Выдающиеся ученые 20 21 века. Кабельная телеграфная линия

Самое удивительное, что в 1900 году настойчивый Планк вывел-таки формулу, которая очень хорошо описывала поведение энергии в пресловутом спектре упомянутого абсолютно черного тела. Правда, выводы из этой формулы следовали фантасти ческие. Получалос ь, что энергия излучается не равномерно, как от нее, собственно, и ждали, а кусочками - квантами. сперва Планк и сам усомнился в собственных выводах, но 14 декабря 1900 года все же доло жил о них Немецко му физическому общест ву. Так, на всякий случай.
Планку не просто поверили на слово. На основе его выводов в 1905 году Альберт Эйнштейн создал квантовую теорию фотоэффекта, а вскоре Нильс Бор построил первую модель атома, состо ящую из ядра и электронов, летающих по определенным орбитам. И по всей планете понеслось! Переоценить последствия откр ытия, которое сделал Макс Планк, практически невозможно. Выбирайте любые слова - гениально, невероятно, обалдеть, вот это да и даже ух ты! - все будет недостаточно.

Благодаря Планку развилась атомна я энергетика, электроника, генна я инженерия, получили мощнейший толчок химия, физика, астрономия. Потому что именно Планк чет ко определил границу, где кончается ньютоновский макромир (в котором вещество, как известно, меряют килограммами) и начинается микромир, в котором нельзя не учитывать влияния прияте ль н а друга отдельных атомов . А вдобавок благодаря Планку мы знаем, на каких энергетических уровнях живут электроны и насколько им там удобно.

2. Второе десятилетие XX века принесло миру вдобавок одно открытие, которое перевернуло умы практически всех ученых - хотя умы у порядочных ученых и так набекрень. В 1916 году Альберт Эйнштейн завершил работу на д общей теорией относительности (ОТО). благовременно, ее вдобавок называют теорией гравитации. сооб разно этой теории, гравитация - это не результат взаимодейст вия тел и полей в пространств е, а следствие искривления четырехмерного пространства времени. Как только он это доказал, все стало около голубым и зеленым. В смысле - все поняли сущность вещей и о брадовались.

Большинство парадок сальных и противоречащих “здравому смыслу” эффектов, которые возникают при околосветовых скоростях, предсказаны именно ОТО. Самый ведомый - эффект замедления времени, при котором движущиеся относительно наблюдателя часы идут для него медленнее, чем безошибочно такие же часы у него на руке. При этом длина движущегося объекта вдоль оси движения сжимается. ны не общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимся с постоянной скоростью приятель относительно друга).

Однако сложность вычислений привела к тому, что на работу потребовалось 11 лет. Первое подтверждение теория получила, когда с ее помощью удалось описать достаточно кривую орбиту Меркурия - и в се от облегчения перевели дух. после ОТО объяснила искривление лучей от зве зд при прохождении их около с Солнцем, красное смещение наблюдаем ых в телескопы звез д и галактик. Но самым важным подтверждением ОТО стали черные дыры. Расчеты показали, что если Солнце сжать до радиуса трех метров, мощь его притяжения станет такой, что свет не сможет покинуть звезду. И в последние годы ученые нашли целые горы таких звезд!

3. Когда Бор и Резерфорд в 1911 году предположили, что атом ус троен по образу и подобию Солнечной системы, физики возликовали. На основе п ланетарной модели, дополненной представлениями Планка и Эйнштейна о природе света, удалось рассчитать спектр атома водорода. Трудности начались, когда приступили к следующему элементу -гелию. Все р асчеты показывали результат, прямо супротивный экспериментам. К началу 1920-х теория Бора померкла. молоденький немецкий физик Гейзенберг вычеркнул из теории Бора все предп оложения, оставив лишь то, что можно было измерить при помощи напольных весов.

В конце концов он установил, что скорость и местонахождение электронов нельзя измерить одновременно. Соотношение получило наименование “принцип неопределенности Гейзенберга” , а электроны приобрели репутацию ветреных красоток. Которые ныне в кондитерской, а завтра - блондинки. Однако на этом странности с элементарными частицами не закончились. К двадцатым годам физики уже притерпелись к то му, ч т о свет может проявлять свойства волны и частицы, каким бы это ни казалось парадокса льным. А в 1923 году француз де Бройль предположил, что свойства волны могут проявлять и “обычные” частицы наглядно показав волновые свойства электрона.

