Apabila logaritma adalah sifar. Apakah logaritma? Menyelesaikan logaritma

Jadi, kita ada kuasa dua. Jika anda mengambil nombor dari baris bawah, anda boleh dengan mudah mencari kuasa yang anda perlu menaikkan dua untuk mendapatkan nombor ini. Sebagai contoh, untuk mendapatkan 16, anda perlu menaikkan dua kepada kuasa keempat. Dan untuk mendapatkan 64, anda perlu menaikkan dua kepada kuasa keenam. Ini boleh dilihat dari jadual.

Dan sekarang - sebenarnya, takrifan logaritma:

Asas logaritma x ialah kuasa yang mesti dinaikkan untuk mendapatkan x.

Penetapan: log a x = b, di mana a ialah asas, x ialah hujah, b ialah logaritma sebenarnya sama dengannya.

Contohnya, 2 3 = 8 ⇒ log 2 8 = 3 (logaritma asas 2 bagi 8 ialah tiga kerana 2 3 = 8). Dengan log kejayaan yang sama 2 64 = 6, sejak 2 6 = 64.

Operasi mencari logaritma nombor kepada asas tertentu dipanggil logaritma. Jadi, mari tambah baris baharu pada jadual kami:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1log 2 4 = 2 log 2 8 = 3log 2 16 = 4 log 2 32 = 5log 2 64 = 6

Malangnya, tidak semua logaritma dikira dengan begitu mudah. Sebagai contoh, cuba cari log 2 5 . Nombor 5 tiada dalam jadual, tetapi logik menentukan bahawa logaritma akan terletak di suatu tempat pada segmen. Kerana 2 2< 5 < 2 3 , а чем lebih ijazah dua, lebih besar bilangannya.

Nombor sedemikian dipanggil tidak rasional: nombor selepas titik perpuluhan boleh ditulis ad infinitum, dan ia tidak pernah berulang. Jika logaritma ternyata tidak rasional, lebih baik biarkan seperti itu: log 2 5, log 3 8, log 5 100.

Adalah penting untuk memahami bahawa logaritma ialah ungkapan dengan dua pembolehubah (asas dan hujah). Pada mulanya, ramai yang keliru di mana asasnya dan di mana hujahnya. Untuk mengelakkan salah faham yang menjengkelkan, lihat sahaja gambar:

Di hadapan kita tidak lebih daripada definisi logaritma. Ingat: logaritma ialah kuasa, di mana pangkalan mesti dibina untuk mendapatkan hujah. Ia adalah pangkalan yang dinaikkan kepada kuasa - ia diserlahkan dengan warna merah dalam gambar. Ternyata asasnya sentiasa di bawah! Saya memberitahu pelajar saya peraturan indah ini pada pelajaran pertama - dan tiada kekeliruan timbul.

Kami telah mengetahui definisinya - yang tinggal hanyalah untuk mempelajari cara mengira logaritma, i.e. buang tanda "log". Sebagai permulaan, kami perhatikan bahawa dua fakta penting mengikuti dari definisi:

  1. Hujah dan asas mestilah sentiasa lebih besar daripada sifar. Ini berikutan daripada definisi ijazah penunjuk rasional, yang mana definisi logaritma turun.
  2. Asas mestilah berbeza daripada satu, kerana satu hingga mana-mana darjah masih kekal satu. Oleh sebab itu, persoalan "kepada apa kuasa seseorang mesti dibangkitkan untuk mendapat dua" tidak bermakna. Tidak ada ijazah seperti itu!

Sekatan sedemikian dipanggil wilayah nilai yang boleh diterima (ODZ). Ternyata ODZ logaritma kelihatan seperti ini: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Ambil perhatian bahawa tiada sekatan pada nombor b (nilai logaritma). Sebagai contoh, logaritma mungkin negatif: log 2 0.5 = −1, kerana 0.5 = 2 −1.

Walau bagaimanapun, kini kami hanya mempertimbangkan ungkapan berangka, di mana ia tidak diperlukan untuk mengetahui VA logaritma. Semua sekatan telah diambil kira oleh pengarang masalah. Tetapi apabila persamaan logaritma dan ketaksamaan berlaku, keperluan DL akan menjadi wajib. Lagipun, asas dan hujah mungkin mengandungi pembinaan yang sangat kuat yang tidak semestinya sepadan dengan sekatan di atas.

Sekarang mari kita pertimbangkan skim umum mengira logaritma. Ia terdiri daripada tiga langkah:

  1. Nyatakan asas a dan hujah x sebagai kuasa dengan kemungkinan asas minimum yang lebih besar daripada satu. Sepanjang perjalanan, lebih baik untuk menyingkirkan perpuluhan;
  2. Selesaikan persamaan bagi pembolehubah b: x = a b ;
  3. Nombor b yang terhasil akan menjadi jawapannya.

Itu sahaja! Jika logaritma ternyata tidak rasional, ini akan kelihatan pada langkah pertama. Keperluan bahawa asas itu lebih daripada satu, sangat relevan: ia mengurangkan kemungkinan ralat dan sangat memudahkan pengiraan. Sama dengan perpuluhan: jika anda segera menukarnya kepada yang biasa, akan terdapat banyak ralat yang lebih sedikit.

Mari lihat cara skema ini berfungsi menggunakan contoh khusus:

Tugasan. Kira logaritma: log 5 25

  1. Mari kita bayangkan asas dan hujah sebagai kuasa lima: 5 = 5 1 ; 25 = 5 2 ;
  2. Mari buat dan selesaikan persamaan:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Kami menerima jawapan: 2.

Tugasan. Kira logaritma:

Tugasan. Kira logaritma: log 4 64

  1. Mari kita bayangkan asas dan hujah sebagai kuasa dua: 4 = 2 2 ; 64 = 2 6 ;
  2. Mari buat dan selesaikan persamaan:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Kami menerima jawapan: 3.

Tugasan. Kira logaritma: log 16 1

  1. Mari kita bayangkan asas dan hujah sebagai kuasa dua: 16 = 2 4 ; 1 = 2 0 ;
  2. Mari buat dan selesaikan persamaan:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Kami menerima jawapan: 0.

Tugasan. Kira logaritma: log 7 14

  1. Mari kita bayangkan asas dan hujah sebagai kuasa tujuh: 7 = 7 1 ; 14 tidak boleh diwakili sebagai kuasa tujuh, sejak 7 1< 14 < 7 2 ;
  2. daripada perenggan sebelumnya ia berikutan bahawa logaritma tidak dikira;
  3. Jawapannya tiada perubahan: log 7 14.

Nota kecil kepada contoh terakhir. Bagaimanakah anda boleh memastikan bahawa nombor bukan kuasa tepat nombor lain? Ia sangat mudah - hanya pecahkannya menjadi faktor utama. Jika pengembangan mempunyai sekurang-kurangnya dua faktor berbeza, bilangannya bukanlah kuasa yang tepat.

Tugasan. Ketahui sama ada nombor adalah kuasa yang tepat: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - darjah tepat, kerana hanya ada satu pengganda;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - bukan kuasa yang tepat, kerana terdapat dua faktor: 3 dan 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - darjah tepat;
35 = 7 · 5 - sekali lagi bukan kuasa yang tepat;
14 = 7 · 2 - sekali lagi bukan darjah yang tepat;

Kami juga perhatikan bahawa kami sendiri nombor perdana sentiasa darjah yang tepat bagi diri mereka sendiri.

