Примеры физических систем представляемых моделями частиц. Элементарные частицы

«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл

Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель - добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.

Из чего мы состоим?

Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок - это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.

Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий . Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.

Из чего состоит атом?

Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон .

Интересный момент квантового мира

Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.

Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов .

Адроны можно разделить на группы
  • Барионов, которые состоят из трёх кварков
  • Мезонов, которые состоят из пары: частица-античастица

Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.

Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.

Главная проблема - частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.

Фермионы и Бозоны

Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы , из которых и состоит вся материя, и бозоны , которые переносят различные виды взаимодействий между фермионами.

Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, а для бозонов почти не важно наличие свободного места.

Фермионы
Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где ни увидели, создано фермионами. Фермионы делятся на кварки , сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны , которые свободно существуют в пространстве независимо от своих собратьев.

Кварки делятся на две группы.

  • Верхнего типа. К кваркам верхнего типа, с зарядом +2\3, относят: верхний, очарованный и истинный кварки
  • Нижнего типа. К кваркам нижнего типа, с зарядом -1\3, относят: нижний, странный и прелестный кварки
Истинный и прелестный являются самыми большими кварками, а верхний и нижний - самыми маленькими. Почему кваркам дали такие необычные названия, а говоря более правильно, «ароматы», до сих пор для учёных предмет споров.

Лептоны также делятся на две группы.

  • Первая группа, с зарядом «-1», к ней относят: электрон, мюон (более тяжёлую частицу) и тау-частицу (самую массивную)
  • Вторая группа, с нейтральным зарядом, содержит: электронное нейтрино, мюонное нейтрино и тау-нейтрино
Нейтрино - есть малая частица вещества, засечь которую практически невозможно. Её заряд всегда равен 0.

Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.

Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже...

Бозоны
Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом практически не взаимодействуют.
На самом деле, некоторые бозоны всё же взаимодействуют друг с другом, но об этом будет рассказано более подробно в следующих статьях о проблемах микромира

Взаимодействие, передаваемое бозонами, бывает:

  • Электромагнитным , частицы - фотоны. С помощью этих безмассовых частиц передаётся свет.
  • Сильным ядерным , частицы - глюоны. С их помощью кварки из ядра атома не распадаются на отдельные частицы.
  • Слабым ядерным , частицы - ±W и Z бозоны. С их помощью фермионы перекидываются массой, энергией, и могут превращаться друг в друга.
  • Гравитационным , частицы - гравитоны . Чрезвычайно слабая в масштабах микромира сила. Становится видимой только на сверхмассивных телах.
Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.

Вот и всё, стандартная модель собрана.

Проблемы только начались

Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса , который выделяется из остальных бозонов.

Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.

Поле Хиггса
Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса , постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.

Итоги

То, что было рассказано мною, это самые поверхностные понятия о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.

Стандартная модель - это современная теория строения и взаимодействий элементарных частиц, многократно проверенная экспериментально. Эта теория базируется на очень небольшом количестве постулатов и позволяет теоретически предсказывать свойства тысяч различных процессов в мире элементарных частиц. В подавляющем большинстве случаев эти предсказания подтверждаются экспериментом, иногда с исключительно высокой точностью, а те редкие случаи, когда предсказания Стандартной модели расходятся с опытом, становятся предметом жарких споров.

Стандартная модель - это та граница, которая отделяет достоверно известное от гипотетического в мире элементарных частиц. Несмотря на впечатляющий успех в описании экспериментов, Стандартная модель не может считаться окончательной теорией элементарных частиц. Физики уверены, что она должна быть частью некоторой более глубокой теории строения микромира . Что это за теория - достоверно пока неизвестно. Теоретики разработали большое число кандидатов на такую теорию, но только эксперимент должен показать, что из них отвечает реальной ситуации, сложившейся в нашей Вселенной. Именно поэтому физики настойчиво ищут любые отклонения от Стандартной модели, любые частицы, силы или эффекты, которые Стандартной моделью не предсказываются. Все эти явления ученые обобщенно называют «Новая физика»; именно поиск Новой физики и составляет главную задачу Большого адронного коллайдера .