Эксперименты де Бройля подтвердились мгновенно в нескольких странах . В 1926 году, соединив математическое описание волны и аналог уравнений Максвелла для света, австрийский ф изик Шр едингер описал материальные волны де Бройля. А коллега Кембриджского университета Д ирак вывел общую теорию, частными случаями которой стали теории Шредингера и Гейзенберга. Хотя в двадцатые годы о многих э лементарных частицах, известных теперь любому школьнику, физи ки даже не подозревали, их теория квантовой механики прекрасно описывает движение в микромире. И за последние 90 лет ее основы не претерпели изменений.

Квантовая механика теперь применяется во всех естественных науках, когда они выходят на атомарный уровень - от медицины и биологии до химии и минералогии, а также во всех инженерных науках. С ее помощью, в частности, рассчитаны молекулярные орбитали (а что - исключительно полезная в хозяйстве вещь). Следствием стало изобретение , положим, лазеров, транзисторов, сверхпроводимости, а заодно и компьютеров. А вдобавок разработана физика твердого тела, благодаря которой: а) каж дый год поя вляются все новые ма териалы, б ) возникла возможность четко видать структуру вещества. вдобавок бы приладить физику твердого тела к сексуальной жизни - и тогда каждый мужчина будет с благо дарностью отчитывать фамилию Гейзенберг.

4. Тридцатые годы смело можно нарекать радиоактивными. Во всех смыслах этого слова. Правда, вдобавок в 1920 году Эрнест Резерфорд на заседании Британской ассоциации содействия развитию наук высказал достаточно странную (по тем, конечно, врем енам) гипотезу. В попытке объяснить, почему позитивно зар яженные протоны не убегают в панике приятель от друга, он заявил: помимо позитивно заряженных частиц в ядре атома кушать и некие нейтральные частицы, равные по массе протону. По аналогии с протонами и электронами он предложил нарека ть их нейтронами. Ассоциация поморщилась и предпочла пренебрегать экстравагантную выходку Резерфорда. И только через десять лет, в 1930 году, немцы Боте и Беккер приметили, что при облучении бериллия или бора альфа-частицами возникае т необычное излучение. В отличие от альфа-частиц неведомые штуковины, вылетающие из реактора, обладали намного большей проникающей способностью. И вообще параметры у этих частиц были другие.

Через два года, 18 января 1932 года, Ирен и Фредерик Жолио-Кюри , предаваясь милым супружеским забавам, направили излучение Боте-Беккера на более тяжелые ат омы. И выяснили, что под воздействием лучей Боте-Беккера те становятся радиоактивными. Так была открыта искусственная радиоактивность . А 27 февраля того же года Джеймс Чедвик проверил попытка Жолио-Кюри. И не просто подтвердил, а выяснил, что виноваты в в ыбивании ядер из атомов новые, незаряженные частицы с массой чуть больше, чем у протона. Именно их нейтральность позволяла беззапретно вламываться в ядро и дестабилизировать его. Так Чедвик окончательно открыл нейтрон .

Открытие это принесл о человечеству много тягот и перемен. К концу 1930-х годов физики доказали, что под воздействием нейтронов ядра атомов делятся. И что при этом выделяется вдобавок больше нейтронов. Это привело, с одной стороны, к бомбардировке Хиросимы и Нагасаки, к десятилетиям холодной войны, с иной, к развитию атомной энергетики, а с третьей - к широкому использованию радиоизотопов в самых разнообразных несекретных научных сферах.

5. Развитие квантовой теории не просто позволило ученым разуметь, что происходит внутри вещества. Следующим шагом стала поползновение повлиять на эти процессы. К чему это привело в случае с нейтроном, описано выше. А 16 декабря 1947 года сотрудники американской компании АТ&Т Веll Laboratories Джон Бардин , Уолтер Бр аттейн и Уильям Шокли нау чились при помощи малы х токов заведовать большими токами, протекающими через полупроводники (Нобелевская премия 1966 года). Так был изобретен транзистор - инструмент, состоящий из двух p-n переходов, направленных навстречу приятель другу. Ток по такому переходу может идти только в одном направлении.

А если на переходе поменять полярность, то ток перестает течь. Два же перехода, направленные приятель к другу, дали просто уникальные возможности для игр с электричеством. Транзистор стал основой для развития всех наук, включая ветеринарию. Он вышиб из электроники лампы, чем резко сократил вес и объем всей аппаратуры (и количество пыли в на ших домах). Открыл дорогу для появления логических мик росхем, что привело в итоге к появлению в 1971 году микропроцессора и созданию современных компьюте ров. Да что там компьютеры - теперь в мире нет ни одного прибора, ни одного а втомобиля, ни одной квартиры, в которых не используются транзисторы.

