Закон Максвелла о распределении молекул по скоростям. Барометрическая формула

Статистические распределения

При тепловом движении положения частиц, величина и направление их скоростей изменяются случайным образом. Вследствие гигантского числа частиц случайный характер их движения, проявляется в существовании определенных статистических закономерностей в распределении частиц системы по координатам, значениям скоростей и т.д. Подобные распределения характеризуются соответствующими функциями распределения. Функция распределения (плотность вероятности) характеризует распределения частиц по соответствующей переменной (координаты, величины скоростей и т.д). В основе классической статистики лежат следующие положения:

Все частицы классической системы различимы (т.е. их можно пронумеровать и следить за каждой частицей);

Все динамические переменные, характеризующие состояние частицы, изменяются непрерывно;

В заданном состоянии может находиться неограниченное число частиц.

В состоянии теплового равновесия как бы не изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной


Это объясняется тем, что в газе устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла. Распределение Максвелла описывается некоторой функцией f(u), называемой функцией распределения молекул по скоростям .

,

где N – общее число молекул, dN(u) – число молекул, скорости которых принадлежат интервалу скоростей от u до u + du.

Таким образом, функция Максвелла f(u) равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей вблизи значения u. Или она равна доле молекул, скорости которых принадлежат единичному интервалу скоростей вблизи значения u.

Явный вид функции f(u) был получен теоретически Максвеллом:

.

График функции распределения приведен на рис. 12. Из графика следует, что функция распределения стремится к нулю при u®0 и u®¥ и проходит через максимум при некоторой скорости u В, называемой наиболее вероятной скоростью . Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно u В. Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f(u).

.

На рис. 13 показано смещение u В с изменением температуры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла

Условие нормировки следует из смысла данного интеграла – он определяет вероятность того, что скорость молекулы попадает в интервал скоростей от 0 до ¥. Это достоверное событие, его вероятность, по определению, принимается равной 1.

Лекция 5

В результате многочисленных соударений молекул газа между собой (~10 9 столкновений за 1 секунду) и со стенками сосуда, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равновероятными, а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям.

При столкновениях скорости молекул изменяются случайным образом. Может оказаться, что одна из молекул в ряде столкновений будет получать энергию от других молекул и ее энергия будет значительно больше среднего значения энергии при данной температуре. Скорость такой молекулы будет большая, но, все-таки она будет иметь конечное значение, так как максимально возможная скорость – скорость света - 3·10 8 м/с. Следовательно, скорость молекулы вообще может иметь значения от 0 до некоторой υ max . Можно утверждать, что очень большие скорости по сравнению со средними значениями, встречаются редко, также как и очень малые.

Как показывают теория и опыты распределение молекул по скоростям не случайное, а вполне определенное. Определим сколько молекул, или какая часть молекул обладает скоростями, лежащими в некотором интервале вблизи заданной скорости.

Пусть в данной массе газа содержится N молекул, при этом dN молекул обладают скоростями, заключенными в интервале от υ до υ +. Очевидно, что это число молекул dN пропорционально общему числу молекул N и величине заданного интервала скорости

где a - коэффициент пропорциональности.

Также очевидно, что dN зависит и от величины скорости υ , так как в одинаковых по величине интервалах, но при разных абсолютных значениях скорости число молекул будет различным (пример: сравните число живущих в возрасте 20 – 21 год и 99 – 100 лет). Это значит, что коэффициент a в формуле (1) должен быть функцией скорости.

С учетом этого перепишем (1) в виде

(2)

Из (2) получим

(3)

Функция f (υ ) называется функцией распределения. Ее физический смысл следует из формулы (3)

если (4)

Следовательно, f (υ ) равна относительной доле молекул, скорости которых заключены в единичном интервале скоростей вблизи скорости υ . Более точно функция распределения имеет смысл вероятности любой молекуле газа иметь скорость, заключенную в единичном интервале вблизи скорости υ . Поэтому ее называют плотностью вероятности .

Проинтегрировав (2) по всем значениям скоростей от 0 до получим

(5)

Из (5) следует, что

(6)

Уравнение (6) называется условием нормировки функции. Оно определяет вероятность того, что молекула имеет одно из значений скорости от 0 до . Скорость молекулы имеет какое-нибудь значение: это событие достоверное и его вероятность равна единице.



