Классическая механика (механика Ньютона). Классическая физика

Основы классической механики

Механика – раздел физики, изучающий законы механического движения тел.

Тело – вещественный материальный объект.

Механическое движение – изменение положения тела или его частей в пространстве с течением времени.

Аристотель представлял такой вид движения как непосредственную перемену телом своего места относительно других тел, поскольку в его физике материальный мир был неразрывно связан с пространством, существовал вместе с ним. Время он считал мерой движения тела. Изменение в дальнейшем взглядов на природу движения привело к постепенному отделению пространства и времени от физических тел. Наконец, абсолютизация пространства и времени Ньютоном вообще вывела их за пределы возможного опыта.

Однако, этот подход позволил к концу XVIII века построить законченную систему механики, называемую теперь классической . Классичность заключается в том, что она:

1) описывает большинство механических явлений в макромире, используя небольшое число исходных определений и аксиом;

2) строго обоснована математически;

3) часто используется в более специфических разделах науки.

Опыт показывает, что классическая механика применима к описанию движения тел со скоростями υ << с ≈ 3·10 8 м/с. Ее основные разделы:

1) статика изучает условия равновесия тел;

2) кинематика – движение тел без учета его причин;

3) динамика – влияние взаимодействия тел на их движение.

Основные понятия механики:

1) Механическая система – мысленно выделенная совокупность тел, существенных в данной задаче.

2) Материальная точка – тело, формой и размерами которого можно пренебречь в рамках данной задачи. Тело может быть представлено в виде системы материальных точек.

3) Абсолютно твердое тело – тело, расстояние между любыми двумя точками которого не меняется в условиях данной задачи.

4) Относительность движения заключается в том, что изменение положения тела в пространстве может быть установлено только по отношению к каким-то другим телам.

5) Тело отсчета (ТО) – абсолютно твердое тело, относительно которого рассматривается движение в данной задаче.

6) Система отсчета (СО) = {ТО + СК + часы}. Начало системы координат (СК) совмещают с какой-нибудь точкой ТО. Часы измеряют промежутки времени.

Декартова СК:

Рисунок 5

Положение материальной точки М описывается радиусом-вектором точки , – ее проекции на оси координат.

Если задать начальный момент времени t 0 = 0, то движение точки М опишется вектор-функцией или тремя скалярными функциями x (t ), y (t ), z (t ).

Линейные характеристики движения материальной точки:

1) траектория – линия движения материальной точки (геометрическая кривая),

2) путь (S ) – расстояние, пройденное вдоль нее за промежуток времени ,

3) перемещение ,

4) скорость ,

5) ускорение .

Любое движение твердого тела можно свести к двум основным видам – поступательному и вращательному вокруг неподвижной оси.

Поступательное движение – такое, при котором прямая, соединяющая любые две точки тела, остается параллельной своему первоначальному положению. Тогда все точки движутся одинаково, и движение всего тела можно описать движением одной точки .

Вращение вокруг неподвижной оси – такое движение, при котором существует прямая, жестко связанная с телом, все точки которой остаются неподвижными в данной СО. Траектории остальных точек – окружности с центрами на этой прямой. В этом случае удобны угловые характеристики движения, которые одинаковы для всех точек тела.

Угловые характеристики движения материальной точки:

1) угол поворота (угловой путь) , измеряемый в радианах [рад], где r – радиус траектории точки,

2) угловое перемещение , модуль которого представляет собой угол поворота за малый промежуток времени dt ,

3) угловая скорость ,

4) угловое ускорение .

Рисунок 6

Связь между угловыми и линейными характеристиками:

Динамика использует понятие силы , измеряемой в ньютонах (H), как меры воздействия одного тела на другое. Это воздействие является причиной движения.

Принцип суперпозиции сил – результирующий эффект воздействия на тело нескольких тел равен сумме эффектов воздействий каждого из этих тел в отдельности. Величина называется равнодействующей силой и характеризует эквивалентное воздействие на тело n тел.

Законы Ньютона обобщают опытные факты механики.

1-й закон Ньютона . Существуют системы отсчета, относительно которых материальная точка сохраняет состояние покоя или равномерного прямолинейного движения при отсутствии силового воздействия на нее, т.е. если , то .

Такое движение называется движением по инерции или инерциальным движением, и поэтому системы отсчета, в которых выполняется 1-й закон Ньютона, называются инерциальными (ИСО).

2-й закон Ньютона . , где – импульс материальной точки, m – ее масса, т.е. если , то и, следовательно, движение уже не будет инерциальным.

3-й закон Ньютона . При взаимодействии двух материальных точек возникают силы и , приложенные к обеим точкам, причем .

Механика - раздел физики, который изучает одну из простейших и наиболее общих форм движения в природе, называемую механическим движением.

Механическое движение заключается в изменении с течением времени положения тел или их частей друг относительно друга. Так механическое движение совершают планеты, обращающиеся по замкнутым орбитам вокруг Солнца; различные тела, перемещающиеся по поверхности Земли; электроны, движущиеся под действием электромагнитного поля и т.д. Механическое движение присутствует в других более сложных формах материи как составная, но не исчерпывающая часть.

В зависимости от характера изучаемых объектов механика подразделяется на механику материальной точки, механику твердого тела и механику сплошной среды.

Принципы механики впервые были сформулированы И. Ньютоном (1687 год) на основе экспериментального изучения движения макротел с малыми по сравнению со скоростью света в вакууме (3·10 8 м/с) скоростями.

Макротелами называют обычные тела, окружающие нас, то есть тела, состоящие из громадного количества молекул и атомов.

Механику, изучающую движение макротел со скоростями намного меньшими скорости света в вакууме, называют классической.

В основе классической механики лежат следующие представления Ньютона о свойствах пространства и времени.

Любой физический процесс протекает в пространстве и времени. Это видно хотя бы из того, что во всех областях физических явлений каждый закон явно или неявно содержит пространственно-временные величины - расстояния и промежутки времени.

Пространство, имеющее три измерения, подчиняется эвклидовой геометрии, то есть является плоским.