6. Немец Карл Вольдемар Циглер был химиком. Не, реально, это безумно увлекательная история. Значит, был этот самый Карл Вольдемар немцем и химиком. И находился под большим впечатлением от реакции Гриньяра, в которой ученые сильно упростили синтез органических веществ. И наш Карл пытался понять: а можно ли сделать то же самое с другими металлами? благовременно, вопрос был не праздный, ведь работал Циглер в Кайзеровском институте по изучению угля. А поскольку побочный продукт угольной индустрии - этилен, его утилизация стала проблемой. В 1952 году он изучал распад одного из реагентов - литийа лкила на гидрид лития и олефин. И получил ПНД - полиэтилен низкого да вления . Но полностью заполимеризовать этилен не получалось.

Через пару месяцев в лаборатории Циглера произошел казус. По окончании реакции из колбы вдруг выпал не полимер, а димер (соединение двух молекул этилена) - альфа-бутен. Оказалось, что нерадивый студент просто плохо отмыл реактор от солей никеля. И хотя эти самые соли остались на стенках в микроскопических количествах, этого хватило, дабы напрочь зарубить осн овную реакцию. Но вот что любопытно - анализ смеси показал, что соли никеля во время реакции не измен ились.

То кушать они выступили катализатором димеризации. Этот умозаключение сулил огромные прибыли - ведь сначала для получения полиэтилена приходилось прибавлять к этилену намного больше алюмоорганики. вновь же, проблем синтезу добавляли и высокое давление, и большая температура. Плюнув на алюминий, Циглер начал перебирать переходные металлы в поисках идеального катализатора. И нашел в 1953 году мгновенн о несколько. Самыми мощными оказались комплексы на основе хлоридов титана. Циглер рассказал о своем открытии в итальянской компании “Монтекатини”, и там его катализаторы использовали на другом мономере - пропилене. Побочный продукт переработки нефти, пропилен стоил в десять раз дешевле этилена, да и давал возможность поиграть со структурой полимера. Игры привели к маленький модификации катализатора, из-за чего Натта получил стереорегулярный полипропилен. В нем все молекулы пропилена располагались одинаково.

Ката лизаторы Циглера-Наттадали химикам ничем не сравнимый контроль над полимеризацией. С их помощью, предположим, химики создали искусственный аналог каучука. Металлоорганические катализаторы, которые сделали большинство синтезов проще и дешевле, используются практически на всех химических заводах мира. Но главное место по-прежнему занимает полимеризация этилена и пропилена. Сам Циглер, несмотря на промышленное применение его работы, ввек считал себя ученым-теоретиком. А студента, который плохо вымыл реактор, понизили в статусе до лабораторной мыши.

7. 12 апреля 1961 года в 9 часов 7 минут утра произошло событие, которое , без сомнения, всколыхнуло полный мир. Со словами “Поехали!” со “второй площадки” отправился в космос первый человек . разумеется, это была не первая ракета, облетевшая около Земли, - первый искусственный спутник стартовал 4 октября 1957 года. Но именно Юрий Гагарин стал реальным воплощением мечты человечества о звездах. За пуск человека в космос дословно катализировал научно-техническую революцию. Было установлено, что в невесомости могут спокойно жить не только бактерии, растения и Белка со Стрелкой, но и человек. А главное, выяснилось, что пространство промеж планетами преодолимо.

Человек уже побывал на Луне. теперь готовится экспедиция к Марсу. Аппараты всевозможных космических агентств дословно наводнили Солнечную систему. Они крутятся около Юпитера, Сатурна, бродят по поясу Койпера, катаются по марсианским пустыням. А число спутников около Земли перевалило за несколько тысяч. Это и метеорологические приборы, и научные (в том числе знаменитые орбитальные телескопы), и коммерческие спутники связи. Благодаря последним, благовременно, можно спокойно позвонить в л юбую точку мира. Сидя в Москве, поболтать в чате с людьми из Сиднея, Кейптауна и Нью-Йорка. Пробежаться по нескольким тысячам телевизионных каналов со всего света. Или отправить письмо по электронной почте в Антарктиду - тем более, все равно никто не ответит.

8. 26 июля 1978 года в семье Лесли и Гилберта Браунов родилась дочь Луиза. Наблюдавшие за кесаревым сечением гинеколог Патрик Стэптоу и эмбриолог Боб Эдвардс чуть не лопались от гордости, ведь это они сделали то, ради чего полный мир занимается сексом - зачали Луизу. М-м-м… не надобно размышлять о неприличном. На самом деле ничего порнографического не произошло. Просто мадам Лесли Браун, мамаша Луизы, страдала от непроходимости маточных труб и, как и многие миллионы женщин на Земле, не могла зачать сама. Пыталась она, благовременно, больше девяти лет - но увы. Все входило, но ничего не выходило. дабы решить проблему, Стэптоу и Эдвардc сделали мгновенно несколько научных открытий. Они придумали, как извлечь из женщины яйцеклетку, не повредив ее, как создать этой самой яйцеклетке условия для нормальной жизни в пробирке, как надо ее оплодотворять и в какой момент возвращать назад. снова же, не повредив. И родители, и ученые вскоре убедились, что девочка совершенно нормаль на. Вскоре у нее таким же способом появилась сестра, а к 2007 году благодаря методике экстракорпорального оплодотворения (ЭКО) по всему миру родились примерно два миллиона детей. Которых бы никогда не было, если бы не опыты Стэптоу и Эдвардса.