Функция f (υ ) была найдена Максвеллом в 1859 году. Она была названа распределением Максвелла :

(7)

где A – коэффициент, который не зависит от скорости, m – масса молекулы, T – температура газа. Используя условие нормировки (6) можно определить коэффициент A :

Взяв этот интеграл, получим A :

С учетом коэффициента А функция распределения Максвелла имеет вид:

(8)

При возрастании υ множитель в (8) изменяется быстрее, чем растет υ 2 . Поэтому функция распределения (8) начинается в начале координат, достигает максимума при некотором значении скорости, затем уменьшается, асимптотически приближаясь к нулю (рис.1).

Рис.1. Максвелловское распределение молекул

по скоростям. T 2 > T 1

Используя кривую распределения Максвелла можно графически найти относительное число молекул, скорости которых лежат в заданном интервале скоростей от υ до (рис.1, площадь заштрихованной полоски).

Очевидно, что вся площадь, находящаяся под кривой дает общее число молекул N . Из уравнения (2) с учетом (8) найдем число молекул, скорости которых лежат в интервале от υ до

(9)

Из (8) также видно, что конкретный вид функции распределения зависит от рода газа (масса молекулы m ) и от температуры и не зависит от давления и объема газа.

Если изолированную систему вывести из состояния равновесия и предоставить самой себе, то через некоторый промежуток времени она вернется в состояние равновесия. Этот промежуток времени называется временем релаксации . Для различных систем он различный. Если газ находится в равновесном состоянии, то распределение молекул по скоростям не изменяется с течением времени. Скорости отдельных молекул беспрерывно изменяются, однако число молекул dN , скорости которых лежат в интервале от υ до все время остается постоянным.

Максвелловское распределение молекул по скоростям всегда устанавливается, когда система приходит в состояние равновесия. Движение молекул газа хаотичное. Точное определение хаотичности тепловых движений следующее: движение молекул полностью хаотично, если скорости молекул распределены по Максвеллу . Отсюда следует, что температура определяется средней кинетической энергией именно хаотичных движений . Как бы ни велика была бы скорость сильного ветра, она не сделает его «горячим». Ветер даже самый сильный, может быть и холодным и теплым, потому что температура газа определяется не направленной скоростью ветра, а скоростью хаотического движения молекул.

Из графика функции распределения (рис.1) видно, что число молекул, скорости которых лежат в одинаковых интервалах dυ , но вблизи различных скоростей υ , больше в том случае если скорость υ приближается к скорости, которая соответствует максимуму функции f (υ ). Эта скорость υ н называется наивероятнейшей (наиболее вероятной).

Продифференцируем (8) и приравняем производную к нулю:

Так как ,

то последнее равенство выполняется когда:

(10)

Уравнение (10) выполняется при:

И

Первые два корня соответствуют минимальным значениям функции. Тогда скорость, которая соответствует максимуму функции распределения, найдем из условия:

Из последнего уравнения:

(11)

где R – универсальная газовая постоянная, μ – молярная масса.

С учетом (11) из (8) можно получить максимальное значение функции распределения

(12)

Из (11) и (12) следует, что при повышении T или при уменьшении m максимум кривой f (υ ) сдвигается вправо и становится меньше, однако площадь под кривой остается постоянной (рис.1).

Для решения многих задач удобно пользоваться распределением Максвелла в приведенном виде. Введем относительную скорость:

где υ – данная скорость, υ н – наивероятнейшая скорость. С учетом этого уравнение (9) принимает вид:

(13)

(13) – универсальное уравнение. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Кривая f (υ ) ассиметрична. Из графика (рис.1) видно, что большая часть молекул имеет скорости большие, чем υ н . Асимметрия кривой означает, что средняя арифметическая скорость молекул не равна υ н . Средняя арифметическая скорость равна сумме скоростей всех молекул, деленная на их число:

Учтем, что согласно (2)

(14)

Подставив в (14) значение f (υ ) из (8) получим среднюю арифметическую скорость:

(15)

Средний квадрат скорости молекул получим, вычислив отношение суммы квадратов скоростей всех молекул к их числу:

После подстановки f (υ ) из (8) получим:

Из последнего выражения найдем среднюю квадратичную скорость:

(16)

Сопоставляя (11), (15) и (16) можно сделать вывод, что, и одинаково зависят от температуры и отличаются только численными значениями: (рис.2).