Logaritma perpuluhan

Sesetengah logaritma adalah sangat biasa sehingga mereka mempunyai nama dan simbol khas.

Logaritma perpuluhan bagi x ialah logaritma kepada asas 10, i.e. Kuasa yang nombor 10 mesti dinaikkan untuk mendapatkan nombor x. Jawatan: lg x.

Sebagai contoh, log 10 = 1; lg 100 = 2; lg 1000 = 3 - dsb.

Mulai sekarang, apabila frasa seperti "Cari lg 0.01" muncul dalam buku teks, ketahui bahawa ini bukan kesilapan menaip. Ini ialah logaritma perpuluhan. Walau bagaimanapun, jika anda tidak biasa dengan notasi ini, anda sentiasa boleh menulis semula:
log x = log 10 x

Semua yang benar untuk logaritma biasa adalah benar untuk logaritma perpuluhan.

Logaritma semula jadi

Terdapat satu lagi logaritma yang mempunyai sebutan tersendiri. Dalam beberapa cara, ia lebih penting daripada perpuluhan. Ia mengenai tentang logaritma semula jadi.

Logaritma asli bagi x ialah logaritma kepada asas e, i.e. kuasa yang nombor e mesti dinaikkan untuk mendapatkan nombor x. Jawatan: ln x .

Ramai yang akan bertanya: apakah nombor e? ini nombor tak rasional, miliknya nilai sebenar mustahil untuk mencari dan merekodkan. Saya hanya akan memberikan angka pertama:
e = 2.718281828459...

Kami tidak akan menjelaskan secara terperinci tentang apakah nombor ini dan mengapa ia diperlukan. Ingatlah bahawa e ialah asas logaritma asli:
ln x = log e x

Oleh itu ln e = 1 ; ln e 2 = 2; ln e 16 = 16 - dsb. Sebaliknya, ln 2 ialah nombor tak rasional. Secara amnya, logaritma semula jadi mana-mana nombor rasional tidak rasional. Kecuali, sudah tentu, untuk satu: ln 1 = 0.

Untuk logaritma semula jadi semua peraturan yang benar untuk logaritma biasa adalah sah.

sifat utama.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

alasan yang sama

Log6 4 + log6 9.

Sekarang mari kita merumitkan sedikit tugas.

Contoh penyelesaian logaritma

Bagaimana jika asas atau hujah logaritma ialah kuasa? Kemudian eksponen darjah ini boleh dikeluarkan dari tanda logaritma mengikut peraturan berikut:

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x >

Tugasan. Cari maksud ungkapan:

Peralihan kepada asas baharu

Biarkan logaritma logax diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Tugasan. Cari maksud ungkapan:

Lihat juga:


Sifat asas logaritma

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Eksponennya ialah 2.718281828…. Untuk mengingati eksponen, anda boleh mengkaji peraturan: eksponen adalah sama dengan 2.7 dan dua kali tahun kelahiran Leo Nikolaevich Tolstoy.

Sifat asas logaritma

Mengetahui peraturan ini, anda akan mengetahui nilai sebenar eksponen dan tarikh lahir Leo Tolstoy.


Contoh untuk logaritma

Ungkapan logaritma

Contoh 1.
A). x=10ac^2 (a>0,c>0).

Menggunakan sifat 3.5 kami mengira

2.

3.

4. di mana .



Contoh 2. Cari x jika


Contoh 3. Biarkan nilai logaritma diberikan

Kira log(x) jika




Sifat asas logaritma

Logaritma, seperti mana-mana nombor, boleh ditambah, ditolak dan diubah dalam semua cara. Tetapi kerana logaritma tidak tepat nombor biasa, terdapat peraturan di sini, yang dipanggil sifat utama.

Anda pastinya perlu mengetahui peraturan ini - tanpanya satu masalah serius tidak dapat diselesaikan. masalah logaritma. Di samping itu, terdapat sangat sedikit daripada mereka - anda boleh mempelajari segala-galanya dalam satu hari. Jadi mari kita mulakan.

Menambah dan menolak logaritma

Pertimbangkan dua logaritma dengan asas yang sama: logax dan logay. Kemudian mereka boleh ditambah dan ditolak, dan:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Jadi, jumlah logaritma adalah sama dengan logaritma hasil darab, dan perbezaannya adalah sama dengan logaritma hasil bagi. Catatan: detik penting di sini - alasan yang sama. Jika alasannya berbeza, peraturan ini tidak berfungsi!

Formula ini akan membantu anda mengira ungkapan logaritma walaupun bahagian individunya tidak dikira (lihat pelajaran “Apakah itu logaritma”). Lihat contoh dan lihat:

Oleh kerana logaritma mempunyai asas yang sama, kami menggunakan formula jumlah:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Tugasan. Cari nilai ungkapan: log2 48 − log2 3.

Asasnya adalah sama, kami menggunakan formula perbezaan:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Tugasan. Cari nilai ungkapan: log3 135 − log3 5.

Sekali lagi pangkalannya adalah sama, jadi kami mempunyai:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Seperti yang anda lihat, ungkapan asal terdiri daripada logaritma "buruk", yang tidak dikira secara berasingan. Tetapi selepas transformasi mereka ternyata agak nombor biasa. Banyak yang dibina atas fakta ini kertas ujian. Bagaimana dengan kawalan? ungkapan yang serupa dalam semua kesungguhan (kadang-kadang dengan hampir tiada perubahan) ditawarkan pada Peperiksaan Negeri Bersepadu.

Mengeluarkan eksponen daripada logaritma

Ia mudah untuk menyedarinya peraturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatinya - dalam beberapa kes ia akan mengurangkan jumlah pengiraan dengan ketara.

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x > 0. Dan satu lagi perkara: belajar menggunakan semua formula bukan sahaja dari kiri ke kanan, tetapi juga sebaliknya , iaitu Anda boleh memasukkan nombor sebelum logaritma masuk ke dalam logaritma itu sendiri. Inilah yang paling kerap diperlukan.

Tugasan. Cari nilai ungkapan: log7 496.

Mari kita buang darjah dalam hujah menggunakan formula pertama:
log7 496 = 6 log7 49 = 6 2 = 12

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa penyebut mengandungi logaritma, asas dan hujahnya adalah kuasa tepat: 16 = 24; 49 = 72. Kami ada:

Saya rasa contoh terakhir memerlukan beberapa penjelasan. Ke mana perginya logaritma? Sehingga saat terakhir kita bekerja hanya dengan penyebut.

Formula logaritma. Penyelesaian contoh logaritma.

Kami membentangkan asas dan hujah logaritma yang berdiri di sana dalam bentuk kuasa dan mengeluarkan eksponen - kami mendapat pecahan "tiga tingkat".

Sekarang mari kita lihat pecahan utama. Pengangka dan penyebut mengandungi nombor yang sama: log2 7. Oleh kerana log2 7 ≠ 0, kita boleh mengurangkan pecahan - 2/4 akan kekal dalam penyebut. Mengikut peraturan aritmetik, empat boleh dipindahkan ke pengangka, iaitu apa yang telah dilakukan. Hasilnya ialah jawapan: 2.