Да вообще теперь жутко сказать, что творится. Взрослые дамы сами рожают себе внучек, если их дочери неспособны выносить чадо, а жены рожают от погибших мужей. Многочисленные опыты подтвердили, что “дети из пробирки” ничем не отличаются от зачатых естественным путем, так что с каждым годом методика ЭКО завоевывает все большую репутация. Гм. Хотя по старинке все-таки намного приятнее.

9. В 1985 году Роберт Керл, Гарольд Крото, Ричард Смолли и Хит О’Брайен изучали масс-спектры паров графита, которые образовывались под воздействием лазера на твердый образчик. И обнаружили странные пики, которые соответствовали атомным массам 720 и 840 единиц. Вскоре стало понятно, что ученые открыли новую вариация углерода , которая получила наименование “фуллерен” - по имени инженера Р. Бакминстера Фуллера , чьи конструкции очень походили на открытые молекулы.

Первая углеродная вариация известна под названием “футболен”, а вторая - “регбен”, поскольку они вправду похожи на мячи для футбола и регби. теперь фуллерены из-за своих уникальных физических свойств активно используются в самых разных приборах. Однако главное не это - на основе методики 1985 года ученые придумали, как сделать углеродные нанотрубки, скрученные и сшитые слои графита. На данный момент известны нанотрубки диаметром 5-7 нанометров и длиной до 1 см (!). Несмотря на то что сделан ы они только из углерода, такие нанотрубки проявляют самые различные физические свойства - от металлических до полупроводниковых.

На их основе разрабатываются новые материалы для оптоволоконной связи, светодиоды и дисплеи. Нанотрубки используются как капсулы для доставки в нужное место организма биологически активных веществ, а также как нанопипетки. На их основе разработаны сверхчувствительные датчики химических веществ, что уже применяются для мониторинга окружающей среды, в военных, медицинских и биотехнологических целях. Из них делают транзисторы, нанопровода, топливные элементы. Самая последняя новость в сфере нанотрубок - искусственные мышцы.

Работа ученых из Ренселлеровского политехнического института, опубликованная в июле 2007 года, показала, что можно создать пучок нанотрубок, который ведет себя как мышечная ткань. Он обладает такой же проводимостью электрического тока, как мышцы, и не изнашивается со временем - искусственная мышца выдержала 500 тысяч сжатий на 15% от первоначальной длины, и ее первоначальная форма, механические и проводящие свойства не изменились. Это открытие, вероятно, приведет к тому, что вскоре все инвалиды получат новые руки и ноги, которыми можно будет заведовать силой мысли (ведь идея для мышц выглядит, как электрический сигнал “сжиматься-разжиматься”). Жаль, правда, что некоторым людям нельзя приделать новую башку. Но это наверняка дело ближайшего будущего.

10. 5 июля 1996 года родилась новая эра биотехнологий . Лицом и достойным представителем этой эры стала обыкновенная овца. Вернее, обыкновенной овца была только с виду - на самом деле ради ее появления сотрудники института Рослина (Великобритания) несколько лет работали не разгибаясь. Яйцеклетку, из которой позже появилась овечка Долли , выпотрошили, а после вставили в нее клеточное ядро взрослой овцы. после развившийся эмбрион подсадили овце назад в матку и стали дожидаться, что получится. надобно сказать, что Долли была не единственным кандидатом на вакансию “первый клон крупного животного в мире” - у нее было 296 конкурентов. Но они все погибли на разных стадиях эксперимента. А Долли выжила!

Правда, дальнейшая доля бедняжки оказалась незавидной. Концевые участки ДНК -теломеры, которые служат биологическими часами организма, уже отмерили 6 лет, которые они прожили в теле матери Долли. Поэтому спустя вдобавок 6 лет, 14 февраля 2003 года, клонированная овца умерла от навалившихся на нее “старых” заболеваний - артрита, специфического воспаления легких и множества других недугов. Однако появление Долли на обложке Nature в феврале 1997 года произвело истинный взрыв - она стала символом могущества науки и власти человека над природой.
За прошедшие с рождения Долли одиннадцать лет удалось клонировать самых разных животных - поросят, собак, породистых быков. Получены даже клоны второго поколения -клоны от клонов. Правда, пока не удалось до конца решить проблему с теломерами, клонирование человека по всему миру запрещено. Однако исследования продолжаются.