Основные компоненты Стандартной модели

Рабочим инструментом Стандартной модели является квантовая теория поля - теория, приходящая на смену квантовой механике при скоростях, близких к скорости света. Ключевые объекты в ней не частицы, как в классической механике, и не «частицы-волны», как в квантовой механике, а квантовые поля : электронное, мюонное, электромагнитное, кварковое и т. д. - по одному для каждого сорта «сущностей микромира».

И вакуум, и то, что мы воспринимаем как отдельные частицы, и более сложные образования, которые нельзя свести к отдельным частицам, - всё это описывается как разные состояния полей. Когда физики употребляют слово «частица», они на самом деле имеют в виду именно эти состояния полей, а не отдельные точечные объекты.

Стандартная модель включает в себя следующие основные ингредиенты:

  • Набор фундаментальных «кирпичиков» материи - шесть сортов лептонов и шесть сортов кварков . Все эти частицы являются фермионами со спином 1/2 и очень естественным образом организуются в три поколения. Многочисленные адроны - составные частицы, участвующие в сильном взаимодействии, - составлены из кварков в разных комбинациях.
  • Три типа сил , действующих между фундаментальными фермионами, - электромагнитные, слабые и сильные. Слабое и электромагнитное взаимодействия являются двумя сторонами единого электрослабого взаимодействия . Сильное взаимодействие стоит отдельно, и именно оно связывает кварки в адроны.
  • Все эти силы описываются на основе калибровочного принципа - они не вводятся в теорию «насильно», а словно возникают сами собой в результате требования симметричности теории относительно определенных преобразований. Отдельные виды симметричности порождают сильное и электрослабое взаимодействия.
  • Несмотря на то что в самой теории имеется электрослабая симметрия, в нашем мире она самопроизвольно нарушается. Спонтанное нарушение электрослабой симметрии - необходимый элемент теории, и в рамках Стандартной модели нарушение происходит за счет хиггсовского механизма .
  • Численные значения для примерно двух десятков констант : это массы фундаментальных фермионов, численные значения констант связи взаимодействий, которые характеризуют их силу, и некоторые другие величины. Все они раз и навсегда извлекаются из сравнения с опытом и при дальнейших вычислениях уже не подгоняются.

Кроме того, Стандартная модель - перенормируемая теория, то есть все эти элементы вводятся в нее таким самосогласованным способом, который, в принципе, позволяет проводить вычисления с нужной степенью точности. Впрочем, зачастую вычисления с желаемой степенью точностью оказываются неподъемно сложными, но это проблема не самой теории, а, скорее, наших вычислительных способностей.

Что может и чего не может Стандартная модель

Стандартная модель - это, во многом, описательная теория. Она не дает ответы на многие вопросы, начинающиеся с «почему»: почему частиц именно столько и именно таких? откуда взялись именно эти взаимодействия и именно с такими свойствами? зачем природе понадобилось создавать три поколения фермионов? почему численные значения параметров именно такие? Кроме того, Стандартная модель не способна описать некоторые явления, наблюдаемые в природе. В частности, в ней нет места массам нейтрино и частицам темной материи. Стандартная модель не учитывает гравитацию и неизвестно, что с этой теорией происходит на планковском масштабе энергий, когда гравитация становится чрезвычайно важной.

Если же использовать Стандартную модель по своему назначению, для предсказания результатов столкновений элементарных частиц, то она позволяет, в зависимости от конкретного процесса, выполнять вычисления с разной степенью точности.

  • Для электромагнитных явлений (рассеяние электронов, энергетические уровни) точность может достигать миллионных долей и даже лучше. Рекорд тут держит аномальный магнитный момент электрона, который вычислен с точностью лучше одной миллиардной.
  • Многие высокоэнергетические процессы, которые протекают за счет электрослабых взаимодействий, вычисляются с точностью лучше процента.
  • Хуже всего поддается расчету сильное взаимодействие при не слишком высоких энергиях. Точность расчета таких процессов сильно варьируется: в одних случаях она может достигать процентов, в других случаях разные теоретические подходы могут давать ответы, различающиеся в несколько раз.

