должен упасть на ядро. Это означало, что законы классической физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определённым условиям квантования. Т. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии.

Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классической орбиты была целым кратным постоянной Планка.

Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн.

Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии E i , на другой с меньшей энергией E k , при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход:

h n = E i - E k . (1)

Так возникает линейчатый спектр - основная особенность атомных спектров, Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул.

Существование уровней энергии в атомах было непосредственно подтверждено Франка - Герца опытами (1913-14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетических уровней атома.

Н. Бор, используя квантовую постоянную h , отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля. Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах возникновение молекулярной связи.

«Полуклассическая» теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одногоуровня энергии на другой.

Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно.

Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины - матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании квантовой механики сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование квантовой механики как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано неопределённостей соотношение - важнейшее соотношение, освещающее физический смысл уравнений квантовой механики., её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты квантовой механики. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) - спин.

Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.

В течение короткого времени квантовой механика была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными.

Под квантовой механикой понимают физическую теорию динамического поведения форм излучения и вещества. Это на которой построена современная теория физических тел, молекул и элементарных частиц. Вообще, квантовая механика была создана учеными, которые стремились понять строение атома. В течении многих годов легендарные физики изучали особенности и направления химии и следовали историческому времени развития событий.

Такое понятие, как квантовая механика, зарождалось в течение долгих лет. В 1911 году ученые Н. Бор и предложили ядерную модель атома, которая напоминала модель Коперника с его солнечной системой. Ведь солнечная система имела в своем центре ядро, вокруг которого вращались элементы. На основе этой теории начались расчеты физических и химических свойств некоторых веществ, которые были построены из простых атомов.

Одним из важных вопросов в такой теории, как квантовая механика - это природа сил, которая связывала атом. Благодаря закону Кулона, Э. Резерфорд показал, что данный закон справедлив в огромных масштабах. Затем необходимо было определить, каким образом электроны движутся по своей орбите. В этом пункте помог

На самом деле, квантовая механика нередко противоречит таким понятиям, как здравый смысл. Наряду с тем, что наш здравый смысл действует и показывает только такие вещи, которые можно взять из повседневного опыта. А, в свою очередь, повседневный опыт имеет дело только с явлениями макромира и крупными объектами, в то время как материальные частицы на субатомном и атомарном уровне ведут себя совсем по-другому. Например, в макромире мы с легкостью способны определить нахождение любого объекта при помощи измерительных приборов и методов. А если мы будем измерять координаты микрочастицы электрона, то пренебречь взаимодействием объекта измерения и измерительного прибора просто недопустимо.

Другими словами можно сказать, что квантовая механика представляет собой физическую теорию, которая устанавливает законы движения различных микрочастиц. От классической механики, которая описывает движение микрочастиц, квантовая механика отличается двумя показателями:

Вероятный характер некоторых физических величин, например, скорость и положение микрочастицы определить точно невозможно, можно рассчитать только вероятность их значений;

Дискретное изменение например, энергия какой-либо микрочастицы имеет только определенные некоторые значения.

Квантовая механика еще сопряжена с таким понятием, как квантовая криптография , которая представляет собой быстроразвивающуюся технологию, способную изменить мир. Квантовая криптография направлена на то, чтобы защитить коммуникации и секретность информации. Основана эта криптография на определенных явлениях и рассматривает такие случаи, когда информация может переноситься при помощи объектом квантовой механики. Именно здесь с помощью электронов, фотонов и других физических средств определяется процесс приема и отправки информации. Благодаря квантовой криптографии можно создать и спроектировать систему связи, которая может обнаружить подслушивание.

На сегодняшний момент достаточно много материалов, где предлагается изучение такого понятия, как квантовая механика основы и направления, а также деятельности квантовой криптографии. Чтобы обрести знания в этой непростой теории, необходимо досконально изучать и вникать в эту область. Ведь квантовая механика - это далеко не легкое понятие, которое изучалось и доказывалось величайшими учеными многими годами.

Квантовая механика - это механика микромира. Явления, которые она изучает, в основном лежат за пределами нашего чувственного восприятия, поэтому не следует удивляться кажущейся парадоксальности законов, управляющих этими явлениями.