Slide_image" src="https://fs1.ppt4web.ru/images/5552/84003/640/img1.jpg" alt="Сергей Михайлович Прокудин-Горский (1863-1944)Начало 20 века было ознаменовано удивительными научными открытиями и изобретениями, многие из которых на целые десятилетия опередили своё время. Среди них - цветная фотография.В 1903 году одним из пионер…" title="Сергей Михайлович Прокудин-Горский (1863-1944)Начало 20 века было ознаменовано удивительными научными открытиями и изобретениями, многие из которых на целые десятилетия опередили своё время. Среди них - цветная фотография.В 1903 году одним из пионер…">
































1 из 33

Презентация на тему: Русские ученые и изобретатели

№ слайда 1 https://fs1.ppt4web.ru/images/5552/84003/310/img1.jpg" alt="Сергей Михайлович Прокудин-Горский (1863-1944)Начало 20 века было ознаменовано у" title="Сергей Михайлович Прокудин-Горский (1863-1944)Начало 20 века было ознаменовано у">

Описание слайда:

Сергей Михайлович Прокудин-Горский (1863-1944)Начало 20 века было ознаменовано удивительными научными открытиями и изобретениями, многие из которых на целые десятилетия опередили своё время. Среди них - цветная фотография.В 1903 году одним из пионеров цветной фотографии России стал ученик Менделеева Сергей Михайлович Прокудин-Горский. Фотографии сделанные им были удивительно высокого качества.

№ слайда 3

Описание слайда:

Владимир Иванович Вернадский (1863-1945)Естествоиспытатель, крупнейший мыслитель и общественный деятель XX века. Создатель многих научных школ. Один из представителей русского космизма; Учение о биосфере и ноосфересоздатель науки биогеохимии.В круг его интересов входили геология и кристаллография, минералогия и геохимия, организаторская деятельность в науке и общественная деятельность, радиогеология и биология, биогеохимия и философия.

№ слайда 4

Описание слайда:

Николай Дмитриевич Пильчиков (1857-1908) Физик, впервые в мире создал и успешно демонстрировал систему беспроводного управления.Пильчиков - основатель теории аномалий земного магнетизма - подробно исследовал Курскую магнитную аномалию и научно аргументировал утверждение о находящихся там богатых залежах железной руды, за что ему была присуждена Большая серебряная медаль Российского географического общества в 1884 г. Он открыл явление электронной фотографии и сформулировал ее принципы, провел фундаментальные исследования ионизации атмосферы и поляризации света, создал множество удивительных, оригинальных приборов и устройств, многие из которых носят его имя, в том числе и прообраз современного скафандра.

№ слайда 5

Описание слайда:

Владимир Кузьмич Зворыкин(1888-1982)Начало 20 века – суровый период в истории России. Первая мировая война, революция, гражданская война. Многие ученые вынуждены были эмигрировать в Америку. Одним из них был В.К. Зворыкин. Там он стал большим ученым. Возглавляя лабораторию электроники, создал первый в мире электронный сканирующий микроскоп. А еще его называют «отцом телевидения».т.к. создал иконоскоп (кинескоп) и схему телевизионной системы. На его счету 120 патентов на различные изобретения.

№ слайда 6

Описание слайда:

Александр Матвеевич Понятов (1892- 1980) Русский и американский электроинженер, внедривший ряд инноваций в области магнитной звуко- и видеозаписи, телерадиовещании. При его руководстве созданной им компанией в 1956 году выпущен первый коммерческий видеомагнитофон.

№ слайда 7

Описание слайда:

М.О. Доливо-Добровольский(1862-1919)Петербуржец Доливо-Добровольский закончил Рижский политехнический институт. Он изобрёл систему трехфазного тока, первый построил трехфазный трансформатор с передачей энергии на расстояние около 170 км. усовершенствовал электромагнитные амперметры и вольтметры для измерения постоянного и переменного токов Для различного рода измерительных приборов удачно применил принцип двигателя с вращающимся магнитным полемСоздал также приборы для устранения в телефонах помех от электрических сетей сильных токов и т.д.

№ слайда 8

Описание слайда:

Валентин Петрович Вологдин(1881-1953)Еще один петербуржец В. П. Вологдин стал первым лауреатом золотой медали имени А. С. Попова. Он создал первый в мире высоковольтный ртутный выпрямитель с жидким катодом Разработал индукционные печиИзобрел несколько типов электромашин повышенной частоты для питания радиостанций.