Расстояния измеряются масштабами, основным свойством которых является то, что два однажды совпавших по длине масштаба всегда остаются равными друг другу, то есть при каждом последующем наложении совпадают.

Промежутки времени измеряются часами, причем роль последних может выполнять любая система, совершающая повторяющийся процесс.

Основной чертой представлений классической механики о размерах тел и промежутках времени является их абсолютность : масштаб всегда имеет одну и туже длину, независимо от того, как он движется относительно наблюдателя; двое часов, имеющих одинаковый ход и приведенные однажды в соответствие друг другу, показывают одно и тоже время независимо от того, как они движутся.

Пространство и время обладают замечательными свойствами симметрии , налагающими ограничения на протекание в них тех или иных процессов. Эти свойства установлены на опыте и кажутся на первый взгляд столь очевидными, что, вроде бы, и нет надобности выделять их и заниматься ими. А между тем, не будь пространственной и временной симметрии, никакая физическая наука не могла бы ни возникнуть, ни развиваться.

Оказывается, пространство однородно и изотропно , а время - однородно .

Однородность пространства состоит в том, что одинаковые физические явления в одних и тех же условиях совершаются одинаково в различных частях пространства. Все точки пространства, таким образом, совершенно неразличимы, равноправны и любая из них может быть принята за начало системы координат. Однородность пространства проявляется в законе сохранения импульса .

Пространство обладает еще и изотропностью: одинаковостью свойств во всех направлениях. Изотропность пространства проявляется в законе сохранения момента импульса .

Однородность времени заключается в том, что все моменты времени также равноправны, эквивалентны, то есть протекание одинаковых явлений в одних и тех же условия одинаково, безотносительно ко времени их осуществления и наблюдения.

Однородность времени проявляется в законе сохранения энергии .

Не будь этих свойств однородности, установленный в Минске физический закон был бы несправедлив в Москве, а открытый сегодня в том же месте мог бы быть несправедлив завтра.

В классической механике признается справедливость закона инерции Галилея-Ньютона, согласно которому тело, не подверженное действию со стороны других тел, движется прямолинейно и равномерно. Этот закон утверждает существование инерциальных систем отсчета, в которых выполняются законы Ньютона (а также принцип относительности Галилея). Принцип относительности Галилея утверждает, что все инерциальные системы отсчета эквивалентны друг другу в механическом отношении , все законы механики одинаковы в этих системах отсчета, или, другими словами, инвариантны относительно преобразований Галилея, выражающих пространственно-временную связь любого события в разных инерциальных системах отсчета. Преобразования Галилея показывают, что координаты любого события относительны, то есть имеют разные значения в разных системах отсчета; моменты же времени, когда событие произошло, одинаковы в разных системах. Последнее означает, что время течет одинаковым образом в разных системах отсчета. Это обстоятельство казалось столь очевидным, что даже не оговаривалось как специальный постулат.

В классической механике соблюдается принцип дальнодействия: взаимодействия тел, распространяются мгновенно, то есть с бесконечно большой скоростью .

В зависимости от того, с какими скоростями происходят перемещения тел и каковы размеры самих тел, механика подразделяется на классическую, релятивистскую, квантовую.

Как уже указывалось, законы классической механики применимы лишь к движению макротел, масса которых гораздо больше массы атома, с малыми скоростями по сравнению со скоростью света в вакууме.

Релятивистская механика рассматривает движение макротел со скоростями, близкими к скорости света в вакууме.

Квантовая механика - механика микрочастиц, движущихся со скоростями намного меньшими скорости света в вакууме.

Релятивистская квантовая механика - механика микрочастиц, движущихся со скоростями, приближающимися к скорости света в вакууме.

Чтобы определить принадлежит ли частица к макроскопическим, применимы ли к ней классические формулы, нужно воспользоваться принципом неопределенности Гейзенберга . Согласно квантовой механики реальные частицы могут быть охарактеризованы с помощью координаты и импульса лишь с некоторой точностью. Предел этой точности определяется так

где
ΔX - неопределенность координаты;
ΔP x - неопределенность проекции на ось импульса;
h - постоянная Планка, равная 1,05·10 -34 Дж·с;
"≥" - больше величины, порядка …

Заменив импульс произведением массы на скорость, можно написать

Из формулы видно, что чем меньше масса частицы, тем менее определенными делаются ее координаты и скорость. Для макроскопических тел практическая применимость классического способа описания движения не вызывает сомнений. Допустим, например, что речь идет о движении шарика с массой в 1 г. Обычно положение шарика практически может быть определено с точностью до десятой или сотой доли миллиметра. Во всяком случае, вряд ли имеет смысл говорить об ошибке в определении положения шарика, меньшей размеров атома. Положим поэтому ΔX=10 -10 м. Тогда из соотношения неопределенностей найдем

Одновременная малость величин ΔX и ΔV x и является доказательством практической применимости классического способа описания движения макротел.

Рассмотрим движение электрона в атоме водорода. Масса электрона 9,1·10 -31 кг. Ошибка в положении электрона ΔX во всяком случае не должна превышать размеры атома, то есть ΔX<10 -10 м. Но тогда из соотношения неопределенностей получаем

Эта величина даже больше скорости электрона в атоме, которая по порядку величины равна 10 6 м/с. При таком положении классическая картина движения теряет всякий смысл.

Механику подразделяют на кинематику, статику и динамику . Кинематика описывает движение тел, не интересуясь причинами, обусловившими это движение; статика рассматривает условия равновесия тел; динамика изучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обусловливают тот или иной характер движения.

Реальные движения тел настолько сложны, что, изучая их, необходимо отвлечься от несущественных для рассматриваемого движения деталей (в противном случае задача так усложнилась бы, что решить ее практически было бы невозможно). С этой целью используют понятия (абстракции, идеализации), применимость которых зависит от конкретного характера интересующей нас задачи, а также от степени точности, с которой мы хотим получить результат. Среди этих понятий большую роль играют понятия материальной точки, системы материальных точек, абсолютно твердого тела.