Основные законы квантовой механики не удается сформулировать как логическое следствие результатов некоторой совокупности фундаментальных физических экспериментов. Иными словами, до сих пор неизвестна формулировка квантовой механики, основанная на системе проверенных на опыте аксиом. Более того, некоторые из основных положений квантовой механики принципиально не допускают опытной проверки. Наша уверенность в справедливости квантовой механики основана на том, что все физические результаты теории согласуются с экспериментом. Таким образом, на опыте проверяются только следствия из основных положений квантовой механики, а не ее основные законы. С этими обстоятельствами связаны, по-видимому, главные трудности, возникающие при первоначальном изучении квантовой механики.

Такого же характера, но, очевидно, гораздо большие трудности стояли перед создателями квантовой механики. Эксперименты со всей определенностью указывали на существование особых квантовых закономерностей в микромире, но ни в коей мере не подсказывали форму квантовой теории. Этим можно объяснить поистине драматическую историю создания квантовой механики и, в частности, тот факт, что первоначальные формулировки квантовой механики носили чисто рецептурный характер. Они содержали некоторые правила, позволяющие вычислять измеряемые на опыте величины, а физическое истолкование теории появилось после того, как в основном был создан ее математический формализм.

При построении квантовой механики в настоящем курсе мы не будем следовать историческому пути. Мы очень коротко опишем ряд физических явлений, попытки объяснить которые на основе законов классической физики приводили к непреодолимым трудностям. Далее мы попытаемся выяснить, какие черты описанной в предыдущих параграфах схемы классической механики должны сохраниться в механике микромира и от чего можно и нужно отказаться. Мы увидим, что отказ только от одного утверждения классической механики, а именно от утверждения, что наблюдаемые есть функции на фазовом пространстве, позволит построить схему механики, описывающую системы с поведением, существенно отличным от классического. Наконец, в последующих параграфах мы убедимся, что построенная теория является более общей, чем классическая механика, и содержит последнюю как предельный случай.

Исторически первая квантовая гипотеза была выдвинута Планком в 1900 г. в связи с теорией равновесного излучения. Планку удалось получить согласующуюся с опытом формулу для спектрального распределения энергии теплового излучения, выдвинув предположение о том, что электромагнитное излучение испускается и поглощается дискретными порциями - квантами, энергия которых пропорциональна частоте излучения

где - частота колебаний в световой волне, - постоянная Планка.

Гипотеза Планка о световых квантах позволила Эйнштейну дать чрезвычайно простое объяснение закономерностей фотоэффекта (1905 г.). Явление фотоэффекта состоит в том, что под действием светового потока из металла выбиваются электроны. Основная задача теории фотоэффекта - найти зависимость энергии выбиваемых электронов от характеристик светового потока. Пусть V - работа, которую нужно затратить на выбивание электрона из металла (работа выхода). Тогда закон сохранения энергии приводит к соотношению

где Т - кинетическая энергия выбитого электрона. Мы видим, что эта энергия линейно зависит от частоты и не зависит от интенсивности светового потока. Кроме того, при частоте (красная граница фотоэффекта) явление фотоэффекта становится невозможным, так как . Эти выводы, основанные на гипотезе о световых квантах, полностью согласуются с опытом. В то же время по классической теории энергия вырванных электронов должна зависеть от интенсивности световых волн, что противоречит результатам экспериментов.

Эйнштейн дополнил представление о световых квантах, введя импульс светового кванта по формуле

Здесь k - так называемый волновой вектор, имеющий направление распространения световых волн; длина этого вектора k связана с длиной волны , частотой и скоростью света с соотношениями

Для световых квантов справедлива формула

являющаяся частным случаем формулы теории относительности

для частицы с массой покоя .

Заметим, что исторически первые квантовые гипотезы относились к законам излучения и поглощения световых волн, т. е. к электродинамике, а не к механике. Однако вскоре стало ясно, что не только для электромагнитного излучения, но и для атомных систем характерна дискретность значений ряда физических величин. Опыты Франка и Герца (1913 г.) показали, что при столкновениях электронов с атомами энергия электронов изменяется дискретными порциями. Результаты этих опытов можно объяснить тем, что энергия атомов может иметь только определенные дискретные значения. Позднее, в 1922 г. опыты Штерна и Герлаха показали, что аналогичным свойством обладает проекция момента количества движения атомных систем на некоторое направление. В настоящее время хорошо известно, что дискретность значений ряда наблюдаемых хотя и характерная, но не обязательная черта систем микромира. Так, например, энергия электрона в атоме водорода имеет дискретные значения, а энергия свободно движущегося электрона может принимать любые положительные значения. Математический аппарат квантовой механики должен быть приспособлен к описанию наблюдаемых, принимающих как дискретные, так и непрерывные значения.