Peralihan kepada asas baharu

Bercakap tentang peraturan untuk menambah dan menolak logaritma, saya secara khusus menekankan bahawa ia hanya berfungsi dengan asas yang sama. Bagaimana jika sebabnya berbeza? Bagaimana jika mereka bukan kuasa tepat nombor yang sama?

Formula untuk peralihan kepada asas baharu datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorem:

Biarkan logaritma logax diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Khususnya, jika kita menetapkan c = x, kita mendapat:

Daripada formula kedua ia mengikuti bahawa asas dan hujah logaritma boleh ditukar, tetapi dalam kes ini keseluruhan ungkapan "terbalik", i.e. logaritma muncul dalam penyebut.

Formula ini jarang ditemui dalam konvensional ungkapan berangka. Adalah mungkin untuk menilai betapa mudahnya mereka hanya apabila menyelesaikan persamaan logaritma dan ketaksamaan.

Namun, terdapat masalah yang tidak dapat diselesaikan sama sekali kecuali dengan berpindah ke asas baru. Mari kita lihat beberapa perkara ini:

Tugasan. Cari nilai ungkapan: log5 16 log2 25.

Ambil perhatian bahawa hujah kedua-dua logaritma mengandungi kuasa yang tepat. Mari kita keluarkan penunjuk: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Sekarang mari kita "terbalikkan" logaritma kedua:

Oleh kerana produk tidak berubah apabila menyusun semula faktor, kami dengan tenang mendarab empat dan dua, dan kemudian menangani logaritma.

Tugasan. Cari nilai ungkapan: log9 100 lg 3.

Asas dan hujah logaritma pertama adalah kuasa yang tepat. Mari kita tulis ini dan singkirkan penunjuk:

Sekarang mari kita singkirkan logaritma perpuluhan, berpindah ke pangkalan baharu:

Identiti logaritma asas

Selalunya dalam proses penyelesaian adalah perlu untuk mewakili nombor sebagai logaritma kepada asas tertentu. Dalam kes ini, formula berikut akan membantu kami:

Dalam kes pertama, nombor n menjadi eksponen dalam hujah. Nombor n boleh menjadi apa-apa sahaja, kerana ia hanyalah nilai logaritma.

Formula kedua sebenarnya adalah definisi yang diparafrasa. Itulah namanya: .

Sebenarnya, apakah yang berlaku jika nombor b dinaikkan kepada kuasa sedemikian sehingga nombor b kepada kuasa ini memberikan nombor a? Betul: hasilnya adalah nombor yang sama a. Baca perenggan ini dengan teliti sekali lagi - ramai orang terjebak padanya.

Seperti formula untuk peralihan ke pangkalan baru, yang utama identiti logaritma kadang-kadang ia adalah satu-satunya penyelesaian yang mungkin.

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa log25 64 = log5 8 - hanya mengambil kuasa dua daripada asas dan hujah logaritma. Mempertimbangkan peraturan untuk mendarab kuasa dengan asas yang sama, kita mendapatkan:

Jika ada yang tidak tahu, ini adalah tugas sebenar dari Peperiksaan Negeri Bersepadu :)

Unit logaritma dan sifar logaritma

Sebagai kesimpulan, saya akan memberikan dua identiti yang hampir tidak boleh dipanggil sifat - sebaliknya, ia adalah akibat daripada takrifan logaritma. Mereka sentiasa muncul dalam masalah dan, secara mengejutkan, mencipta masalah walaupun untuk pelajar "maju".

  1. logaa = 1 ialah. Ingat sekali dan untuk semua: logaritma kepada mana-mana asas a asas itu sendiri adalah sama dengan satu.
  2. loga 1 = 0 ialah. Asas a boleh menjadi apa-apa, tetapi jika hujah mengandungi satu - logaritma sama dengan sifar! Kerana a0 = 1 adalah akibat langsung dari definisi.

Itu semua sifatnya. Pastikan anda berlatih mempraktikkannya! Muat turun helaian panduan pada permulaan pelajaran, cetak dan selesaikan masalah.

Lihat juga:

Logaritma b kepada asas a menandakan ungkapan. Untuk mengira logaritma bermakna mencari kuasa x () di mana kesamaan itu dipenuhi

Sifat asas logaritma

Adalah perlu untuk mengetahui sifat di atas, kerana hampir semua masalah dan contoh yang berkaitan dengan logaritma diselesaikan berdasarkan mereka. Selebihnya sifat eksotik boleh diperoleh melalui manipulasi matematik dengan formula ini

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Apabila mengira formula untuk jumlah dan perbezaan logaritma (3.4) anda sering terjumpa. Selebihnya agak rumit, tetapi dalam beberapa tugas, ia amat diperlukan untuk memudahkan ungkapan kompleks dan mengira nilainya.

Kes biasa logaritma

Beberapa logaritma biasa ialah logaritma yang asasnya ialah sepuluh, eksponen atau dua.
Logaritma kepada asas sepuluh biasanya dipanggil logaritma perpuluhan dan hanya dilambangkan dengan lg(x).

Jelas dari rakaman itu bahawa asas tidak ditulis dalam rakaman. Sebagai contoh

Logaritma asli ialah logaritma yang tapaknya ialah eksponen (ditandakan dengan ln(x)).

Eksponennya ialah 2.718281828…. Untuk mengingati eksponen, anda boleh mengkaji peraturan: eksponen adalah sama dengan 2.7 dan dua kali tahun kelahiran Leo Nikolaevich Tolstoy. Mengetahui peraturan ini, anda akan mengetahui nilai sebenar eksponen dan tarikh lahir Leo Tolstoy.

Dan satu lagi logaritma penting kepada asas dua dilambangkan dengan

Terbitan logaritma fungsi adalah sama dengan satu dibahagikan dengan pembolehubah

Kamiran atau logaritma antiterbitan ditentukan oleh pergantungan

Bahan yang diberikan sudah cukup untuk anda menyelesaikan kelas masalah yang luas berkaitan dengan logaritma dan logaritma. Untuk membantu anda memahami bahan, saya akan memberikan hanya beberapa contoh biasa daripada kurikulum sekolah dan universiti.

Contoh untuk logaritma

Ungkapan logaritma

Contoh 1.
A). x=10ac^2 (a>0,c>0).

Menggunakan sifat 3.5 kami mengira

2.
Dengan sifat perbezaan logaritma yang kita ada

3.
Menggunakan sifat 3.5 kita dapati

4. di mana .

Dengan rupa ungkapan kompleks menggunakan beberapa peraturan dipermudahkan untuk dibentuk

Mencari nilai logaritma

Contoh 2. Cari x jika

Penyelesaian. Untuk pengiraan, kami memohon kepada penggal terakhir 5 dan 13 sifat

Kami meletakkannya dalam rekod dan berkabung

Oleh kerana asas adalah sama, kami menyamakan ungkapan

Logaritma. Tahap pertama.