Материальная точка - это физическое понятие, с помощью которого описывается поступательное движение тела, если только его линейные размеры малы в сравнении с линейными размерами других тел в рамках заданной точности определения координаты тела, причем, ей приписывается масса тела.

В природе материальных точек не существует. Одно и то же тело в зависимости от условий можно рассматривать или как материальную точку, или как тело конечных размеров. Так, Землю, движущуюся вокруг Солнца, можно считать материальной точкой. Но при изучении вращения Земли вокруг своей оси ее уже нельзя считать материальной точкой, так как на характер этого движения существенно влияют форма и размеры Земли, и путь, проходимый какой-либо точкой земной поверхности за время, равное периоду ее обращения вокруг своей оси, сравним с линейными размерами земного шара. Самолет можно рассматривать как материальную точку, если изучать движение его центра масс. Но если необходимо учитывать влияние среды или определить усилия в отдельных частях самолета, то мы должны рассматривать самолет как абсолютно твердое тело.

Абсолютно твердым телом называют тело, деформациями которого в условиях данной задачи можно пренебречь.

Система материальных точек - это совокупность рассматриваемых тел, представляющих собой материальные точки.

Изучение движения произвольной системы тел сводится к изучению системы взаимодействующих материальных точек. Естественно, поэтому начать изучение классической механики с механики одной материальной точки, а затем перейти к изучению системы материальных точек.


В В Е Д Е Н И Е

Физика - наука о природе, изучающая наиболее общие свойства материального мира, наиболее общие формы движения материи, лежащие в основе всех явлений природы. Физика устанавли-вает законы, которым подчиняются эти явления.

Физика изучает также свойства и строение материальных тел, указывает пути практического использования физических законов в технике.

В соответствии с многообразием форм материи и ее движения физика подразделяется на ряд разделов: механика, термоди-намика, электродинамика, физика колебаний и волн, оптика, фи-зика атома, ядра и элементарных частиц.

На стыке физики и других естественных наук возникли новые науки: астрофизика, биофизика, геофизика, физическая хи-мия и др.

Физика является теоретической основой техники. Развитие физики послужило фундаментом для создания таких новых отраслей техники, как космическая техника, ядерная техника, квантовая электроника и др. В свою очередь, развитие технических наук способствует созданию совершенно новых методов физичес-ких исследований, обуславливающих прогресс физики и смежных наук.

ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

I . Механика. Общие понятия

Механика - раздел физики, который рассматривает простей-шую форму движения материи - механическое движение.

Под механическим движением понимают изменение положения изучаемого тела в пространстве со временем относительно неко-торого гола или системы тел, условно считаемых неподвижными. Такую систему тел вместе с часами, в качестве которых может быть выбран любой периодический процесс, называют системой отсчета (С.О.). С.О. часто выбирают из соображений удобства.

Для математического описания движения с С.О. связывают систе-му координат, часто прямоугольную.

Простейшее тело в механике - материальная точка. Это те-ло, размерами которого в условиях денной задачи можно пренебречь.

Всякое тело, размерами которого пренебречь нельзя, рас-сматривают как систему материальных точек.

Механика подразделяется на кинематику , которая занимается геометрическим описанием движения, не изучая его причин, динамику, которая изучает законы движения тел под действием сил, и статику, которая изучает условия равновесия тел.

2. Кинематика точки

Кинематика изучает пространственно-временное перемещение тел. Она оперирует такими понятиями, как перемещение , путь, время t , скорость движения , ускорение.

Линию, которую описывает при своем движении материальная точка, называют траекторией. По форме траектории движения де-лятся на прямолинейные и криволинейные. Вектор , соеди-няющий начальную I и конечную 2 точки, называют перемещением (рис. I.I).

Каждому моменту времени t соответствует свой радиус-вектор:

Таким образом движение точки мо-жет быть описано векторной функ-цией.

которая определяем векторный способ задания движения, или тре-мя скалярными функциями

x = x (t ); y = y (t ); z = z (t ) , (1.2)

которые называют кинематическими уравнениями. Они определяют задание движения координатным способом.

Движение точки будет также определено, если для каждого момента времени будет установлено положение точки на траекто-рии, т.е. зависимость

Она определяет задание движения естественным способом.

Каждая из указанных формул представляет собой закон дви-жения точки.

3. Скорость

Если моменту времени t 1 соответствует радиус-вектор , а , то за промежутоктело получит перемещение . В этом случае средней скоростью за t назы-вают величину

которая по отношению к траектории представляет секущую, про-ходящую через точки I и 2. Скоростью в момент времени t назы-вают вектор

Из этого определения следует, что скорость в каждой точке траектории направлена по касательной к ней. Из (1.5) следует, что проекции и модуль вектора скорости определятся выражениями:

Если задан закон движения (1.3), то модуль вектора скорости определится так:

Таким образом, зная закон движения (I.I), (1.2), (1.3), можно вычислить вектор и модуль доктора скорости и, наоборот, зная скорость из формул (1.6), (1.7), можно вычислять коор-динаты и путь.

4. Ускорение

При произвольном движении вектор скорости непрерывно ме-няется. Величина, характеризующая быстроту изменения вектора скорости, называется ускорением.

Если в. момент времениt 1 скорость точки ,а приt 2 - , то приращение скорости составит (Рис.1.2). Среднее ускорение при этом

а мгновенное

Для проекции и модуля ускорений имеем: , (1.10)

Если задан естественный способ движения, то ускорение можно определить и так. Скорость меняется по величине и по направлению, приращение скорости раскладывают на две величины; - направленный вдоль (приращение скорости по величине) и - направленный перпендикулярно (приращение. скорости по направлению), т.е. = + (Рис.I.З). Из (1.9) получаем:

Тангенциальное (касательное) ускорение характеризует быстроту изменения по величине (1.13)

нормальное (центростремительное ускорение) характеризует быстроту изменения по направлению. Для вычисления a n рассмотрим

OMN и MPQ при условии малого перемещения точки по траек-тории. Из подобия этих треугольников находим PQ:MP=MN:OM:

Полное ускорение в этом случае определится так:

5. Примеры

I. Равнопеременное прямолинейное движение. Это движение с постоянным ускорением() . Из (1.8) находим

или, где v 0 - скорость в момент времениt 0 . Полагая t 0 =0, находим , а пройденный путь S из формулы (I.7):

гдеS 0 - постоянная, определяемая из начальных условий.