Рис.2. Распределение Максвелла по абсолютным значениям скоростей

Распределение Максвелла справедливо для газов находящихся в состоянии равновесия, рассматриваемое число молекул должно быть достаточно большим. Для малого числа молекул могут наблюдаться значительные отклонения от распределения Максвелла (флуктуации).

Первое опытное определение скоростей молекул провел Штерн в 1920 году. Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры (~1200 о С), что приводило к испарению атомов серебра.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проходили движущиеся атомы серебра. Осаждаясь на внутренней поверхности внешнего цилиндра, они образовывали хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью ω. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние l .

В точке 1 оседают частицы, когда установка неподвижна, при вращении установки частицы оседают в точке 2.

Полученные значения скоростей подтвердили теорию Максвелла. Однако о характере распределения молекул по скоростям этот метод давал приблизительные сведения.

Более точно распределение Максвелла было проверено опытами Ламмерта, Истэрмана, Элдриджа и Коста . Эти опыты достаточно точно подтвердили теорию Максвелла.

Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом . Упрощенная схема этого эксперимента показана на рис. 3.

Рис.3. Схема опыта Ламмерта
1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 – детектор

Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол φ . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

При вращении дисков с постоянной угловой скоростью ω, через их прорези беспрепятственно проходили только атомы, имевшие некоторую скорость υ . Для атомов, проходящих обе щели должно выполняться равенство:

где Δt 1 - время пролета молекул между дисками, Δt 2 - время поворота дисков на угол φ . Тогда:

Изменяя угловую скорость вращения дисков можно было выделять из пучка молекулы, имеющие определенную скорость υ , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

Таким способом удалось экспериментально проверить Максвелловский закон распределения молекул по скоростям.

Движение молекул газа подчиняется законам статистической фи-зики. В среднем скорости и энергии всех молекул одинаковы. Од-нако в каждый момент времени энергия и скорости отдельных молекул могут значительно отличаться от среднего значения.

С помощью теории вероятности Максвеллу удалось вывести формулу для относительной частоты, с которой в газе при данной температуре встречаются молекулы со скоростями в определенном интервале значений.

Закон распределения Максвелла определяет относительное число молекул dN/N, скорости которых лежат в интервале (u, u + du ).

Оно имеет вид:

где N - общее число молекул газа; - число молекул, скорости которых заключены в определенном интервале; u - нижняя граница интервала скоростей; d u - величина интервала скоростей; T - температура газа; e = 2,718… - основание натуральных логарифмов;

k = 1,38×10 -23 Дж/К - постоянная Больцмана; m 0 - масса молекулы.

При получении этой формулы Максвелл основывался на следующих предположениях:

1. Газ состоит из большого числа N одинаковых молекул.

2. Температура газа постоянна.

3. Молекулы газа совершают тепловое хаотическое движение.

4. На газ не действуют силовые поля.

Отметим , что под знаком экспоненты в формуле (8.29) стоит отношение кинетической энергии молекулы к величине kT , характеризующей среднее (по молекулам) значение этой энергии.

Распределение Максвелла показывает, какая доля dN/N общего числа молекул данного газа обладает скоростью в интервале от u до u + du.

График функций распределения (рис. 8.5) асимметричен . Положение максимума характеризует наиболее часто встречающуюся скорость, которую называют наиболее вероятной скоростью u m . Скорости, превышающие u m , встречаются чаще, чем меньшие скорости. С повышением температуры максимум распределения сдвигается в направлении больших скоростей.

Одновременно кривая становится более плоской (площадь, заключенная под кривой, не может измениться, так как число молекул N остается постоянным).

Рис. 8.5

Для определения наиболее вероятной скорости нужно исследовать на максимум функцию распределения Максвелла (приравнять первую производную к нулю и решить относительно u). В результате получаем:

.

Мы опустили множители, не зависящие от u. Осуществив дифференцирование, придем к уравнению:

.