Biarkan nilai logaritma diberikan

Kira log(x) jika

Penyelesaian: Mari kita ambil logaritma pembolehubah untuk menulis logaritma melalui hasil tambah sebutannya


Ini hanyalah permulaan perkenalan kita dengan logaritma dan sifatnya. Amalkan pengiraan, perkayakan kemahiran praktikal anda - tidak lama lagi anda akan memerlukan pengetahuan yang anda peroleh untuk menyelesaikan persamaan logaritma. Setelah mempelajari kaedah asas untuk menyelesaikan persamaan tersebut, kami akan mengembangkan pengetahuan anda untuk yang lain tidak kurang topik penting- ketaksamaan logaritma...

Sifat asas logaritma

Logaritma, seperti mana-mana nombor, boleh ditambah, ditolak dan diubah dalam semua cara. Tetapi kerana logaritma bukan nombor biasa, terdapat peraturan di sini, yang dipanggil sifat utama.

Anda pastinya perlu mengetahui peraturan ini - tanpanya, tiada satu masalah logaritma yang serius boleh diselesaikan. Di samping itu, terdapat sangat sedikit daripada mereka - anda boleh mempelajari segala-galanya dalam satu hari. Jadi mari kita mulakan.

Menambah dan menolak logaritma

Pertimbangkan dua logaritma dengan asas yang sama: logax dan logay. Kemudian mereka boleh ditambah dan ditolak, dan:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Jadi, jumlah logaritma adalah sama dengan logaritma hasil darab, dan perbezaannya adalah sama dengan logaritma hasil bagi. Sila ambil perhatian: perkara utama di sini ialah alasan yang sama. Jika alasannya berbeza, peraturan ini tidak berfungsi!

Formula ini akan membantu anda mengira ungkapan logaritma walaupun bahagian individunya tidak dipertimbangkan (lihat pelajaran "Apakah itu logaritma"). Lihat contoh dan lihat:

Tugasan. Cari nilai ungkapan: log6 4 + log6 9.

Oleh kerana logaritma mempunyai asas yang sama, kami menggunakan formula jumlah:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Tugasan. Cari nilai ungkapan: log2 48 − log2 3.

Asasnya adalah sama, kami menggunakan formula perbezaan:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Tugasan. Cari nilai ungkapan: log3 135 − log3 5.

Sekali lagi pangkalannya adalah sama, jadi kami mempunyai:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Seperti yang anda lihat, ungkapan asal terdiri daripada logaritma "buruk", yang tidak dikira secara berasingan. Tetapi selepas transformasi, nombor normal sepenuhnya diperolehi. Banyak ujian berdasarkan fakta ini. Ya, ungkapan seperti ujian ditawarkan dalam semua kesungguhan (kadangkala hampir tiada perubahan) pada Peperiksaan Negeri Bersepadu.

Mengeluarkan eksponen daripada logaritma

Sekarang mari kita merumitkan sedikit tugas. Bagaimana jika asas atau hujah logaritma ialah kuasa? Kemudian eksponen darjah ini boleh dikeluarkan dari tanda logaritma mengikut peraturan berikut:

Adalah mudah untuk melihat bahawa peraturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatinya - dalam beberapa kes ia akan mengurangkan jumlah pengiraan dengan ketara.

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x > 0. Dan satu lagi perkara: belajar menggunakan semua formula bukan sahaja dari kiri ke kanan, tetapi juga sebaliknya , iaitu Anda boleh memasukkan nombor sebelum logaritma masuk ke dalam logaritma itu sendiri.

Bagaimana untuk menyelesaikan logaritma

Inilah yang paling kerap diperlukan.

Tugasan. Cari nilai ungkapan: log7 496.

Mari kita buang darjah dalam hujah menggunakan formula pertama:
log7 496 = 6 log7 49 = 6 2 = 12

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa penyebut mengandungi logaritma, asas dan hujahnya adalah kuasa tepat: 16 = 24; 49 = 72. Kami ada:

Saya rasa contoh terakhir memerlukan beberapa penjelasan. Ke mana perginya logaritma? Sehingga saat terakhir kita bekerja hanya dengan penyebut. Kami membentangkan asas dan hujah logaritma yang berdiri di sana dalam bentuk kuasa dan mengeluarkan eksponen - kami mendapat pecahan "tiga tingkat".

Sekarang mari kita lihat pecahan utama. Pengangka dan penyebut mengandungi nombor yang sama: log2 7. Oleh kerana log2 7 ≠ 0, kita boleh mengurangkan pecahan - 2/4 akan kekal dalam penyebut. Mengikut peraturan aritmetik, empat boleh dipindahkan ke pengangka, iaitu apa yang telah dilakukan. Hasilnya ialah jawapan: 2.

Peralihan kepada asas baharu

Bercakap tentang peraturan untuk menambah dan menolak logaritma, saya secara khusus menekankan bahawa ia hanya berfungsi dengan asas yang sama. Bagaimana jika sebabnya berbeza? Bagaimana jika mereka bukan kuasa tepat nombor yang sama?

Formula untuk peralihan kepada asas baharu datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorem:

Biarkan logaritma logax diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Khususnya, jika kita menetapkan c = x, kita mendapat:

Daripada formula kedua ia mengikuti bahawa asas dan hujah logaritma boleh ditukar, tetapi dalam kes ini keseluruhan ungkapan "terbalik", i.e. logaritma muncul dalam penyebut.

Formula ini jarang ditemui dalam ungkapan berangka biasa. Adalah mungkin untuk menilai betapa mudahnya mereka hanya apabila menyelesaikan persamaan logaritma dan ketaksamaan.

Namun, terdapat masalah yang tidak dapat diselesaikan sama sekali kecuali dengan berpindah ke asas baru. Mari kita lihat beberapa perkara ini:

Tugasan. Cari nilai ungkapan: log5 16 log2 25.

Ambil perhatian bahawa hujah kedua-dua logaritma mengandungi kuasa yang tepat. Mari kita keluarkan penunjuk: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Sekarang mari kita "terbalikkan" logaritma kedua:

Oleh kerana produk tidak berubah apabila menyusun semula faktor, kami dengan tenang mendarab empat dan dua, dan kemudian menangani logaritma.

Tugasan. Cari nilai ungkapan: log9 100 lg 3.

Asas dan hujah logaritma pertama adalah kuasa yang tepat. Mari kita tulis ini dan singkirkan penunjuk:

Sekarang mari kita buang logaritma perpuluhan dengan berpindah ke pangkalan baharu:

Identiti logaritma asas

Selalunya dalam proses penyelesaian adalah perlu untuk mewakili nombor sebagai logaritma kepada asas tertentu. Dalam kes ini, formula berikut akan membantu kami:

Dalam kes pertama, nombor n menjadi eksponen dalam hujah. Nombor n boleh menjadi apa-apa sahaja, kerana ia hanyalah nilai logaritma.

Formula kedua sebenarnya adalah definisi yang diparafrasa. Itulah namanya: .

Sebenarnya, apakah yang berlaku jika nombor b dinaikkan kepada kuasa sedemikian sehingga nombor b kepada kuasa ini memberikan nombor a? Betul: hasilnya adalah nombor yang sama a. Baca perenggan ini dengan teliti sekali lagi - ramai orang terjebak padanya.

Seperti formula untuk berpindah ke pangkalan baharu, identiti logaritma asas kadangkala merupakan satu-satunya penyelesaian yang mungkin.