2. Равномерное движение по окружности. В этом случае скорость меняется только по направлению, то есть - центростремительное ускорение.

I. Основные понятия

Перемещение тел в пространстве - результат их механического взаимодействия между собой, в результате которого проис-ходит изменение движения тел или их деформация. В качестве мары механического взаимодействия в динамике вводится величина – сила . Для данного тела сила - внешний фактор, а характер движения зависит и от свойства самого тела - податливости оказываемому на него внешнему воздействию или степени инерции те-ла. Мерой инерции тела является его масса т , зависящая от количества вещества тела.

Таким образом, основными понятиями механики являются: дви-жущаяся материя, пространство и время как формы существования движущейся материи, масса как мера инерции тел, сила как мера механического взаимодействия между телами.Соотношения между этими понятиями определяются законам! движения, которые были сформулированы Ньютоном как обобщение и уточнение опытных фактов.

2. Законы механики

1-й закон. Всякое тело сохраняет состояние покоя или равно-мерного прямолинейного движения, пока внешние воздействиянеизменяют этого состояния. Первый закон заключает в себе закон инерции, а также определение силы как причины, нарушающей инерциальное состояние тела. Чтобы выразить его математически, Ньютон ввел понятие количества движения или импульса тела:

тогда , если

2-й закон. Изменение количества движения пропорционально при-ложенной силе и происходит по направлению действия этой силы. Выбрав единицы измерения m и так, чтобы коэффициент пропорциональности был равен единице, получаем

Если при движении m = const , то

В этом случае 2-й закон формулируют так: сила равна произведению массы тела на его ускорение. Этот закон является основным законом динамики и позволяет по заданным силам я начальным условиям находить закон движения тел. 3-й закон. Силы, с которыми два тела действуют друг на друга, равны и направлены в противоположные стороны, т.е., (2.4)

Законы Ньютона приобретают конкретный смысл после того, как указаны конкретные силы, действующие на тело. Например, часто в механике движение тел вызывается действием таких сил: сила тяготения , где r - расстояние между телами, - гравитационная постоянная; сила тя-жести - сила тяготения вблизи поверхности Земли, P = mg ; сила трения ,где k основе классической механики лежат законы Ньютона. Кинематика изучает...

  • Основы квантовой механики и ее значение для химии

    Реферат >> Химия

    Именно с электромагнитными взаимодействиями связано и существование, и физические свойства атомно-молекулярных систем, - слабое... - тех первоначальных разделов классической теории (механики и термодинамики), на основе которых делались попытки интерпретации...

  • Применение концепций классической механики и термодинамики

    Контрольная работа >> Физика

    Фундаментальной физической теорией, которая имеет высокий статус и в современной физике, является классическая механика , основы ... . Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, ...

  • Основные идеи квантовой механики

    Реферат >> Физика

    Лежит в основе квантово-механического описания микросистем, подобно уравнениям Гамильтона в классической механике . В... идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» ...

  • Классическая механика (механика Ньютона)

    Рождение физики как науки связано с открытиями Г Галилея и И. Ньютона. Особенно значителен вклад И. Ньютона, который записал законы механики на языке математики. Свою теорию, которую часто называют классической механикой, И. Ньютон изложил в труде «Математические начала натуральной философии» (1687).

    Основу классической механики составляют три закона и два положения относительно пространства и времени.

    Прежде чем рассматривать законы И. Ньютона, напомним, что такое система отсчета и инерциальная система отсчета, поскольку законы И. Ньютона выполняются не во всех системах отсчета, а только в инерциальных системах отсчета.

    Системой отсчета называется система координат, например прямоугольных декартовых координат, дополненная часами, находящимися в каждой точке геометрически твердой среды. Геометрически твердой средой называется бесконечное множество точек, расстояния между которыми фиксированы. В механике И. Ньютона предполагается, что время течет независимо от положения часов, т.е. часы синхронизированы и поэтому время течет одинаково во всех системах отсчета.

    В классической механике пространство считается евклидовым, а время представляется евклидовой прямой. Иными словами, И. Ньютон считал пространство абсолютным, т.е. оно везде является одним и тем же. Это значит, что для измерения длин можно использовать не- деформируемые стержни с нанесенными на них делениями. Среди систем отсчета можно выделить такие системы, которые благодаря учету ряда специальных динамических свойств отличаются от остальных.

    Система отсчета, по отношению к которой тело движется равномерно и прямолинейно, называется инерциальной или галилеевой.

    Факт существования инерциальных систем отсчета нельзя проверить экспериментально, так как в реальных условиях нельзя выделить часть материи, изолировать ее от остального мира так, чтобы движение этой части материи не подвергалось воздействию других материальных объектов. Чтобы определить в каждом конкретном случае, может ли система отсчета быть принята за инерциальную, проверяют, сохраняется ли скорость тела. Степень этого приближения определяет степень идеализации задачи.

    Например, в астрономии при изучении движения небесных тел за инерциальную систему отсчета часто принимают декартову систему ординат, начало которой находится в центре масс какой-то «неподвижной» звезды, а оси координат направлены на другие «неподвижные» звезды. На самом деле звезды движутся с большими скоростями относительно других небесных объектов, поэтому понятие «неподвижная» звезда условно. Но в силу больших расстояний между звездами приведенное нами положение достаточно для практических целей.

    Например, наилучшей инерциальной системой отсчета для Солнечной системы будет такая, начало которой совпадает с центром масс Солнечной системы, практически находящимся в центре Солнца, так как в Солнце сосредоточено более 99% массы нашей планетной системы. Оси координат системы отсчета направлены на далекие звезды, которые считаются неподвижными. Такая система называется гелиоцентрической.

    Утверждение о существовании инерциальных систем отсчета И. Ньютон сформулировал в виде закона инерции, который называют первым законом Ньютона. Этот закон гласит: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.

