Как изменяется потенциальная и кинетическая энергия самолета. Кинетическая и потенциальная энергия (2) - Реферат

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Реферат >Физика

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ - Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением.

Рассмотрим случай, когда на тело массой m действует постоянная сила (она может быть равнодействующей нескольких сил) и векторы силы и перемещения направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F∙s. Модуль силы по второму закону Ньютона равен F = m∙a, а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением

Отсюда для работы получаем

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

Тогда равенство (1) можно записать в таком виде:

A = E k 2 – E k 1 . (3)

Теорема о кинетической энергии:

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой т равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

(4)

Физический смысл кинетической энергии:

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия - минимальная работа, которую необходимо совершить, чтобы перенести тело из некой точки отсчёта в данную точку в поле консервативных сил. Второе определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы. Третье определение: потенциальная энергия - это энергия взаимодействия. Единицы измерения [Дж]

Потенциальная энергия принимается равной нулю для некоторой точки пространства, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной точки называется нормировкой потенциальной энергии. Понятно также, что корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей.

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой т вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1).

Если разность h 1 h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

A = F∙s = m∙g∙ (h l – h 2). (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

A = m∙g∙s∙cos a = m∙g∙h , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h" , h" и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

(7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С.

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

A = – (m∙g∙h 2 – m∙g∙h l). (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой т из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

А = – (Е р 2 – Е р 1). (9)

Потенциальная энергия обозначается буквой Е р .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е р тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

E p = m∙g∙h . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей:

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h, где h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

Е p = –m∙gh

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами т и М , находящихся на расстоянии r одна от другой, равна

(11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞. Потенциальная энергия гравитационного взаимодействия тела массой т с Землей, где h – высота тела над поверхностью Земли, М 3 – масса Земли, R 3 – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

(12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой т с Землей для малых высот h (h « R 3) равна

Е p = m∙g∙h ,

где – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т. к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

(13)

где Отсюда

(14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

А = –(Е р 2 – Е р 1). (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

Е р = А.

Тогда физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Кинетическая энергия

Пусть на покоящееся вначале тело массой m действуют постоянные силы, равнодействующую которых обозначим (рис. 29.1).

Если перемещение тела равно , работа равнодействующей

A рд = Fs. (1)

Индекс «рд» подчеркивает, что речь идет о работе равнодействующей всех приложенных к телу сил.

Дело в том, что мы будем использовать сейчас второй закон Ньютона, согласно которому модуль равнодействующей F связан с модулем ускорения тела а соотношением F = ma. Поэтому из формулы (1) следует:

A рд = mas. (2)

При равноускоренном движении без начальной скорости (см. § 6):

s = v 2 /(2a). (3)

Подставим это выражение для s в формулу (2) и получим:

Aрд = (mv 2)/2. (4)

В курсе физики основной школы вы уже познакомились с выражением, стоящим справа в формуле (4). Напомним, что
кинетическая энергия тела массой m, движущегося со скоростью , выражается формулой

E k = (mv 2)/2. (5)

(Мы рассматриваем тело как материальную точку.)

Итак, кинетическая энергия тела, движущегося с некоторой скоростью, равна работе, которую нужно совершить, чтобы разогнать покоившееся вначале тело до этой скорости.

1. Скорость тела увеличилась в 2 раза. Как изменилась его кинетическая энергия?

2. Кинетическая энергия тела уменьшилась в 2 раза. Как изменилась его скорость?

Изменение кинетической энергии и работа равнодействующей

Пусть теперь начальная скорость тела равна 1 , а направление равнодействующей по-прежнему совпадает с направлением начальной скорости (а тем самым и с направлением перемещения ). Обозначим конечную скорость тела 2 .

3. Докажите, что в этом случае работа равнодействующей приложенных к телу сил равна изменению кинетической энергии:

A рд = Fs = (mv 2 2)/2 – (mv 1 2)/2. (6)

Подсказка. Воспользуйтесь формулой s = (v 2 2 – v 1 2)/(2a) (см. § 6).
Итак,
работа A рд равнодействующей всех сил, приложенных к телу, равна изменению его кинетической энергии:

A рд = E k2 – E k1 . (7)

Это чрезвычайно полезное утверждение называют теоремой об изменении кинетической энергии. (В некоторых учебниках ее называют «теоремой о кинетической энергии». Мы используем более точное название (см. «Физическую энциклопедию»).) Как мы видели, она является следствием второго закона Ньютона. Поэтому применять ее можно во всех случаях, когда применим второй закон Ньютона:

· в любой инерциальной системе отсчета;

· для равнодействующей любых сил: природа этих сил (тяготения, упругости или трения) не существенна.

Мы доказали теорему об изменении кинетической энергии для случая, когда равнодействующая приложенных к телу сил постоянна и ее направление совпадает с направлением перемещения тела. Однако можно доказать, что она справедлива при любом угле между равнодействующей приложенных к телу сил и перемещением этого тела. Более того, равнодействующая может быть даже не постоянной, а переменной силой.

Благодаря этому теорему об изменении кинетической энергии можно с успехом применять, чтобы находить изменение кинетической энергии (а тем самым и изменение скорости) тела при перемещении по любой траектории. Для этого надо вычислить работу равнодействующей приложенных к телу сил.