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa log25 64 = log5 8 - hanya mengambil kuasa dua daripada asas dan hujah logaritma. Dengan mengambil kira peraturan untuk mendarab kuasa dengan asas yang sama, kita mendapat:

Jika ada yang tidak tahu, ini adalah tugas sebenar dari Peperiksaan Negeri Bersepadu :)

Unit logaritma dan sifar logaritma

Sebagai kesimpulan, saya akan memberikan dua identiti yang hampir tidak boleh dipanggil sifat - sebaliknya, ia adalah akibat daripada takrifan logaritma. Mereka sentiasa muncul dalam masalah dan, secara mengejutkan, mencipta masalah walaupun untuk pelajar "maju".

  1. logaa = 1 ialah. Ingat sekali dan untuk semua: logaritma kepada mana-mana asas a asas itu sendiri adalah sama dengan satu.
  2. loga 1 = 0 ialah. Asas a boleh menjadi apa-apa, tetapi jika hujah mengandungi satu, logaritma adalah sama dengan sifar! Kerana a0 = 1 adalah akibat langsung dari definisi.

Itu semua sifatnya. Pastikan anda berlatih mempraktikkannya! Muat turun helaian panduan pada permulaan pelajaran, cetak dan selesaikan masalah.

Mengikuti dari definisinya. Dan jadi logaritma nombor itu b berdasarkan A ditakrifkan sebagai eksponen yang mana nombor mesti dinaikkan a untuk mendapatkan nombor b(logaritma hanya wujud untuk nombor positif).

Daripada rumusan ini berikutan bahawa pengiraan x=log a b, adalah bersamaan dengan menyelesaikan persamaan a x =b. Sebagai contoh, log 2 8 = 3 kerana 8 = 2 3 . Perumusan logaritma memungkinkan untuk mewajarkan bahawa jika b=a c, kemudian logaritma nombor itu b berdasarkan a sama Dengan. Jelas juga bahawa topik logaritma berkait rapat dengan topik kuasa sesuatu nombor.

Dengan logaritma, seperti mana-mana nombor, anda boleh lakukan operasi tambah, tolak dan berubah dalam setiap cara yang mungkin. Tetapi disebabkan fakta bahawa logaritma bukan nombor biasa sepenuhnya, peraturan khas mereka sendiri terpakai di sini, yang dipanggil sifat utama.

Menambah dan menolak logaritma.

Mari kita ambil dua logaritma dengan asas yang sama: log a x Dan log a y. Kemudian adalah mungkin untuk melakukan operasi tambah dan tolak:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a(x 1 . x 2 . x 3 ... x k) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k.

daripada teorem hasil bagi logaritma satu lagi sifat logaritma boleh diperolehi. Umum mengetahui bahawa log a 1= 0, oleh itu

log a 1 /b= log a 1 - log a b= -log a b.

Ini bermakna terdapat persamaan:

log a 1 / b = - log a b.

Logaritma dua nombor salingan atas sebab yang sama akan berbeza antara satu sama lain semata-mata oleh tanda. Jadi:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

Logaritma nombor b (b > 0) kepada asas a (a > 0, a ≠ 1)– eksponen yang nombor a mesti dinaikkan untuk mendapatkan b.

Asas 10 logaritma b boleh ditulis sebagai log(b), dan logaritma kepada asas e (logaritma semula jadi) ialah ln(b).

Selalunya digunakan apabila menyelesaikan masalah dengan logaritma:

Sifat logaritma

Terdapat empat utama sifat logaritma.

Biarkan a > 0, a ≠ 1, x > 0 dan y > 0.

Harta 1. Logaritma produk

Logaritma produk sama dengan jumlah logaritma:

log a (x ⋅ y) = log a x + log a y

Harta 2. Logaritma hasil bagi

Logaritma hasil bagi sama dengan perbezaan logaritma:

log a (x / y) = log a x – log a y

Harta 3. Logaritma kuasa

Logaritma darjah sama dengan produk kuasa per logaritma:

Jika asas logaritma berada dalam kuasa, maka formula lain digunakan:

Sifat 4. Logaritma punca

Sifat ini boleh didapati daripada sifat logaritma kuasa, kerana punca kuasa ke-n sama dengan kuasa 1/n:

Formula untuk menukar daripada logaritma dalam satu asas kepada logaritma dalam asas lain

Formula ini juga sering digunakan semasa menyelesaikan pelbagai tugasan pada logaritma:

Kes istimewa:

Membandingkan logaritma (ketaksamaan)

Mari kita mempunyai 2 fungsi f(x) dan g(x) di bawah logaritma dengan asas yang sama dan di antara mereka terdapat tanda ketaksamaan:

Untuk membandingkannya, anda perlu terlebih dahulu melihat asas logaritma a:

  • Jika a > 0, maka f(x) > g(x) > 0
  • Jika 0< a < 1, то 0 < f(x) < g(x)

Bagaimana untuk menyelesaikan masalah dengan logaritma: contoh

Masalah dengan logaritma termasuk dalam Peperiksaan Negeri Bersepadu dalam matematik untuk gred 11 dalam tugasan 5 dan tugasan 7, anda boleh mencari tugasan dengan penyelesaian di laman web kami di bahagian yang sesuai. Juga, tugasan dengan logaritma ditemui dalam bank tugas matematik. Anda boleh mencari semua contoh dengan mencari tapak.

Apakah itu logaritma

Logaritma sentiasa dipertimbangkan topik yang kompleks V kursus sekolah matematik. Terdapat banyak definisi yang berbeza logaritma, tetapi atas sebab tertentu kebanyakan buku teks menggunakan yang paling kompleks dan tidak berjaya.

Kami akan mentakrifkan logaritma dengan mudah dan jelas. Untuk melakukan ini, mari buat jadual:

Jadi, kita ada kuasa dua.

Logaritma - sifat, formula, cara menyelesaikan

Jika anda mengambil nombor dari baris bawah, anda boleh dengan mudah mencari kuasa yang anda perlu menaikkan dua untuk mendapatkan nombor ini. Sebagai contoh, untuk mendapatkan 16, anda perlu menaikkan dua kepada kuasa keempat. Dan untuk mendapatkan 64, anda perlu menaikkan dua kepada kuasa keenam. Ini boleh dilihat dari jadual.

Dan sekarang - sebenarnya, takrifan logaritma:

asas a bagi hujah x ialah kuasa yang nombor a mesti dinaikkan untuk mendapatkan nombor x.

Penetapan: log a x = b, di mana a ialah asas, x ialah hujah, b ialah logaritma sebenarnya sama dengannya.

Contohnya, 2 3 = 8 ⇒log 2 8 = 3 (logaritma asas 2 bagi 8 ialah tiga kerana 2 3 = 8). Dengan kejayaan yang sama, log 2 64 = 6, kerana 2 6 = 64.

Operasi mencari logaritma nombor kepada asas tertentu dipanggil. Jadi, mari tambah baris baharu pada jadual kami:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Malangnya, tidak semua logaritma dikira dengan begitu mudah. Sebagai contoh, cuba cari log 2 5. Nombor 5 tiada dalam jadual, tetapi logik menentukan bahawa logaritma akan terletak di suatu tempat pada selang. Kerana 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Nombor sedemikian dipanggil tidak rasional: nombor selepas titik perpuluhan boleh ditulis ad infinitum, dan ia tidak pernah berulang. Jika logaritma ternyata tidak rasional, lebih baik biarkan seperti itu: log 2 5, log 3 8, log 5 100.