    Первый закон Ньютона отнюдь не очевиден. До Г. Галилея считалось, что это воздействие обусловливает не изменение скорости (ускорение), а саму скорость. Данное мнение основывалось на таких известных из повседневной жизни фактах, как необходимость непрерывно толкать тележку, которая движется по горизонтальной ровной дороге, для того чтобы ее движение не замедлялось. Теперь известно, что, толкая тележку, мы уравновешиваем воздействие, оказываемое на нее трением. Но, не зная об этом, легко прийти к заключению, что воздействие необходимо для поддержания движения неизменным.

    Второй закон Ньютона гласит: скорость изменения импульса частицы равна действующей на частицу силе :

    где т - масса; t- время; а -ускорение; v - вектор скорости; p = mv - импульс; F - сила.

    Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой величины определяет интенсивность воздействия, а направление совпадает с направлением ускорения, сообщаемого телу этим воздействием.

    Масса является мерой инертности тела. Под инертностью понимают неподатливость тела действию силы, т.е. свойство тела сопротивляться изменению скорости под действием силы. Для того, чтобы выразить массу некоторого тела числом, надо сравнить ее с массой эталонного тела, принятого за единицу.

    Формула (3.1) называется уравнением движения частицы. Выражение (3.2) - это вторая формулировка второго закона Ньютона: произведение массы частицы на ее ускорение равно силе, которая действует на частицу.

    Формула (3.2) справедлива и для протяженных тел в том случае, если они движутся поступательно. Если на тело действует несколько сил, то под силой F в формулах (3.1) и (3.2) подразумевается их результирующая, т.е. сумма сил.

    Из (3.2) следует, что при F = 0 (т.е. на тело не действуют другие тела) ускорение а равно нулю, поэтому тело движется прямолинейно и равномерно. Таким образом, первый закон Ньютона как бы входит во второй закон как его частный случай. Но первый закон Ньютона формируется независимо от второго, так как в нем содержится утверждение о существовании в природе инерциальных систем отсчета.

    Уравнение (3.2) имеет такой простой вид только при согласованном выборе единиц измерения силы, массы и ускорения. При независимом выборе единиц измерения второй закон Ньютона записывается следующим образом:

    где к - коэффициент пропорциональности.

    Воздействие тел друг на друга всегда носит характер взаимодействия. В том случае, если тело А действует на тело В с силой F BA то и тело В действует на тело А с силой F AB .

    Третий закон Ньютона гласит, что силы, с которыми взаимодействуют два тела, равны по модулю и противоположны по направлению, т.е.

    Поэтому силы всегда возникают попарно. Заметим, что силы в формуле (3.4) приложены к разным телам, и поэтому они не могут уравновешивать друг друга.

    Третий закон Ньютона, также как и первые два, выполняется только в инерциальных системах отсчета. В неинерциальных системах отсчета он не является справедливым. Кроме этого отступления от третьего закона Ньютона будут наблюдаться у тел, которые движутся со скоростями, близкими к скорости света.

    Следует заметить, что все три закона Ньютона появились в результате обобщения данных большого числа экспериментов и наблюдений и поэтому являются эмпирическими законами.

    В механике Ньютона не все системы отсчета равноправны, так как инерциальные и неинерциальные системы отсчета отличаются друг от друга. Указанное неравноправие свидетельствует о недостаточной зрелости классической механики. С другой стороны, все инерциальные системы отсчета равноправны и в каждой из них законы Ньютона одни и те же.

    Г. Галилей в 1636 г. установил, что в инерциальной системе отсчета никакими механическими опытами нельзя определить, находится ли она в состоянии покоя или движется равномерно и прямолинейно.

    Рассмотрим две инерциальные системы отсчета N и N", причем система jV"движется относительно системы N по оси х с постоянной скоростью v (рис. 3.1).

    Рис. 3.1.

    Отсчет времени начнем с того момента, когда начала координат о и о"совпадали. В этом случае координаты х и х" произвольно взятой точки М будут связаны выражением х = х" + vt. При сделанном нами выборе осей координат у - у z~ Z- В механике Ньютона предполагается, что во всех системах отсчета время течет одинаково, т.е. t = t". Следовательно, мы получили совокупность четырех уравнений:

    Уравнения (3.5) называются преобразованиями Галилея. Они дают возможность переходить от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы отсчета. Продифференцируем по времени / первое уравнение (3.5), имея в виду, что t = t поэтому производная по t совпадет с производной по Г. Получим:

    Производная - это проекция скорости частицы и в системе N

    на ось х этой системы, а производная - это проекция скорости частицы о "в системе N "на осьх "этой системы. Поэтому получаем

    где v = v x =v X " - проекция вектора на ось х совпадает с проекцией того же вектора на ось*".

    Теперь дифференцируем второе и третье уравнение (3.5) и получаем:

    Уравнения (3.6) и (3.7) можно заменить одним векторным уравнением

    Уравнение (3.8) можно рассматривать или как формулу преобразования скорости частицы из системы N" в систему N, или как закон сложения скоростей: скорость частицы относительно системы У равна сумме скорости частицы относительно системы N" и скорости системы N" относительно системы N. Продифференцируем по времени уравнение (3.8) и получим:

    поэтому ускорения частицы относительно систем N и УУ’одни и те же. Сила F, N, равна силе F", которая действует на частицу в системе N", т.е.

    Соотношение (3.10) будет выполняться, так как сила зависит от расстояний между данной частицей и взаимодействующими с ней частицами (а также от относительных скоростей частиц), а эти расстояния (и скорости) в классической механике полагаются одинаковыми во всех инерциальных системах отсчета. Масса тоже имеет одинаковое числовое значение во всех инерциальных системах отсчета.

    Из приведенных выше рассуждений следует, что если выполняется соотношение та = F, то будет выполняться равенство та = F". Системы отсчета N и N" были взяты произвольно, поэтому полученный результат означает, что законы классической механики одинаковы для всех инерциальных систем отсчета. Это утверждение называется принципом относительности Галилея. Можно сказать иначе: законы механики Ньютона инвариантны относительно преобразований Галилея.