Стоит подчеркнуть, что тот факт, что некоторые процессы тяжело рассчитать с нужной точностью, не означает, что «теория плохая». Просто она очень сложная, и нынешних математических приемов пока не хватает, чтоб проследить все ее следствия. В частности, одна из знаменитых математических Задач тысячелетия касается проблемы конфайнмента в квантовой теории с неабелевым калибровочным взаимодействием.

Дополнительная литература:

  • Базовые сведения о хиггсовском механизме можно найти в книге Л. Б. Окуня «Физика элементарных частиц» (на уровне слов и картинок) и «Лептоны и кварки» (на серьезном, но доступном уровне).

Недавнее открытие группы ученых во главе с Жоакимом Матиасом впервые серьезно поколебало основу современной физики частиц, а именно — Стандартную модель. Исследователям удалось предсказать нестандартный вариант распада частицы B-мезона, который данная модель не учитывает. Более того, практически сразу их догадки были подтверждены экспериментально.

Следует заметить, что в последнее время физики, занимающиеся изучением элементарных частиц, все чаще говорят о том, что этой дисциплине уже стало тесновато в рамках привычной всем Стандартной модели. Действительно, уже зарегистрировано много явлений, которые в ее рамках объяснить сложно. Например, эта модель не может предсказать, какие частицы могут составлять темную материю, а также не дает ответа на вопрос, который уже давно мучает ученых — почему в нашей Вселенной вещества больше, чем антивещества (барионная асимметрия). Да и эрзионная интерпретация процесса холодной трансмутации ядер, о которой мы не так давно писали, тоже выходит за пределы "действия" той самой Стандартной модели.

Тем не менее, все-так большинство физиков до сих пор придерживаются именно этого способа объяснения загадочной жизни элементарных частиц. Отчасти из-за того, что пока ничего лучшего никто не создал, отчасти же потому, что большая часть предсказаний Стандартной модели все-таки имеет экспериментальное подтверждение (чего нельзя сказать об альтернативных гипотезах). Более того, до последнего времени найти в экспериментах серьезные отклонения от этой модели все-таки не удавалось. Впрочем, похоже не так давно это все-таки случилось. Подобное может означать рождение совершенно новой теории физики частиц, согласно которой нынешняя Стандартная модель будет выглядеть частным случаем — так же, как ньютоновская теория всемирного тяготения выглядит частным случаем гравитации в рамках общей теории относительности.

А началось все с того, что международная группа физиков во главе с Жоакимом Матиасом сделали несколько предсказаний о том, какие именно отклонения по вероятности распада B-мезона могут расходиться со Стандартной моделью и свидетельствовать о новой физике. Напомню, что B-мезоном называют частицу, состоящую из b-кварка и d-антикварка. Согласно положениям Стандартной модели, эта частица может распадаться на мюон (отрицательно заряженная частица, по сути дела — очень тяжелый электрон) и антимюон, хотя вероятность подобного события не слишком велика. Тем не менее, в прошлом году на конференции в Киото физики, работающие на Большом адронном коллайдере сообщили, что им удалось зафиксировать следы подобного распада (причем с той вероятностью, что и была предсказана теоретически).

Группа Матиаса же посчитала, что этот мезон должен распадаться несколько по другому — на пару мюонов и неизвестную пока что частицу K*, которая почти сразу распадается на каон и пион (два более легких мезона). Примечательно, что о результатах своих изысканий ученые доложили 19 июля на собрании Европейского физического общества и следующий же докладчик из тех, кто выступал на данном мероприятии (это был физик Николя Серра из коллаборации LHCb с Большого адронного коллайдера) сообщил, что его группе удалось зафиксировать следы таких распадов. Более того, экспериментальные результаты группы Серра практически полностью совпали с отклонениями, предсказанными в докладе доктора Матиаса и его соавторов!

Интересно, что физики оценивают эти результаты со статистической значимостью в 4,5σ, а это означает, что достоверность описанного события весьма и весьма велика. Напомню, что экспериментальные свидетельства в три σ рассматриваются как результаты существенной значимости, а пять σ считаются вполне себе состоявшимся открытием — именно такое значение достоверности было присвоено результатам прошлогодних экспериментов, которые наконец-то обнаружили следы существования бозона Хиггса.