Adalah penting untuk memahami bahawa logaritma ialah ungkapan dengan dua pembolehubah (asas dan hujah). Pada mulanya, ramai yang keliru di mana asasnya dan di mana hujahnya. Untuk mengelakkan salah faham yang menjengkelkan, lihat sahaja gambar:

Di hadapan kita tidak lebih daripada definisi logaritma. Ingat: logaritma ialah kuasa, di mana pangkalan mesti dibina untuk mendapatkan hujah. Ia adalah pangkalan yang dinaikkan kepada kuasa - ia diserlahkan dengan warna merah dalam gambar. Ternyata asasnya sentiasa di bawah! Saya memberitahu pelajar saya peraturan indah ini pada pelajaran pertama - dan tiada kekeliruan timbul.

Cara mengira logaritma

Kami telah mengetahui definisinya - yang tinggal hanyalah untuk mempelajari cara mengira logaritma, i.e. buang tanda "log". Sebagai permulaan, kami perhatikan bahawa dua fakta penting mengikuti dari definisi:

  1. Hujah dan asas mestilah sentiasa lebih besar daripada sifar. Ini berikutan daripada takrifan darjah oleh eksponen rasional, yang mana takrifan logaritma dikurangkan.
  2. Asas mestilah berbeza daripada satu, kerana satu hingga mana-mana darjah masih kekal satu. Oleh sebab itu, persoalan "kepada apa kuasa seseorang mesti dibangkitkan untuk mendapat dua" tidak bermakna. Tidak ada ijazah seperti itu!

Sekatan sedemikian dipanggil julat nilai yang boleh diterima(ODZ). Ternyata ODZ logaritma kelihatan seperti ini: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Ambil perhatian bahawa tiada sekatan pada nombor b (nilai logaritma). Sebagai contoh, logaritma mungkin negatif: log 2 0.5 = −1, kerana 0.5 = 2 −1.

Walau bagaimanapun, kini kami hanya mempertimbangkan ungkapan berangka, di mana ia tidak diperlukan untuk mengetahui VA logaritma. Semua sekatan telah diambil kira oleh pengarang masalah. Tetapi apabila persamaan logaritma dan ketaksamaan berlaku, keperluan DL akan menjadi wajib. Lagipun, asas dan hujah mungkin mengandungi pembinaan yang sangat kuat yang tidak semestinya sepadan dengan sekatan di atas.

Sekarang mari kita lihat skema umum untuk mengira logaritma. Ia terdiri daripada tiga langkah:

  1. Nyatakan asas a dan hujah x sebagai kuasa dengan kemungkinan asas minimum yang lebih besar daripada satu. Sepanjang perjalanan, lebih baik untuk menyingkirkan perpuluhan;
  2. Selesaikan persamaan bagi pembolehubah b: x = a b ;
  3. Nombor b yang terhasil akan menjadi jawapannya.

Itu sahaja! Jika logaritma ternyata tidak rasional, ini akan kelihatan pada langkah pertama. Keperluan bahawa asas lebih besar daripada satu adalah sangat penting: ini mengurangkan kemungkinan ralat dan sangat memudahkan pengiraan. Ia sama dengan pecahan perpuluhan: jika anda segera menukarnya kepada pecahan biasa, akan terdapat banyak ralat yang lebih sedikit.

Mari lihat cara skema ini berfungsi menggunakan contoh khusus:

Tugasan. Kira logaritma: log 5 25

  1. Mari kita bayangkan asas dan hujah sebagai kuasa lima: 5 = 5 1 ; 25 = 5 2 ;
  2. Mari buat dan selesaikan persamaan:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Kami menerima jawapan: 2.

Tugasan. Kira logaritma:

Tugasan. Kira logaritma: log 4 64

  1. Mari kita bayangkan asas dan hujah sebagai kuasa dua: 4 = 2 2 ; 64 = 2 6 ;
  2. Mari buat dan selesaikan persamaan:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Kami menerima jawapan: 3.

Tugasan. Kira logaritma: log 16 1

  1. Mari kita bayangkan asas dan hujah sebagai kuasa dua: 16 = 2 4 ; 1 = 2 0 ;
  2. Mari buat dan selesaikan persamaan:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Kami menerima jawapan: 0.

Tugasan. Kira logaritma: log 7 14

  1. Mari kita bayangkan asas dan hujah sebagai kuasa tujuh: 7 = 7 1 ; 14 tidak boleh diwakili sebagai kuasa tujuh, sejak 7 1< 14 < 7 2 ;
  2. Daripada perenggan sebelumnya ia mengikuti bahawa logaritma tidak dikira;
  3. Jawapannya tiada perubahan: log 7 14.

Nota kecil pada contoh terakhir. Bagaimanakah anda boleh memastikan bahawa nombor bukan kuasa tepat nombor lain? Ia sangat mudah - hanya masukkannya ke dalam faktor utama. Jika pengembangan mempunyai sekurang-kurangnya dua faktor berbeza, bilangannya bukanlah kuasa yang tepat.

Tugasan. Ketahui sama ada nombor adalah kuasa yang tepat: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - darjah tepat, kerana hanya ada satu pengganda;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - bukan kuasa yang tepat, kerana terdapat dua faktor: 3 dan 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - darjah tepat;
35 = 7 · 5 - sekali lagi bukan kuasa yang tepat;
14 = 7 · 2 - sekali lagi bukan darjah yang tepat;

Perhatikan juga bahawa nombor perdana itu sendiri sentiasa kuasa tepat bagi diri mereka sendiri.

Logaritma perpuluhan

Sesetengah logaritma adalah sangat biasa sehingga mereka mempunyai nama dan simbol khas.

daripada hujah x ialah logaritma kepada asas 10, i.e. Kuasa yang nombor 10 mesti dinaikkan untuk mendapatkan nombor x. Jawatan: lg x.

Sebagai contoh, log 10 = 1; lg 100 = 2; lg 1000 = 3 - dsb.

Mulai sekarang, apabila frasa seperti "Cari lg 0.01" muncul dalam buku teks, ketahui bahawa ini bukan kesilapan menaip. Ini ialah logaritma perpuluhan. Walau bagaimanapun, jika anda tidak biasa dengan notasi ini, anda sentiasa boleh menulis semula:
log x = log 10 x

Semua yang benar untuk logaritma biasa adalah benar untuk logaritma perpuluhan.

Logaritma semula jadi

Terdapat satu lagi logaritma yang mempunyai sebutan tersendiri. Dalam beberapa cara, ia lebih penting daripada perpuluhan. Kita bercakap tentang logaritma semula jadi.

daripada hujah x ialah logaritma kepada asas e, i.e. kuasa yang nombor e mesti dinaikkan untuk mendapatkan nombor x. Jawatan: ln x.