    Величины, которые имеют одно и то же числовое значение во всех системах отсчета, называют инвариантными (от лат. invariantis - не- изменяющийся). Примерами таких величин служат электрический заряд, масса и др.

    Инвариантными по отношению к преобразованию координат и времени при переходе от одной инерциальной системы отсчета к другой называются и уравнения, вид которых не меняется при таком переходе. Величины, которые входят в эти уравнения, могут меняться при переходе от одной системы отсчета к другой, но формулы, которые выражают связь между этими величинами, остаются неизменными. Примерами таких уравнений являются законы классической механики.

    • Под частицей подразумевается материальная точка, т.е. тело, размерами которогоможно пренебречь по сравнению с расстоянием до других тел.

    Возникновение классической механики явилось началом превращения физики в строгую науку, то есть систему знания утверждающую истинность, объективность, обоснованность и проверяемость как своих исходных принципов, так и своих конечных выводов. Это возникновение происходило в XVI-XVII веке и связано с именами Галилео Галилея, Рене Декарта и Исаака Ньютона. Именно они осуществили "математизацию" природы и заложили основы экспериментально-математического взгляда на природу. Они представили природу как множество "материальных" точек, обладающих пространственно-геометрическими (форма), количественно-математическими (число, величина) и механическими (движение) свойствами и связанных причинно-следственными зависимостями, которые можно выразить в уравнениях математики.

    Начало превращения физики в строгую науку было положено Г. Галилеем. Галилей сформулировал ряд фундаментальных принципов и законов механики. А именно:

    - принцип инерции , согласно которому когда тело двигается по горизонтальной плоскости, не встречая никаких сопротивлений движению, то движение его является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца;

    - принцип относительности , согласно которому в инерциальных системах все законы механики одинаковы и нет возможности, находясь внутри, определить движется ли она прямолинейно и равномерно или покоится;

    - принцип сохранения скоростей и сохранения пространственных и временных интервалов при переходе от одной инерциальной системы к другой. Это знаменитое галилеево преобразование .

    Целостный вид логико-математически организованной системы основных понятий, принципов и законов механика получила в работах Исаака Ньютона. Прежде всего в работе "Математические начала натуральной философии" В этой работе Ньютон вводит понятия: масса , или количество материи, инерция , или свойство тела сопротивляться изменению состояния покоя или движения, вес , как мера массы, сила , или действие, производимое на тело для изменения его состояния.

    Ньютон различал абсолютные (истинные, математические) пространство и время, которые не зависят от находящихся в них тел и всегда равны сами себе, и относительные пространство и время - подвижные части пространства и измеряемые длительности времени.

    Особое место в концепции Ньютона занимает учение о силе тяготения или гравитации, в котором он объединяет движение "небесных" и земных тел. Это учение включает утверждения:

    Тяжесть тела пропорциональна заключенному в нем количеству материи или массы;

    Сила тяжести пропорциональна массе;


    Сила тяжести или тяготение и есть та сила, которая действует между Землей и Луной обратно пропорционально квадрату расстояния между ними;

    Эта сила тяготения действует между всеми материальными телами на расстоянии.

    В отношении природы силы тяготения Ньютон говорил: "Гипотез не измышляю".

    Механика Галилея-Ньютона, развитая в работах Д. Аламбера, Лагранжа, Лапласа, Гамильтона... получила в итоге стройную форму, определяющую физическую картину мира того времени. Эта картина основывалась на принципах самотождественности физического тела; его независимости от пространства и времени; детерминированности, то есть строгой однозначной причинно-следственной связи между конкретными состояниями физических тел; обратимости всех физических процессов.

    Термодинамика.

    Исследования процесса превращения теплоты в работу и обратно, осуществленные в Х1Х веке С. Кално, Р. Майером, Д. Джоулем, Г. Гемгольцем, Р. Клаузиусом, У. Томсоном (лордом Кельвином), привели к выводам, о которых Р. Майер писал: "Движение, теплота..., электричество представляют собой явления, которые измеряются друг другом и переходят друг в друга по определенным законам". Гемгольц обобщает это утверждение Майера в вывод: "Сумма существующих в природе напряженных и живых сил постоянна". Уильям Томсон уточнил понятия "напряженные и живые силы" до понятий потенциальной и кинетической энергии, определив энергию как способность совершать работу. Р. Клаузиус обобщил эти идеи в формулировке: "Энергия мира постоянна". Так, совместными усилиями сообщества физиков был сформулирован фундаментальный для всего физического знания закон сохранения и превращения энергии .

    Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона - закона возрастания энтропии . "Переход теплоты от более холодного тела к более теплому, - писал Клаузиус, - не может иметь места без компенсации". Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму называют вторым началом термодинамики. Первое начало - закон сохранения и превращения энергии.

    Принцип возрастания энтропии поставил перед физической мыслью ряд проблем: соотношения обратимости и необратимости физических процессов, формальности сохранения энергии, не способной совершать работу при температурной однородности тел. Все это требовало более глубокого обоснования начал термодинамики. Прежде всего природы тепла.

    Попытку такого обоснования предпринял Людвиг Больцман, который пришел, опираясь на молекулярно-атомное представление о природе теплоты, к выводу о статистическом характере второго закона термодинамики, так как вследствие огромного числа молекул, составляющих макроскопические тела, и чрезвычайной быстроты и хаотичности их движения мы наблюдаем лишь средние значения . Определение же средних значений - задача теории вероятностей. При максимальном температурном равновесии максимален и хаос движения молекул, в котором исчезает всякий порядок. Встает вопрос: может ли и, если да, то как, из хаоса снова возникнуть порядок? На это физика сможет ответить лишь через сто лет, введя принцип симметрии и принцип синергии.

    Электродинамика.