Тем не менее, сам доктор Матиас считает, что пока не стоит спешить с выводами. "Для подтверждения этих результатов потребуются дополнительные теоретические исследования, равно как и новые замеры. Однако если наши выводы действительно верны, мы окажемся перед лицом первого прямого подтверждения существования новой физики — теории более общей, чем общепринятая Стандартная модель. Если бозон Хиггса позволил наконец-то сложить пазл Стандартной модели, то эти результаты могут быть первым кусочком нового пазла — куда большего размера" — говорит ученый.

Сегодня Стандартная модель является одной из важнейших теоретических конструкций в физике элементарных частиц, описывающих электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Главные положения и составные части этой теории описывает физик, член-корреспондент РАН Михаил Данилов

1

Сейчас на основе экспериментальных данных создана очень совершенная теория, которая описывает практически все явления, которые мы наблюдаем. Эта теория скромно называется «Стандартная модель элементарных частиц». В ней имеется три поколения фермионов: кварков, лептонов. Это, так сказать, строительный материал. Из первого поколения построено все, что мы видим вокруг нас. В него входят u- и d-кварки, электрон и электронное нейтрино. Протоны и нейтроны состоят из трех кварков: uud и udd, соответственно. Но есть еще два поколения кварков и лептонов, которые в какой-то степени повторяют первое, но тяжелее и в конце концов распадаются на частицы первого поколения. У всех частиц имеются античастицы, обладающие противоположными зарядами.

2

Стандартная модель включает три взаимодействия. Электромагнитное взаимодействие удерживает электроны внутри атома и атомы внутри молекул. Переносчиком электромагнитного взаимодействия является фотон. Сильное взаимодействие удерживает протоны и нейтроны внутри атомного ядра, а кварки внутри протонов, нейтронов и других адронов (так Л. Б. Окунь предложил называть частицы, участвующие в сильном взаимодействии). В сильном взаимодействии принимают участие кварки и построенные из них адроны, а также и переносчики самого взаимодействия - глюоны (от английского glue - клей). Адроны состоят либо из трех кварков, как протон и нейтрон, либо из кварка и антикварка, как, скажем, π±мезон, состоящий из u- и анти-d- кварков. Слабое взаимодействие приводит к редким распадам, таким как распад нейтрона на протон, электрон и электронное антинейтрино. Переносчиками слабого взаимодействия являются W- и Z-бозоны. В слабом взаимодействии принимают участие и кварки, и лептоны, но оно при наших энергиях весьма мало. Это однако объясняется просто большой массой W- и Z-бозонов, которые на два порядка тяжелее протонов. При энергиях больше массы W- и Z-бозонов силы электромагнитного и слабого взаимодействия становятся сравнимыми, и они объединяются в единое электрослабое взаимодействие. Предполагается, что при намного бо льших энергиях и сильное взаимодействие объединится с остальными. Кроме электрослабого и сильного взаимодействий имеется еще гравитационное взаимодействие, которое не входит в Стандартную модель.

W, Z-бозоны

g - глюоны

H0 - бозон Хиггса.

3

Стандартная модель может быть сформулирована только для безмассовых фундаментальных частиц, т. е. кварков, лептонов, W- и Z-бозонов. Для того, чтобы они приобрели массу, обычно вводится поле Хиггса, названное по имени одного из ученых, предложивших этот механизм. В этом случае в Стандартной модели должна быть еще одна фундаментальная частица - бозон Хиггса. Поиски этого последнего кирпичика в стройном здании Стандарной модели активно ведутся на самом крупном коллайдере в мире - Большом адроном коллайдере (БАК). Уже получены указания на существование бозона Хиггса с массой около 133 масс протона. Однако статистическая надежность этих указаний еще недостаточна. Ожидается, что до конца 2012 г. ситуация прояснится.