Ramai orang akan bertanya: apakah nombor e? Ini adalah nombor tidak rasional; nilai tepatnya tidak dapat ditemui dan ditulis. Saya hanya akan memberikan angka pertama:
e = 2.718281828459…

Kami tidak akan menjelaskan secara terperinci tentang apakah nombor ini dan mengapa ia diperlukan. Ingatlah bahawa e ialah asas logaritma asli:
ln x = log e x

Oleh itu ln e = 1; ln e 2 = 2; ln e 16 = 16 - dsb. Sebaliknya, ln 2 ialah nombor tak rasional. Secara amnya, logaritma asli mana-mana nombor rasional adalah tidak rasional. Kecuali, sudah tentu, untuk satu: ln 1 = 0.

Untuk logaritma asli, semua peraturan yang benar untuk logaritma biasa adalah sah.

Lihat juga:

Logaritma. Sifat logaritma (kuasa logaritma).

Bagaimana untuk mewakili nombor sebagai logaritma?

Kami menggunakan definisi logaritma.

Logaritma ialah eksponen yang asasnya mesti dinaikkan untuk mendapatkan nombor di bawah tanda logaritma.

Oleh itu, untuk mewakili nombor c tertentu sebagai logaritma kepada asas a, anda perlu meletakkan kuasa dengan asas yang sama dengan asas logaritma di bawah tanda logaritma, dan tulis nombor c ini sebagai eksponen:

Semestinya sebarang nombor boleh diwakili sebagai logaritma - positif, negatif, integer, pecahan, rasional, tidak rasional:

Untuk tidak mengelirukan a dan c dalam keadaan tertekan ujian atau peperiksaan, anda boleh menggunakan peraturan hafalan berikut:

yang di bawah turun, yang di atas naik.

Sebagai contoh, anda perlu mewakili nombor 2 sebagai logaritma kepada asas 3.

Kami mempunyai dua nombor - 2 dan 3. Nombor ini adalah asas dan eksponen, yang akan kami tulis di bawah tanda logaritma. Ia kekal untuk menentukan yang mana antara nombor ini harus ditulis, ke pangkal kuasa, dan yang mana - naik, ke eksponen.

Asas 3 dalam tatatanda logaritma berada di bahagian bawah, yang bermaksud bahawa apabila kita mewakili dua sebagai logaritma kepada asas 3, kita juga akan menulis 3 ke pangkalan.

2 lebih tinggi daripada tiga. Dan dalam notasi darjah dua kita tulis di atas tiga, iaitu, sebagai eksponen:

Logaritma. Tahap pertama.

Logaritma

Logaritma nombor positif b berdasarkan a, Di mana a > 0, a ≠ 1, dipanggil eksponen yang mana nombor mesti dinaikkan a, Untuk mendapatkan b.

Definisi logaritma boleh ditulis secara ringkas seperti ini:

Persamaan ini sah untuk b > 0, a > 0, a ≠ 1. Ia biasanya dipanggil identiti logaritma.
Tindakan mencari logaritma nombor dipanggil dengan logaritma.

Sifat logaritma:

Logaritma produk:

Logaritma hasil bagi:

Menggantikan asas logaritma:

Logaritma darjah:

Logaritma akar:

Logaritma dengan asas kuasa:





Logaritma perpuluhan dan semula jadi.

Logaritma perpuluhan nombor memanggil logaritma nombor ini kepada asas 10 dan tulis   lg b
Logaritma semula jadi nombor dipanggil logaritma nombor itu kepada asas e, Di mana e- nombor tak rasional lebih kurang sama dengan 2.7. Pada masa yang sama mereka menulis ln b.

Nota lain mengenai algebra dan geometri

Sifat asas logaritma

Sifat asas logaritma

Logaritma, seperti mana-mana nombor, boleh ditambah, ditolak dan diubah dalam semua cara. Tetapi kerana logaritma bukan nombor biasa, terdapat peraturan di sini, yang dipanggil sifat utama.

Anda pastinya perlu mengetahui peraturan ini - tanpanya, tiada satu masalah logaritma yang serius boleh diselesaikan. Di samping itu, terdapat sangat sedikit daripada mereka - anda boleh mempelajari segala-galanya dalam satu hari. Jadi mari kita mulakan.

Menambah dan menolak logaritma

Pertimbangkan dua logaritma dengan asas yang sama: log a x dan log a y. Kemudian mereka boleh ditambah dan ditolak, dan:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Jadi, jumlah logaritma adalah sama dengan logaritma hasil darab, dan perbezaannya adalah sama dengan logaritma hasil bagi. Sila ambil perhatian: perkara utama di sini ialah alasan yang sama. Jika alasannya berbeza, peraturan ini tidak berfungsi!

Formula ini akan membantu anda mengira ungkapan logaritma walaupun bahagian individunya tidak dipertimbangkan (lihat pelajaran "Apakah itu logaritma"). Lihat contoh dan lihat:

Log 6 4 + log 6 9.

Oleh kerana logaritma mempunyai asas yang sama, kami menggunakan formula jumlah:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Tugasan. Cari nilai ungkapan: log 2 48 − log 2 3.

Asasnya adalah sama, kami menggunakan formula perbezaan:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Tugasan. Cari nilai ungkapan: log 3 135 − log 3 5.

Sekali lagi pangkalannya adalah sama, jadi kami mempunyai:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Seperti yang anda lihat, ungkapan asal terdiri daripada logaritma "buruk", yang tidak dikira secara berasingan. Tetapi selepas transformasi, nombor normal sepenuhnya diperolehi. Banyak ujian berdasarkan fakta ini. Ya, ungkapan seperti ujian ditawarkan dalam semua kesungguhan (kadangkala hampir tiada perubahan) pada Peperiksaan Negeri Bersepadu.

Mengeluarkan eksponen daripada logaritma

Sekarang mari kita merumitkan sedikit tugas. Bagaimana jika asas atau hujah logaritma ialah kuasa? Kemudian eksponen darjah ini boleh dikeluarkan dari tanda logaritma mengikut peraturan berikut:

Adalah mudah untuk melihat bahawa peraturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatinya - dalam beberapa kes ia akan mengurangkan jumlah pengiraan dengan ketara.

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x > 0. Dan satu lagi perkara: belajar menggunakan semua formula bukan sahaja dari kiri ke kanan, tetapi juga sebaliknya , iaitu Anda boleh memasukkan nombor sebelum logaritma masuk ke dalam logaritma itu sendiri.

Bagaimana untuk menyelesaikan logaritma

Inilah yang paling kerap diperlukan.

Tugasan. Cari nilai ungkapan: log 7 49 6 .

Mari kita buang darjah dalam hujah menggunakan formula pertama:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Tugasan. Cari maksud ungkapan:

Perhatikan bahawa penyebutnya mengandungi logaritma, asas dan hujahnya adalah kuasa tepat: 16 = 2 4 ; 49 = 7 2. Kami ada:

Saya rasa contoh terakhir memerlukan beberapa penjelasan. Ke mana perginya logaritma? Sehingga saat terakhir kita bekerja hanya dengan penyebut. Kami membentangkan asas dan hujah logaritma yang berdiri di sana dalam bentuk kuasa dan mengeluarkan eksponen - kami mendapat pecahan "tiga tingkat".

Sekarang mari kita lihat pecahan utama. Pengangka dan penyebut mengandungi nombor yang sama: log 2 7. Oleh kerana log 2 7 ≠ 0, kita boleh mengurangkan pecahan - 2/4 akan kekal dalam penyebut. Mengikut peraturan aritmetik, empat boleh dipindahkan ke pengangka, iaitu apa yang telah dilakukan. Hasilnya ialah jawapan: 2.