№ слайда 9

Описание слайда:

Олег Владимирович Лосев (1903-1942)Наш земляк. Родился в г. Тверь. Пионер полупроводниковой электроники. Изобретатель кристадина в 1929. В те годы радиолюбительство начало принимать массовый характер. Но электронных ламп не хватало, и они были дороги, да им еще требовался и специальный источник электропитания, а схема Лосева могла работать от трех-четырех батареек для карманного фонарика! Олег Владимирович Лосев обессмертил свое имя двумя открытиями: он первый в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока.Умер от голода в блокадном Ленинграде.

№ слайда 10

Описание слайда:

№ слайда 11

Описание слайда:

Вячеслав Измайлович Срезневский (1849-1937) Удивительно многоплановая личность. Был филологом, спортивным деятелем, издателем, но в историю вошел как изобретатель. Он изобрёл первый в мире аэрофотоаппарат. Создал портативную походную аппарат-лабораторию, специальный фотоаппарат для экспедиции Н. М. Пржевальского, устойчивый против внешних воздействий, водонепроницаемую камеру для морских съёмок, особую камеру для регистрации фаз солнечного затмения; разработал специальные фотопластинки для аэрофотографии.

№ слайда 12

Описание слайда:

Дмитрий Павлович Григорович(1883-1938)Советский конструктор самолетов. Создал ок. 80 конструкций самолетов, многие из которых строились серийно и состояли на вооружении отечественной авиации.В 1916 Г. построил первый в мире гидросамолет-истребитель М-11, имевший броню, а также двухмоторный самолет-торпедоносец.

№ слайда 13

Описание слайда:

№ слайда 14

Описание слайда:

Самолет Сикорского «Илья Муромец» Первым в мире построил многомоторный самолет. Первым в мире совершил дальний перелёт "Санкт-Петербург - Киев". В 1919 году был вынужден эмигрировать. В изгнании основал авиационную "русскую фирму" Сикорского, занявшую лидирующие позиции в авиастроении. Создатель лайнеров для трансатлантических перелетов, гидросамолетов, изобретатель вертолета, первого в мире бомбардировщика.

№ слайда 15

Описание слайда:

Глеб Евгеньевич Котельников(1872-1944)В 1911 создал первый авиационный ранцевый парашют В 1912 парашют успешно прошел неоднократные испытания, но все же вначале был отклонен военным ведомством России. Только в 1914, во время первой мировой войны, был использован для снаряжения летчиков, летавших на бомбардировщиках "Илья Муромец". В годы Советской власти он значительно усовершенствовал конструкцию своего парашюта, создав новые модели и ряд грузовых парашютов.

№ слайда 16

Описание слайда:

Константин Эдуардович Циолковский (1853-1935)Поистине необычна и трагична судьба Константина Эдуардовича Циолковского – гения науки, первого в мире теоретика освоения космического пространства и обычного школьного учителя. Он никогда не думал о личном обогащении. Все силы были отданы прогрессу на благо человечества.Константин Эдуардович - основоположник теории межпланетных сообщений. Он выдвинул ряд идей, которые нашли применение в ракетостроении.

№ слайда 17

Описание слайда:

№ слайда 18

Описание слайда:

С. П. Королёв является создателем советской ракетно-космической техники, обеспечившей стратегический паритет и сделавшей СССР передовой ракетно-космической державой(баллистическая ракета) Является ключевой фигурой в освоении человеком космоса, создателем практической космонавтики. Благодаря его идеям был осуществлён запуск первого искусственного спутника Земли и первого космонавта Юрия Гагарина.

№ слайда 19

Описание слайда:

Валентин Петрович Глушко(1908 – 1989)Соратник С.П. Королева. Они вместе стояли у истоков ракетостроения и продолжил общее дело после смерти Сергея Павловича. Был главным конструктором ОКБ по созданию первого в мире эл/термического ракетного двигателя. По его предложению и под его руководством была создана многоразовая космическая система «Энергия - Буран». Он возглавлял работы по совершенствованию пилотируемых космических кораблей «Союз», грузового корабля «Прогресс», орбитальных станций «Салют», созданию орбитальной станции «Мир».