В 1911 г. Резерфордом было открыто атомное ядро и предложена планетарная модель атома (опыты Резерфорда по рассеянию а-частиц на образцах из различных элементов показали, что атом имеет положительно заряженное ядро, заряд которого равен - номер элемента в таблице Менделеева, а - заряд электрона, размеры ядра не превышают сами атомы имеют линейные размеры порядка см). Планетарная модель атома противоречит основным положениям классической электродинамики. Действительно, двигаясь вокруг ядра по классическим орбитам, электроны, как всякие ускоренно движущиеся заряды, должны излучать электромагнитные волны. При этом электроны должны терять свою энергию и в конце концов упасть на ядро. Поэтому такой атом не может быть устойчивым, что, конечно, не соответствует действительности. Одна из основных задач квантовой механики - объяснить устойчивость и описать структуру атомов и молекул как систем, состоящих из положительно заряженных ядер и электронов.

Совершенно удивительным с точки зрения классической механики представляется явление дифракции микрочастиц. Это явление было предсказано де Бройлем в 1924 г., который предположил, что свободно движущейся частице с импульсом р

и энергией Е в каком-то смысле соответствует волна с волновым вектором k и частотой , причем

т. е. соотношения (1) и (2) справедливы не только для световых квантов, но и для частиц. Физическое истолкование волн де Бройля было дано позднее Борном, и мы его пока обсуждать не будем. Если движущейся частице соответствует волна, то независимо от того, какой точный смысл вкладывается в эти слова, естественно ожидать, что это проявится в существовании дифракционных явлений для частиц. Впервые дифракция электронов наблюдалась в опытах Девиссона и Джермера в 1927 г. Впоследствии явления дифракции наблюдались и для других частиц.

Покажем, что дифракционные явления несовместимы с классическими представлениями о движении частиц по траекториям. Рассуждение удобнее всего провести на примере мысленного эксперимента по дифракции пучка электронов на двух щелях, схема которого изображена на рис. 1. Пусть электроны от источника А двигаются к экрану Б и, проходя через щели и в нем, попадают на экран В.

Нас интересует распределение электронов по координате у, попадающих на экран В. Явления дифракции на одной и двух щелях хорошо изучены, и мы можем утверждать, что распределение электронов имеет вид а, изображенный на рис. 2, если открыта только первая щель, вид (рис. 2), - если открыта вторая и вид в, - если открыты обе щели. Если предположить, что каждый электрон двигался по определенной классической траектории, то все электроны, попавшие на экран В, можно разбить на две группы в зависимости от того, через какую щель они прошли. Для электронов первой группы совершенно безразлично, открыта ли вторая щель, и поэтому их

распределение на экране должно изображаться кривой а; аналогично электроны второй группы должны иметь распределение . Поэтому в случае, когда открыты обе щели, на экране должно получиться распределение, являющееся суммой распределений а и б. Такая сумма распределений не имеет ничего общего с интерференционной картиной в. Это противоречие показывает, что разделение электронов на группы по тому признаку, через какую щель они прошли, в условиях описанного эксперимента невозможно, а значит, мы вынуждены отказаться от понятия траектории.

Сразу же возникает вопрос, а можно ли так поставить эксперимент, чтобы выяснить, через какую щель проходил электрон. Разумеется, такая постановка эксперимента возможна, для этого достаточно поместить источник света между экранами и Б и наблюдать рассеяние световых квантов на электронах. Для того чтобы добиться достаточного разрешения, мы должны использовать кванты с длиной волны, по порядку не превосходящей расстояния между щелями, т. е. с достаточно большой энергией и импульсом. Наблюдая кванты, рассеянные на электронах, мы действительно сможем определить, через какую щель прошел электрон. Однако взаимодействие квантов с электронами вызовет неконтролируемое изменение их импульсов, а следовательно, распределение электронов, попавших на экран, должно измениться. Таким образом, мы приходим к выводу, что ответить на вопрос, через какую щель прошел электрон, можно только за счет изменения как условий, так и окончательного результата эксперимента.