Peralihan kepada asas baharu

Bercakap tentang peraturan untuk menambah dan menolak logaritma, saya secara khusus menekankan bahawa ia hanya berfungsi dengan asas yang sama. Bagaimana jika sebabnya berbeza? Bagaimana jika mereka bukan kuasa tepat nombor yang sama?

Formula untuk peralihan kepada asas baharu datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorem:

Biarkan logaritma log a x diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Khususnya, jika kita menetapkan c = x, kita mendapat:

Daripada formula kedua ia mengikuti bahawa asas dan hujah logaritma boleh ditukar, tetapi dalam kes ini keseluruhan ungkapan "terbalik", i.e. logaritma muncul dalam penyebut.

Formula ini jarang ditemui dalam ungkapan berangka biasa. Adalah mungkin untuk menilai betapa mudahnya mereka hanya apabila menyelesaikan persamaan logaritma dan ketaksamaan.

Namun, terdapat masalah yang tidak dapat diselesaikan sama sekali kecuali dengan berpindah ke asas baru. Mari kita lihat beberapa perkara ini:

Tugasan. Cari nilai ungkapan: log 5 16 log 2 25.

Ambil perhatian bahawa hujah kedua-dua logaritma mengandungi kuasa yang tepat. Mari kita keluarkan penunjuk: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sekarang mari kita "terbalikkan" logaritma kedua:

Oleh kerana produk tidak berubah apabila menyusun semula faktor, kami dengan tenang mendarab empat dan dua, dan kemudian menangani logaritma.

Tugasan. Cari nilai ungkapan: log 9 100 lg 3.

Asas dan hujah logaritma pertama adalah kuasa yang tepat. Mari kita tulis ini dan singkirkan penunjuk:

Sekarang mari kita buang logaritma perpuluhan dengan berpindah ke pangkalan baharu:

Identiti logaritma asas

Selalunya dalam proses penyelesaian adalah perlu untuk mewakili nombor sebagai logaritma kepada asas tertentu.

Dalam kes ini, formula berikut akan membantu kami:

Dalam kes pertama, nombor n menjadi eksponen dalam hujah. Nombor n boleh menjadi apa-apa sahaja, kerana ia hanyalah nilai logaritma.

Formula kedua sebenarnya adalah definisi yang diparafrasa. Itulah namanya: .

Sebenarnya, apakah yang berlaku jika nombor b dinaikkan kepada kuasa sedemikian sehingga nombor b kepada kuasa ini memberikan nombor a? Betul: hasilnya adalah nombor yang sama a. Baca perenggan ini dengan teliti sekali lagi - ramai orang terjebak padanya.

Seperti formula untuk berpindah ke pangkalan baharu, identiti logaritma asas kadangkala merupakan satu-satunya penyelesaian yang mungkin.

Tugasan. Cari maksud ungkapan:

Perhatikan bahawa log 25 64 = log 5 8 - hanya mengambil kuasa dua daripada asas dan hujah logaritma. Dengan mengambil kira peraturan untuk mendarab kuasa dengan asas yang sama, kita mendapat:

Jika ada yang tidak tahu, ini adalah tugas sebenar dari Peperiksaan Negeri Bersepadu :)

Unit logaritma dan sifar logaritma

Sebagai kesimpulan, saya akan memberikan dua identiti yang hampir tidak boleh dipanggil sifat - sebaliknya, ia adalah akibat daripada takrifan logaritma. Mereka sentiasa muncul dalam masalah dan, secara mengejutkan, mencipta masalah walaupun untuk pelajar "maju".

  1. log a a = 1 ialah. Ingat sekali dan untuk semua: logaritma kepada mana-mana asas a asas itu sendiri adalah sama dengan satu.
  2. log a 1 = 0 ialah. Asas a boleh menjadi apa-apa, tetapi jika hujah mengandungi satu, logaritma adalah sama dengan sifar! Kerana 0 = 1 adalah akibat langsung dari definisi.

Itu semua sifatnya. Pastikan anda berlatih mempraktikkannya! Muat turun helaian panduan pada permulaan pelajaran, cetak dan selesaikan masalah.

Hari ini kita akan bercakap tentang formula logaritma dan memberi petunjuk contoh penyelesaian.

Mereka sendiri membayangkan corak penyelesaian mengikut sifat asas logaritma. Sebelum menggunakan formula logaritma untuk menyelesaikan, izinkan kami mengingatkan anda tentang semua sifat:

Sekarang, berdasarkan formula (sifat) ini, kami akan tunjukkan contoh penyelesaian logaritma.

Contoh penyelesaian logaritma berdasarkan formula.

Logaritma nombor positif b kepada asas a (ditandakan dengan log a b) ialah eksponen yang a mesti dinaikkan untuk mendapatkan b, dengan b > 0, a > 0, dan 1.

Mengikut definisi, log a b = x, yang bersamaan dengan a x = b, oleh itu log a a x = x.

Logaritma, contoh:

log 2 8 = 3, kerana 2 3 = 8

log 7 49 = 2, kerana 7 2 = 49

log 5 1/5 = -1, kerana 5 -1 = 1/5

Logaritma perpuluhan- ini ialah logaritma biasa, asasnya ialah 10. Ia dilambangkan sebagai lg.

log 10 100 = 2, kerana 10 2 = 100

Logaritma semula jadi- juga logaritma biasa, logaritma, tetapi dengan asas e (e = 2.71828... - nombor tak rasional). Ditandakan sebagai ln.

Adalah dinasihatkan untuk menghafal formula atau sifat logaritma, kerana kita akan memerlukannya kemudian apabila menyelesaikan logaritma, persamaan logaritma dan ketaksamaan. Mari kita teliti setiap formula sekali lagi dengan contoh.

  • Identiti logaritma asas
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritma hasil darab adalah sama dengan hasil tambah logaritma
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • Logaritma hasil bagi adalah sama dengan perbezaan logaritma
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Sifat kuasa nombor logaritma dan asas logaritma

    Eksponen logaritma nombor log a b m = mlog a b

    Eksponen asas log logaritma a n b =1/n*log a b

    log a n b m = m/n*log a b,

    jika m = n, kita mendapat log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Peralihan kepada asas baharu
    log a b = log c b/log c a,

    jika c = b, kita mendapat log b b = 1

    kemudian log a b = 1/log b a

    log 0.8 3*log 3 1.25 = log 0.8 3*log 0.8 1.25/log 0.8 3 = log 0.8 1.25 = log 4/5 5/4 = -1

Seperti yang anda boleh lihat, formula untuk logaritma tidaklah begitu rumit seperti yang kelihatan. Sekarang, setelah melihat contoh penyelesaian logaritma, kita boleh beralih kepada persamaan logaritma. Kami akan melihat contoh penyelesaian persamaan logaritma dengan lebih terperinci dalam artikel: "". Jangan lepaskan!

Jika anda masih mempunyai soalan tentang penyelesaian, tuliskannya dalam ulasan artikel.

Nota: kami memutuskan untuk mendapatkan kelas pendidikan yang berbeza dan belajar di luar negara sebagai pilihan.