№ слайда 20

Описание слайда:

А.М. Прохоров,Н.Г. БасовЛауреаты Нобелевской премиии. Они пришли к идее о возможности распространения принципов и методов квантовой радиофизики на оптический диапазон частот. Создали первый в мире квантовый генератор - мазер, лазер.Разработали лазеры различных типов, включая мощные короткоимпульсные и многоканальные. Использование лазера: измерение расстояния до Луны, создание искусственных опорных звезд, фотохимия, лазерное оружие, лазерная термообработка, медицина, хранение информации на оптических носителях (компакт-диск, DVD и т.д.), оптическая связь, оптические компьютеры, голография, лазерные дисплеи, лазерные принтеры, лазерное шоу

№ слайда 21

Описание слайда:

№ слайда 22

Описание слайда:

Андрей Дмитриевич Сахаров(1921-1989)Работал в области разработки термоядерного оружия, участвовал в проектировании и разработке первой советской водородной бомбы по схеме, названной «слойка Сахарова». Одновременно Сахаров вместе с И. Таммом в 1950–51 гг. проводил пионерские работы по управляемой термоядерной реакции. С конца 1950-х он активно выступал за прекращение испытаний ядерного оружия. Внёс вклад в заключение Московского Договора о запрещении испытаний в трёх сферах.С конца 1960-х являлся одним из лидеров правозащитного движения в СССР.

Описание слайда:

Игорь Васильевич Курчатов(1903-1960)Академик Игорь Васильевич Курчатов занимает особое место в науке XX в. и в истории нашей страны. Ему - выдающемуся физику - принадлежит исключительная роль в разработке научно-технических проблем овладения ядерной энергией в Советском Союзе. Решение этой сложнейшей задачи, создание в cжатые сроки ядерного щита Родины в один из наиболее драматических периодов истории нашей страны, разработка проблем мирного использования ядерной энергии было главным делом его жизни. Первая в мире АЭС.

№ слайда 25

Описание слайда:

Туполев Андрей Николаевич(1888-1972)Ученик "отца русской авиации" Николая Егоровича Жуковского. Делу создания самолетов Л. Н Туполев посвятил всю жизнь. Под его руководством создано более 50 оригинальных самолетов, около 100 различных модификаций. На самолетах КБ Туполева установлено около 100 мировых рекордов грузоподъемности, дальности и скорости полетов. Самый знаменитый – первый в стране и второй в мире реактивный пассажирский самолет ТУ-104 .

№ слайда 26

Описание слайда:

Яковлев Александр Сергеевич(1906-1989) Соратник Туполева- авиаконструктор А.С.Яковлев не менее знаменит. В числе конструкций, созданных Яковлевым, реактивные истребители Як-15 , Як-17, Як-23; Як-25 (первый всепогодный перехватчик), Як-28 (первый советский сверхзвуковой фронтовой бомбардировщик); первый советский самолёт вертикального взлёта и посадки Як-36 и его боевой палубный вариант Як-38; десантный планёр Як-14; двухвинтовой вертолёт продольной схемы Як-24; учебные самолёты Як-11, и др., многоцелевой самолёт Як-12; спортивные самолёты Як-18П, Як-18ПМ, Як-50, Як-55 (на которых советские лётчики побеждали на чемпионатах мира и Европы по высшему пилотажу); реактивные пассажирские самолёты Як-40 и Як-42.

Описание слайда:

Тихов Гавриил Андрианович Астроном. Изучал оптические свойства земной атмосферы. Впервые в мире установил, что Земля при наблюдении ее из космоса должна иметь голубой цвет. В дальнейшем, как известно, это подтвердилось при съемках нашей планеты из космоса. При наблюдении затмения 1936 года впервые отметил, что солнечная корона состоит из двух частей: бесструктурной «матовой» короны и пронизывающих её струй «лучистой» короны. Оценил цветовую температуру короны.

№ слайда 29

Описание слайда:

Иван Петрович Павлов(1849-1936)Один из авторитетнейших учёных России, физиолог, психолог, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения; основатель крупнейшей российской физиологической школы.Лауреат Нобелевской премии в области медицины и физиологии 1904 года «за работу по физиологии пищеварения».

Описание слайда:

Пётр Леонидович Капица (1894 - 1984)Демонстрируется опыт П.Капицы по измерению характеристик жидкого гелия. «Мы сделали приборчик наподобие сегнерова колеса с несколькими ножками, исходящими из общего объема, и затем нагревали внутреннюю часть этого сосудика пучком света. Такой «паучок» пришел в движение. Таким образом тепло переводилось в движение».Крупнейший советский физик. Основатель Института физических проблем и Московского физико-технического института. Первый заведующий кафедрой физики низких температур физического факультета МГУ.Лауреат Нобелевской премии по физике (1978) за открытие явления сверхтекучести жидкого гелия, ввёл в научный обиход термин «сверхтекучесть». Известен также работами в области физики низких температур, изучении сверхсильных магнитных полей и удержания высокотемпературной плазмы. Разработал высокопроизводительную промышленную установку для ожижения газов (турбодетандер). С 1921 по 1934 год работал в Кембридже под руководством Резерфорда. В 1934 году во время гостевого визита был насильно оставлен в СССР.