4

Стандартная модель прекрасно описывает практически все эксперименты по физике элементарных частиц, хотя поиски явлений, выходящих за рамки СМ, настойчиво ведутся. Последним намеком на физику за рамками СМ явилось обнаружение в 2011 г. в эксперименте LHCb на БАК неожиданно большого различия в свойствах так называемых очарованных мезонов и их античастиц. Однако, по-видимому, даже такое большое различие может быть объяснено в рамках СМ. С другой стороны, в 2011 г. было получено еще одно, искавшееся несколько десятилетий, подтверждение СМ, предсказывающей существование экзотических адронов. Физики из Института теоретической и экспериментальной физики (Москва) и Института ядерной физики (Новосибирск) в рамках международного эксперимента BELLE обнаружили адроны, состоящие из двух кварков и двух антикварков. Скорее всего, это молекулы из мезонов, предсказанные теоретиками ИТЭФ М. Б. Волошиным и Л. Б. Окунем.

5

Несмотря на все успехи Стандартной модели, у нее имеется много недостатков. Количество свободных параметров теории превышает 20, и совершенно неясно, откуда возникает их иерархия. Почему масса t-кварка в 100 тысяч раз больше массы u-кварка? Почему константа связи t- и d-кварков, впервые измеренная в международном эксперименте ARGUS при активном участии физиков ИТЭФ, в 40 раз меньше константы связи с- и d-кварков? На эти вопросы СМ не дает ответа. Наконец, зачем нужны 3 поколения кварков и лептонов? Японские теоретики М. Кобаяши и Т. Маскава в 1973 г. показали, что существование 3-х поколений кварков позволяет объяснить различие свойств материи и антиматерии. Гипотеза М.Кобаяши и Т. Маскавы была подверждена в экспериментах BELLE и BaBar при активном участии физиков из ИЯФ и ИТЭФ. В 2008 г. М. Кобаяши и Т. Маскава были удостоены за свою теорию Нобелевской премии

6

В Стандартной модели имеются и более фундаментальные проблемы. Мы уже сейчас знаем, что СМ не является полной. Из астрофизических исследований известно, что существует материя, которой нет в СМ. Это так называемая темная материя. Ее примерно в 5 раз больше, чем обычной материи, из которой мы состоим. Пожалуй, основным недостатком Стандартной Модели является отсутствие в ней внутренней самосогласованности. Так, например, естественная масса бозона Хиггса, возникающая в СМ из-за обмена виртуальными частицами, на много порядков превышает массу, необходимую для объяснения наблюдаемых явлений. Одним из выходов, самым популярным в настоящий момент, является гипотеза о суперсимметрии - предположение о том, что имеется симметрия между фермионами и бозонами. Впервые эту идею высказали в 1971 г. Ю. А. Гольфанд и Е. П. Лихтман в ФИАНе, и теперь она пользуется громадной популярностью.

7

Существование суперсимметричных частиц не только позволяет стабилизировать поведение СМ, но и дает очень естественного кандидата на роль темной материи - самую легкую суперсимметричную частицу. Хотя в настоящий момент нет никаких надежных экспериментальных подтверждений этой теории, она настолько красива и так элегантно позволяет решить проблемы Стандартной модели, что очень многие в нее верят. На БАК активно ведутся поиски суперсимметричных частиц и других альтернатив СМ. Например, ищут дополнительные измерения пространства. Если они существуют, то многие проблемы могут быть решены. Возможно, гравитация становится сильной на относительно больших расстояниях, что тоже будет большим сюрпризом. Возможны другие, альтернативные модели Хиггса, механизмы возникновения массы у фундаментальных частиц. Поиск эффектов за рамками Стандартной модели ведется очень активно, но пока безуспешно. Очень многое должно проясниться в ближайшие годы.

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта - ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков - Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии - Polonia, с латинского - Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон - это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 - 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно - отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия - фотона.
  • Сильное, иначе - ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц - лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон - сильное;
  • Фотон - электромагнитное;
  • Z-бозон — слабое;
  • W-бозон - слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса - последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9.10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы - все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) - субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее - «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же - это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня - обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе - текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.