Работа равнодействующей равна алгебраической сумме работ всех сил, действующих на тело. Поэтому чтобы найти работу равнодействующей, достаточно найти работу каждой силы при перемещении тела и сложить эти работы с учетом их знаков.

Рассмотрим несколько примеров.

Начнем с простых задач, а потом перейдем к задачам, которые просто решаются с помощью теоремы об изменении кинетической энергии, но которые вы не смогли бы решить непосредственным применением законов Ньютона.

4. На тело массой 2 кг действует сила 10 Н. В начальный момент скорость тела равна 5 м/с и ее направление совпадает с направлением силы. Тело переместилось на 5 м.
а) Чему равна работа силы?
б) Какова начальная кинетическая энергия тела?
в) Какова конечная кинетическая энергия тела?

5. На земле лежит камень массой 2 кг. К нему прикладывают направленную вертикально вверх силу , равную 30 Н.
а) Чему равна работа силы тяжести за промежуток времени, в течение которого камень подняли на 10 м?
б) Чему равна работа силы за то же время?
в) Чему равна работа равнодействующей сил, приложенных к камню, за то же время?
г) Какова конечная кинетическая энергия камня?
д) Какова конечная скорость камня?

6. Находящемуся на столе бруску массой 0,5 кг придали начальную скорость 2 м/с. До остановки брусок переместился по столу на 1 м.
а) Чему равно изменение кинетической энергии бруска за время движения по столу?
б) Чему равна работа равнодействующей всех сил, приложенных к бруску при движении по столу?
в) Чему равна работа силы тяжести?
г) Чему равна работа силы нормальной реакции?
д) Чему равна работа силы трения?
е) Чему равна сила трения?
ж) Каков коэффициент трения между бруском и столом?

7. Шар массой m, висящий на нити длиной l, отклонили на 60º. Держа нить натянутой, шар отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 29.2)?
б) Чему равна работа действующей на шар силы натяжения нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?
г) Чему равна кинетическая энергия шара при прохождении положения равновесия?
д) Чему равна скорость шара в момент прохождения положения равновесия?

Лабораторная работа № 3

Тема: "Сохранение механической энергии при движении тела под действием сил тяжести и упругости"

Цель : 1) научиться измерять потенциальную энергию поднятого над землей тела и упруго деформированной пружины;

2) сравнить две величины-уменьшение потенциальной энергии прикрепленного к пружине тела при его падении и увеличение потенциальной энергии растянутой пружины.

Приборы и материалы: 1) динамометр, жесткость пружины которого равна 40 Н/м; 2) линейка измерительная; 3) груз из набора по механике; масса груза равна (0,100 ±0,002) кг; 4) фиксатор; 5) штатив с муфтой и лапкой.

Основные сведения.

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела :

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Потенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй).

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Где k – жесткость пружины, х - абсолютное удлинение тела.

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

A = –(Ep2 – Ep1).

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией .

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Е p = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Описание установки.

Для работы используется установка, показанная на рисунке. Она представляет собой укрепленный на штативе динамометр с фиксатором 1.

Пружина динамометра заканчивается проволочным стержнем с крючком. Фиксатор (в увеличенном масштабе он показан отдельно - помечен цифрой 2) - это легкая пластинка из пробки (размерами 5 Х 7 X 1,5 мм), прорезанная ножом до ее центра. Ее насаживают на проволочный стержень динамометра. Фиксатор должен перемещаться вдоль стержня с небольшим трением, но трение все же должно быть достаточным, чтобы фиксатор сам по себе не падал вниз. В этом нужно убедиться перед началом работы. Для этого фиксатор устанавливают у нижнего края шкалы на ограничительной скобе. Затем растягивают и отпускают.

Фиксатор вместе с проволочным стержнем должен подняться вверх, отмечая этим максимальное удлинение пружины, равное расстоянию от упора до фиксатора.

Если поднять груз, висящий на крючке динамометра, так, чтобы пружина не была растянута, то потенциальная энергия груза по отношению, например, к поверхности стола равна mgh . При падении груза (опускание на расстояние x = h ) потенциальная энергия груза уменьшится на

Е 1 =mgh

а энергия пружины при ее деформации увеличивается на

Е 2 =kx 2 /2

Порядок выполнения работы

1. Груз из набора по механике прочно укрепите на крючке динамометра.

2. Поднимите рукой груз, разгружая пружину, и установите фиксатор внизу у скобы.

3. Отпустите груз. Падая, груз растянет пружину. Снимите груз и по положению фиксатора измерьте линейкой максимальное удлинение х пружины.

4. Повторите опыт пять раз. Найдите среднее значение h и х

5. Подсчитайте Е 1ср =mgh и Е 2ср =kx 2 /2

6. Результаты занесите в таблицу:

№ опыта

h=х max ,
м

h ср =х ср,
м

Е 1ср,
Дж

Е 2ср,
Дж

Е 1ср / Е 2ср

№ опыта

h=х max ,
м

h ср =х ср,
м

Е 1ср,
Дж

Е 2ср,
Дж

Е 1ср / Е 2ср

0,048
0,054
0,052
0,050
0,052

2. Выполняем расчеты по методичке.