    К середине Х1Х века физика электрических и магнитных явлений достигла определенного завершения. Был открыт ряд важнейших законов Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и т.д. Все эти законы базировались на принципе дальнодействия . Исключением были взгляды Фарадея, который считал, что электрическое действие передается посредством непрерывной среды, то есть на основе принципа близкодействия . Опираясь на идеи Фарадея, английский физик Дж. Максвелл вводит понятие электромагнитного поля и описывает "открытое" им состояние материи в своих уравнениях. "... Электромагнитное поле, - пишет Максвелл, - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии". Комбинируя уравнения электромагнитного поля, Максвелл получает волновое уравнение, из которого следует существование электромагнитных волн , скорость распространения которых в воздухе равна скорости света. Существование таких электромагнитных волн экспериментально было подтверждено немецким физиком Генрихом Герцем в 1888 г.

    Для того, чтобы объяснить взаимодействие электромагнитных волн с веществом, немецкий физик Гендрик Антон Лоренц выдвинул гипотезу о существовании электрона , то есть малой электрически заряженной частички, которая в громадных количествах присутствует во всех весомых телах. Эта гипотеза объяснила открытое в 1896 году немецким физиком Зееманом явление расщепления спектральных линий в магнитном поле. В 1897 году Томсон экспериментально подтвердил наличие мельчайшей отрицательно заряженной частицы или электрона.

    Так, в рамках классической физики возникла достаточно стройная и завершенная картина мира, описывающая и объясняющая движение, гравитацию, теплоту, электричество и магнетизм, свет. Это и дало повод лорду Кельвину (Томсону) сказать, что здание физики практически построено, не хватает лишь несколько деталей...

    Во-первых, оказалось, что уравнения Максвелла являются неинвариантными относительно преобразований Галилея. Во-вторых, теория эфира, как абсолютной системы координат, к которой "привязаны" уравнения Максвелла, не нашла экспериментального подтверждения. Опыт Майкельсона-Морли показал, что никакой зависимости скорости света от направления в движущейся системе координат нет . Сторонник сохранения уравнений Максвелла Гендрик Лоренц, "привязав" эти уравнения к эфиру, как абсолютной системе отсчета, пожертвовал принципом относительности Галилея, его преобразованиями и сформулировал свои преобразования. Из преобразований Г. Лоренца следовало, что пространственные и временные интервалы неинвариантны при переходе от одной инерциальной системы отсчета к другой. Все бы ничего, но существование абсолютной среды - эфира не подтверждалось, как отмечалось, опытно-экспериментально. Это кризис.

    Неклассическая физика. Специальная теория относительности .

    Описывая логику создания специальной теории относительности Альберт Эйнштейн в совместной книге с Л. Инфельдом пишет: "Соберем теперь вместе те факты, которые достаточно проверены опытом, не заботясь больше о проблеме эфира:

    1. Скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света.

    2. В двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение...

    Первое положение выражает постоянство скорости света, второе обобщает принцип относительности Галилея, сформулированный для механических явлений, на все происходящее в природе". Эйнштейн отмечает, что принятие этих двух принципов и отказ от принципа галилеевского преобразования, так как он противоречит постоянству скорости света, и положило начало специальной теории относительности. К принятым двум принципам: постоянства скорости света и эквивалентности всех инерциальных систем отсчета, Эйнштейн добавляет принцип инвариантности всех законов природы по отношению к преобразованиям Г. Лоренца. Поэтому во всех инерциальных системах справедливы те же самые законы, а переход от одной системы к другой дается преобразованиями Лоренца. Это значит, что ритм движущихся часов и длина движущихся стержней зависит от скорости: стержень сократится до нуля, если его скорость достигнет скорости света, а ритм движущихся часов замедляется, часы совершенно остановились бы, если бы они могли двигаться со скоростью света.

    Так из физики были элиминированы ньютоновское абсолютное время, пространство, движение, которые были как бы независимы от движущихся тел и их состояния.

    Общая теория относительности.

    В цитируемой уже книге Эйнштейн спрашивает: "Можем ли сформулировать физические законы таким образом, чтобы они были справедливы для всех систем координат, не только для систем, движущихся прямолинейно и равномерно, но и для систем, движущихся совершенно произвольно по отношению друг к другу?". И отвечает: "Это оказывается возможным".

    Потеряв в специальной теории относительности свою "независимость" от движущихся тел и друг от друга, пространство и время как бы "нашли" друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 году работу "Основания теории электромагнитных процессов", в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней, и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику . С этой новой позиции Эйнштейн рассмотрел закон тяготения Ньютона. Вместо силы тяготения он стал оперировать полем тяготения . Поля тяготения были включены в пространственно-временной континуум как его "искривление". Метрика континуума стала неевклидовой, "римановской" метрикой. "Кривизна" континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света проходящего вблизи Солнца.

    Так из физики было элиминировано понятие "инерциальной системы координат" и обосновано утверждение обобщенного принципа относительности : любая система координат является одинаково пригодной для описания явлений природы .

    Квантовая механика.

    Вторым, по мнению лорда Кельвина (Томсона), недостающим элементом для завершения здания физики на рубеже Х1Х-ХХ веков было серьезное расхождение между теорией и экспериментом при исследовании законов теплового излучения абсолютно черного тела. Согласно господствующей теории, оно должно быть непрерывным, континуальным . Однако, это приводило к парадоксальным выводам, вроде того, что общая энергия, излучаемая черным телом при данной температуре, равна бесконечности (формула Релея-Джина). Для решения проблемы немецкий физик Макс Планк выдвинул в 1900 году гипотезу, что вещество не может излучать или поглощать энергию иначе, как конечными порциями (квантами), пропорциональными излучаемой (или поглощаемой) частоте. Энергия одной порции (кванта) Е=hn, где n - частота излучения, а h - универсальная константа. Гипотеза Планка была использована Эйнштейном для объяснения фотоэффекта. Эйнштейн ввел понятие кванта света или фотона. Он же предложил, что свет , в соответствии с формулой Планка, обладает одновременно волновыми и квантовыми свойствами. В сообществе физиков заговорили о корпускулярно-волновом дуализме, тем более что в 1923 году было открыто еще одно явление, подтверждающее существование фотонов - эффект Комптона.