Первый сомножитель (экспонента) обращается в нуль при u = ¥, а третий сомножитель (u) при u = 0. Однако из графика (рис. 8.5) видно, что значения u = 0 и u = ¥ соответствуют минимумам функции (8.29). Следовательно, значение u , отвечающее максимуму, получается из равенства нулю второй скобки: . Отсюда


. (8.30)

Введем обозначения для функции распределения молекул по скоростям (8.29):

. (8.31)

Известно, что среднее значение некоторой физической величины j(x ) можно вычислить по формуле:

При столкновении молекулы газа изменяют свои скорости. Изменение скорости молекул происходит случайным образом. Нельзя заранее предсказать, какой численно скоростью будет обладать данная молекула: эта скорость случайна.

Распределение молекул по модулям скоростей описывают с помощью функции распределения f(v):

где отношение — равно доле молекул, скорости которых лежат в интервале от v до v + dv. dv - ширина интервала (рис. 2).

Рис. 2. Интервал скоростей

Зная вид f(v), можно найти число молекул ΔN V из числа данных молекул N, скорости которых попадают внутрь интервала скоростей от v до v + Δv . Отношение

(14)

дает вероятность того, что скорость молекулы будет иметь значение в пределах данного интервала скоростей dv.

Функция f(v) должна удовлетворять условию нормировки, то есть должно выполняться условие:

(15)

Левая часть выражения (17.3) дает вероятность того, что молекула обладает скоростью в интервале от 0 до ∞. Поскольку скорость молекулы обязательно имеет какое-то значение, то указанная вероятность есть вероятность достоверного события и, следовательно, равна 1.

Функция распределения была найдена теоретически Максвеллом. Она имеет следующий вид:

(16)

где т 0 - масса молекулы.

Выражение (16) называется функцией распределения Максвелла.

Из (16) следует, что вид распределения молекул по скоростям зависит от природы газа (массы молекулы) и температуры Т. Давление и объем на распределение молекул по скоростям не влияют.

Рис.3. График функции распределения Максвелла

Схематичный график функции распределения Максвелла дан на рис. 3. Проведем анализ графика.

1. При скоростях стремящихся к нулю (v - >0) и к бесконечности (v -> ∞ ) функция распределения также стремится к нулю. Это означает, что очень большие и очень маленькие скорости молекул маловероятны.

2. Скорость v B , отвечающая максимуму функции распределения, будет наиболее вероятной. Это означает, что основная часть молекул обладает скоростями близкими к вероятной.

Можно получить формулу для расчета наиболее вероятной скорости:

(17)

где kпостоянная Больцмана ; т 0 - масса молекулы.

3. В соответствии с условием нормировки (15) площадь, ограниченная кривой f(v) и осью абсцисс равна единице.

4. Кривая распределения имеет асимметричный характер. Это означает, что доля молекул, имеющих скорости больше наиболее вероятной, больше доли молекул, имеющих скорости меньше наиболее вероятной.

5. Вид кривой зависит от температуры и природы газа. На рис. 4 приведена функция распределения для одного и того же газа, находящегося при разных температурах. При нагревании максимум кривой понижается и смещается вправо, так как доля «быстрых» молекул возрастает, а доля «медленных» - уменьшается. Площадь под обеими кривыми остается постоянной и равной единице.


Установленный Максвеллом закон распределения молекул по скоростям и вытекающие из него следствия справедливы только для газа, находящегося в равновесном состоянии. Закон Максвелла — статистический, применять его можно только к большому числу частиц

Рис. 4. Распределения Максвелла при разных температурах

Пользуясь функцией распределения Максвелла f(v) , можно найти ряд средних величин, характеризующих состояние молекул.

Средняя арифметическая скорость - сумма скоростей всех молекул, деленная на число молекул:

. (18)

Средняя квадратичная скорость, определяющая среднюю кинетическую энергию молекул (см. формулу (10)), по определению равна

<v КВ > = (19)

Распределение Максвелла (распределение молекул газа по скоростям). В равновесном состоянии параметры газа (давле­ние, объем и температура) остаются неизменными, однако микро­состояния - взаимное расположение молекул, их скорости - не­прерывно изменяются. Из-за огромного количества молекул прак­тически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной слу­чайной величиной, указать распределение молекул по скоростям.