На этом примере мы сталкиваемся со следующей общей особенностью поведения квантовых систем. Экспериментатор не имеет возможности следить за ходом эксперимента, так как это приводит к изменению его окончательного результата. Эта особенность квантового поведения тесно связана с особенностями измерений в микромире. Всякое измерение возможно только при взаимодействии системы с измерительным прибором. Это взаимодействие приводит к возмущению движения системы. В классической физике всегда предполагается, что

это возмущение может быть сделано сколь угодно малым, так же как и длительность процесса измерения. Поэтому всегда возможно одновременное измерение любого числа наблюдаемых.

Детальный анализ процесса измерения некоторых наблюдаемых для микросистем, который можно найти во многих учебниках по квантовой механике, показывает, что с увеличением точности измерения наблюдаемых воздействие на систему увеличивается и измерение вносит неконтролируемые изменения в численные значения некоторых других наблюдаемых. Это приводит к тому, что одновременное точное измерение некоторых наблюдаемых становится принципиально невозможным. Например, если для измерения координаты частицы использовать рассеяние световых квантов, то погрешность такого измерения имеет порядок длины волны света . Повысить точность измерения можно, выбирая кванты с меньшей длиной волны, а следовательно, с большим импульсом . При этом в численные значения импульса частицы вносится неконтролируемое изменение порядка импульса кванта. Поэтому погрешности измерения координаты и импульса связаны соотношением

Более точное рассуждение показывает, что это соотношение связывает только одноименные координату и проекцию импульса. Соотношения, связывающие принципиально возможную точность одновременного измерения двух наблюдаемых, называются соотношениями неопределенности Гейзенберга. В точной формулировке они будут получены в следующих параграфах. Наблюдаемые, на которые соотношения неопределенности не накладывают никаких ограничений, являются одновременно измеримыми. Мы увидим в дальнейшем, что одновременно измеримыми являются декартовы координаты частицы или проекции импульса, а неизмеримыми одновременно - одноименные координаты и проекция импульса или две декартовы проекции момента количества движения. При построении квантовой механики мы должны помнить о возможности существования неизмеримых одновременно величин.

Теперь после небольшого физического вступления попытаемся ответить на уже поставленный вопрос: какие особенности классической механики следует сохранить и от чего естественно отказаться при построении механики микромира. Основными понятиями классической механики были понятия наблюдаемой и состояния. Задача физической теории-предсказание результатов экспериментов, а эксперимент всегда есть измерение некоторой характеристики системы или наблюдаемой при определенных условиях, которые определяют состояние системы. Поэтому понятия наблюдаемой и состояния должны появиться

в любой физической теории. С точки зрения экспериментатора определить наблюдаемую - значит задать способ ее измерения. Наблюдаемые мы будем обозначать символами а, b, с,... и пока не будем делать никаких предположений об их математической природе (напомним, что в классической механике наблюдаемые есть функции на фазовом пространстве). Множество наблюдаемых, как и прежде, мы будем обозначать через .

Разумно предположить, что условия эксперимента определяют по крайней мере вероятностные распределения результатов измерения всех наблюдаемых, поэтому определение состояния, данное в § 2, разумно сохранить. Состояния по-прежнему мы будем обозначать через соответствующую наблюдаемой а вероятностную меру на действительной оси через функцию распределения наблюдаемой а в состоянии через и, наконец, среднее значение наблюдаемой а в состоянии через .

Теория должна содержать определение функции от наблюдаемой. Для экспериментатора утверждение, что наблюдаемая b есть функция от наблюдаемой а означает, что для измерения b достаточно измерить а, и, если в результате измерения наблюдаемой а получится число , то численное значение наблюдаемой b есть . Для соответствующих а и вероятностных мер справедливо равенство

для любых состояний .

Заметим, что всевозможные функции от одной наблюдаемой а измеримы одновременно, так как для измерения этих наблюдаемых достаточно измерить наблюдаемую а. В дальнейшем мы увидим, что в квантовой механике этим примером исчерпываются случаи одновременной измеримости наблюдаемых, т. е. если наблюдаемые измеримы одновременно, то найдется такая наблюдаемая а и такие функции , что .