    В 1924 году Луи де Бройль распространил идею о двойственной корпускулярно-волновой природе света на все частицы материи, введя представление о волнах материи . Отсюда можно говорить и о волновых свойствах электрона, например, о дифракции электрона, каковые и были экспериментально установлены. Однако эксперименты Р. Фейнмана с "обстрелом" электронами щита с двумя отверстиями показали, что невозможно, с одной стороны, сказать, через какое отверстие пролетает электрон, то есть точно определить его координату, а с другой стороны - не исказить картины распределения регистрируемых электронов, не нарушив характера интерференции. Это значит, что мы можем знать или координату электрона, или импульс, но не то и другое вместе.

    Этот эксперимент поставил под вопрос само понятие частицы в классическом смысле точной локализации в пространстве и времени.

    Объяснение "неклассического" поведения микрочастиц было впервые дано немецким физиком Вернером Гейзенбергом. Последний сформулировал закон движения микрочастицы, согласно которому знание точной координаты частицы приводит к полной неопределенности ее импульса, и наоборот, точное знание импульса частицы - к полной неопределенности ее координаты. В. Гейзенберг установил соотношение неопределенностей значений координаты и импульса микрочастицы:

    Dх * DР х ³ h, где Dх - неопределенность в значении координаты; DР х - неопределенность в значении импульса; h - постоянная Планка. Этот закон и соотношение неопределенностей получил название принципа неопределенности Гейзенберга.

    Анализируя принцип неопределенностей датский физик Нильс Бор показал, что в зависимости от постановки эксперимента микрочастица обнаруживает либо свою корпускулярную природу, либо волновую, но не обе сразу . Следовательно, эти две природы микрочастиц взаимно исключают друг друга, и в то же время должны быть рассмотрены как дополняющие друг друга, а их описание на основе двух классов экспериментальных ситуаций (корпускулярной и волновой) - целостным описанием микрочастицы. Существует не частица "само по себе", а система "частица - прибор". Эти вывод Н. Бора получили название принципа дополнительности .

    Неопределенность и дополнительность оказываются в рамках такого подхода не мерой нашего незнания, а объективными свойствами микрочастиц , микромира в целом. Из этого следует, что статистические, вероятностные законы лежат в глубине физической реальности, а динамические законы однозначной причинно-следственной зависимости лишь некоторый частный и идеализированный случай выражения статистических закономерностей.

    Релятивистская квантовая механика.

    В 1927 году английский физик Поль Дирак обратил внимание на то, что для описания движения открытых к тому времени микрочастиц: электрона, протона и фотона, так как они движутся со скоростями, близкими к скорости света, требуется применение специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики, и теории относительности Эйнштейна. Этому уравнению удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое - неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и симметричных им античастицах. Это породило вопрос: пуст ли вакуум? После эйнштейновского "изгнания" эфира он казался несомненно пустым.

    Современные, хорошо доказанные представления говорят, что вакуум "пуст" только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Это не противоречит и принципу неопределенности, который имеет также выражение DЕ * Dt ³ h. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние квантового поля, энергия которого равна нулю только в среднем. Так что вакуум - это "нечто" по имени "ничто".

    На пути построения единой теории поля.

    В 1918 году Эмми Нетером было доказано, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющая величина. Из этого следует, что закон сохранения (энергии) является следствием симметрий , существующих в реальном пространстве-времени.

    Симметрия как философское понятие означает процесс существования и становления тождественных моментов между различными и противоположными состояниями явлений мира. Это означает, что, изучая симметрию каких-либо систем, необходимо рассматривать их поведение при различных преобразованиях и выделять во всей совокупности преобразований такие, которые оставляют неизменными, инвариантными некоторые функции, соответствующие рассматриваемым системам.

    В современной физике употребляется понятие калибровочной симметрии . Под калибровкой железнодорожники понимают переход с узкой колеи на широкую. В физике под калибровкой первоначально понималось также изменение уровня или масштаба. В специальной теории относительности законы физики не изменяются относительно переноса или сдвига при калибровке расстояния. В калибровочной симметрии требование инвариантности порождает определенный конкретный вид взаимодействия. Следовательно, калибровочная инвариантность позволяет ответить на вопрос: "Почему и зачем в природе существуют такого рода взаимодействия?". В настоящее время в физике определено существование четырех типов физических взаимодействий: гравитационного, сильного, электромагнитного и слабого. Все они имеют калибровочную природу и описываются калибровочными симметриями, являющимися различными представлениями групп Ли. Это позволяет предположить существование первичного суперсимметричного поля , в котором еще нет различия между типами взаимодействий. Различия, типы взаимодействия являются результатом самопроизвольного, спонтанного нарушения симметрии исходного вакуума. Эволюция Вселенной предстает тогда как синергетический самоорганизующийся процесс : в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до "большого взрыва". Дальнейший ход ее истории пролегал через критические точки - точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. Утверждение самоорганизации систем через самопроизвольное нарушение исходного типа симметрии в точках бифуркации и есть принцип синергии .

    Выбор направленности самоорганизации в точках бифуркации, то есть в точках самопроизвольного нарушения исходной симметрии не случаен. Он определен как бы присутствующим уже на уровне суперсимметрии вакуума "проектом" человека, то есть "проектом" существа, спрашивающего о том, почему мир таков. Это антропный принцип , который в физике сформулировал в 1962 году Д. Дике.

    Принципы относительности, неопределенности, дополнительности, симметрии, синергии, антропный принцип, а также утверждение глубинно-основного характера вероятностных причинно-следственных зависимостей по отношению к динамическим, однозначным причинно-следственным зависимостям и составляют категориально-концептуальную структуру современного гештальта, образа физической реальности.

    Литература

    1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.

    2. Бор Н. Атомная физика и человеческое познание. М., 1961.

    3. Бор Н. Причинность и дополнительность// Бор Н. Избранные научные труды в 2-х т. Т.2. М., 1971.

    4. Борн М. Физика в жизни моего поколения, М., 1061.

    5. Бройль Л. Де. Революция в физике. М., 1963

    6. Гейзенберг В. Физика и философия. Часть и целое. М. 1989.

    8. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.