Выделим отдельную молекулу. Хаотичность движения позволяет, например, для проекции скорости x молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности записывается следующим образом:

где т 0 - масса молекулы, Т - термодинамическая температура газа, k - постоянная Больцмана.

Аналогичные выражения могут быть получены для f ( у ) иf ( z ).

На основании формулы (2.15) можно записать вероятность то­го, что молекула имеет проекцию скорости, лежащую в интервалеот x до x + d х :

аналогично для других осей

Каждое из условий (2.29) и (2.30) отражает независимое событие. Поэтому вероятность того, что молекула имеет скорость, проекции которой одновременно удовлетворяют всем условиям, можно найти по теореме умножения вероятностей [см. (2.6)]:

Используя (2.28), из (2.31) получаем:

Отметим, что из (2.32) можно получить максвелловскую функ­цию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

(2.33)

и вероятность того, что скорость молекулы имеет значение, лежа­щее в интервале от до + d :

График функции (2.33) изображен на рисунке 2.5. Скорость, соответствующую максимуму кривой Максвелла, называют наивероятнейшей в. Ее можно определить, используя условие максимума функции:

или

Среднюю скорость молекулы (математическое ожидание) мож­но найти по общему правилу [см. (2.20)]. Так как определяется среднее значение скорости, то пределы интегрирования берут от 0 до  (математические подробности опущены):

где М = т 0 N A - молярная масса газа, R = k N A - универсальная газовая постоянная, N A - число Авогадро.

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и распределение молекулпо видоизменяется (рис. 2.6; Т 1 < Т 2 ). Распределение Максвелла позволяет вычислить число моле­кул, скорости которых лежат в определенном интервале. Полу­чим соответствующую формулу.

Так как общее число N молекул в газе обычно велико, то веро­ятность dP может быть выражена как отношение числа dN моле­кул, скорости которых заключены в некотором интервале d , к общему числу N молекул:

Из (2.34) и (2.37) следует, что

Формула (2.38) позволяет определить число молекул, скорости которых лежат в интервале от и: до i> 2 . Для этого нужно проинтег­рировать (2.38):

либо графически вычислить площадь криволинейной трапеции в пределах от 1 до 2 (рис. 2.7).

Если интервал скоростей d достаточно мал, то число молекул, скорости которых соответствуют этому интервалу, может быть рассчитано приближенно по формуле (2.38) или графически как площадь прямоугольника с основаниемd .

На вопрос, сколько молекул имеют скорость, равную како­му-либо определенному значению, следует странный, на первый взгляд, ответ: если совершенно точно задана скорость, то интер­вал скоростей равен нулю(d = 0) и из (2.38) получаем нуль, т. е. ни одна молекула не имеет скорости, точно равной наперед задан­ной. Это соответствует одному из положений теории вероятнос­тей: для непрерывной случайной величины, каковой является скорость, невозможно «угадать» совершенно точно ее значение, которое имеет по крайней мере хотя бы одна молекула в газе.

Распределение молекул по скоростям подтверждено различны­ми опытами.

Распределение Максвелла можно рассматривать как распреде­ление молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Распределение Больцмана. Если молекулы находятся в ка­ком-либо внешнем силовом поле, например гравитационном поле Земли, то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих не­которым определенным значением потенциальной энергии.

Распределение частиц по потенциальным энергиям в си­ ловых полях -гравитационном, электрическом и др. -называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле­кул от высотыh над уровнем Земли или от потенциальной энер­гии молекулы mgh :

Выражение (2.40) справедливо для частиц идеального газа. Графи­чески эта экспоненциальная зависимость изображена на рис. 2.8.


Такое распределение молекул в поле тяготения Земли можно ка­чественно, в рамках молекулярно-кинетических представлений, объяснить тем, что на молекулы оказывают влияние два противо­положных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическоедвижение, стремящееся равномерно разбросать молекулы по всему возможному объему.

В заключение полезно заметить некоторое сходство экспонен­циальных членов в распределениях Максвелла и Больцмана:

В первом распределении в показателе степени отношение кине­тической энергии молекулы к kT , во втором - отношение потен­циальной энергии к kT .