Среди множества функций наблюдаемой а, очевидно, определены , где - вещественное число. Существование первой из этих функций показывает, что наблюдаемые можно умножать на вещественные числа. Утверждение, что наблюдаемая есть константа подразумевает, что ее численное значение в любом состоянии совпадает с этой константой.

Попытаемся теперь выяснить, какой смысл можно придать сумме и произведению наблюдаемых. Эти операции были бы определены, если бы у нас было определение функции от двух наблюдаемых Здесь, однако, возникают принципиальные трудности, связанные с возможностью существования неизмеримых одновременно наблюдаемых. Если а и b

измеримы одновременно, то определение совершенно аналогично определению . Для измерения наблюдаемой достаточно измерить наблюдаемые а и b, и такое измерение приведет к численному значению , где - численные значения наблюдаемых а и b соответственно. Для случая неизмеримых одновременно наблюдаемых а и b не существует никакого разумного определения функции . Это обстоятельство заставляет нас отказаться от предположения, что наблюдаемые есть функции на фазовом пространстве , так как у нас есть физические основания считать q и р неизмеримыми одновременно и искать наблюдаемые среди математических объектов иной природы.

Мы видим, что определить сумму и произведение используя понятие функции от двух наблюдаемых, можно только в том случае, если они одновременно измеримы. Однако возможен другой подход, позволяющий ввести сумму в общем случае. Мы знаем, что вся информация о состояниях и наблюдаемых получается в результате измерений, поэтому разумно предположить, что состояний достаточно много, чтобы по ним можно было различать наблюдаемые, и аналогично наблюдаемых достаточно много, чтобы по ним можно было различать состояния.

Более точно мы предполагаем, что из равенства

справедливого для любого состояния а, следует, что наблюдаемые а и b совпадают а из равенства

справедливого для любой наблюдаемой а, следует, что совпадают СОСТОЯНИЯ и .

Первое из сделанных предположений дает возможность определить сумму наблюдаемых как такую наблюдаемую, для которой справедливо равенство

при любом состоянии а. Сразу заметим, что это равенство является выражением известной теоремы теории вероятностей о среднем значении суммы только в случае, когда наблюдаемые а и b имеют общую функцию распределения. Такая общая функция распределения может существовать (и в квантовой механике действительно существует) только для одновременно измеримых величин. В этом случае определение суммы по формуле (5) совпадает со сделанным прежде. Аналогичное определение произведения невозможно, так как среднее от произведения

не равно произведению средних даже для одновременно измеримых наблюдаемых.

Определение суммы (5) не содержит никакого указания на способ измерения наблюдаемой по известным способам измерения наблюдаемых а и b и в этом смысле является неявным.

Чтобы дать представление о том, насколько понятие суммы наблюдаемых может отличаться от обычного понятия суммы случайных величин, мы приведем пример наблюдаемой, которая будет подробно изучена в дальнейшем. Пусть

Наблюдаемая Н (энергия одномерного гармонического осциллятора) есть сумма двух наблюдаемых, пропорциональных квадратам импульса и координаты. Мы увидим, что эти последние наблюдаемые могут принимать любые неотрицательные численные значения, в то время как значения наблюдаемой Н должны совпадать с числами где , т. е. наблюдаемая Н с дискретными численными значениями является суммой наблюдаемых с непрерывными значениями.

Фактически все наши предположения сводятся к тому, что при построении квантовой механики разумно сохранить структуру алгебры наблюдаемых классической механики, но следует отказаться от реализации этой алгебры функциями на фазовом пространстве, так как мы допускаем существование неизмеримых одновременно наблюдаемых.

Наша ближайшая задача - убедиться в том, что существует реализация алгебры наблюдаемых, отличная от реализации классической механики. В следующем параграфе мы приведем пример такой реализации, построив конечномерную модель квантовой механики. В этой модели алгебра наблюдаемых есть алгебра самосопряженных операторов в -мерном комплексном пространстве . Изучая эту упрощенную модель, мы сумеем проследить за основными особенностями квантовой теории. В то же время, дав физическое толкование построенной модели, мы увидим, что она слишком бедна, чтобы соответствовать действительности. Поэтому конечномерную модель нельзя рассматривать как окончательный вариант квантовой механики. Однако усовершенствование этой модели - замена на комплексное гильбертово пространство будет представляться весьма естественным.