№ слайда 32

Описание слайда:

Сергей Петрович Капица (1928- 2012)«О, сколько нам открытий чудных,Готовят просвещенья дух, И опыт, сын ошибок трудных,И гений, парадоксов друг…» А.С. ПушкинСоветский и российский учёный-физик, телеведущий, главный редактор журнала «В мире науки». С 1973 года бессменно вёл научно-популярную телепрограмму «Очевидное - невероятное». Сын лауреата Нобелевской премии Петра Леонидовича Капицы. Автор 4 монографий, десятков статей, 14 изобретений и 1 открытия.Создатель феноменологической математической модели гиперболического роста численности населения Земли. Впервые доказал факт гиперболического роста населения Земли до 1 года н. э.Считается одним из основоположников клиодинамики.

№ слайда 33

Описание слайда:

Наука в начале 20 века

НАУКА – сфера человеческой деятельности, включающая как выработку нового знания, так и ее результат – описание, объяснение и предсказание процессов и явлений действительности на основе открываемых ею законов. Система наук условно делится на естественные, общественные и технические.

В развитии науки чередуются экстенсивные и революционные периоды – научные революции, приводящие к изменению ее структуры, принципов познания, категорий и методов, а также форм ее организации.

В нач. 20 в. русская наука и техника дали в различных отраслях знаний ряд крупных имен и внесли важный вклад в сокровищницу мировой культуры. Русские ученые и изобретатели активно работали в области геологии, металлургии, переработки нефти, теории сопротивления материалов, почвоведения, электротехники, радиосвязи и на других важных направлениях научно-технической деятельности. Крупные успехи были достигнуты в математике, физике, механике.

В Петербурге вокруг великого русского математика и механика академика П. Л. Чебышева сложилась математическая школа. Профессор Московского Высшего технического училища H. Е. Жуковский открыл к этому времени метод вычисления подъемной силы крыла самолета, за что заслуженно получил звание «отца русской авиации». Более 30 лет возглавлял в Московском университете кафедру физики А. Г. Столетов. Им были успешно разработаны проблемы магнетизма и фотоэлектрических явлений. Эффективно вел свои исследования и физик П. Н. Лебедев.

На рубеже нового века был изобретен русским ученым А. С. Поповым радиоприемник. Выдающиеся физики П. Н. Яблочков и А. Н. Лодыгин создали электрическую лампочку. Больших успехов добилась и отечественная химическая наука. Великий ученый, профессор Петербургского университета Д. И. Менделеев сделал мировое открытие, создав периодическую таблицу химических элементов. Профессора Казанского университета H. Н. Зинин и А. М. Бутлеров активно разрабатывали проблемы органической химии. Больших технических достижений в русском кораблестроении добились механик и математик А. Н. Крылов и океанограф адмирал С. О. Макаров. Большие достижения в работе были и у многих других исследователей и естествоиспытателей.

Мирового значения удостоил ась наша географическая наука (П. П. Семенов-Тян-Шанский, H. М. Пржевальский, H. Н. Миклухо-Маклай, П. К. Козлов, В. К. Арсеньев и др.). Получили дальнейшее развитие геолого-стратиграфические исследования (А. П. Карпинский, В. О. Ковалевский, А. П. Павлов, Ф. Н. Чернышев и др.).

В области биологии значительных результатов с позиции естественно-научного материализма добились И. М. Сеченов, И. И. Мечников, А. О. Ковалевский, К. А. Тимирязев. И. И. Мечникову – лауреату Нобелевской премии принадлежат открытия мирового уровня по проблемам бактериологии, А. О. Ковалевскому – по сравнительной эмбриологии, К. А. Тимирязеву – в области фотосинтеза. И. П. Павлову в 1904 г. за его исследования в области физиологии (учение о высшей нервной деятельности человека и животных) была присуждена Нобелевская премия.

Н. Г. Славянов разработал способ горячей сварки металлическим электродом, он получил патенты на изобретение не только в России, но и во Франции, Германии, Великобритании и ряде других стран. К. Э. Циолковский сделал ряд крупнейших открытий в аэродинамике и ракетной технике, им была разработана и теория движения ракет. Впоследствии мир назовет его основоположником теории межпланетных сообщений.

Многие ученые России были участниками международных научных программ, прославив отечественную науку. В плеяде выдающихся русских ученых по праву стоят и имена С. А. Чаплыгина – основоположника теории гидро– и аэродинамики, А. Ф. Можайского – одного из первых авиастроителей, В. И. Вернадского – основателя геохимии и биогеохимии и радиогеологии и др. Наряду с техническими науками активно развивалась и общественная мысль. Русская историография выдвинула в эту пору видных ученых-историков В. О. Ключевского, М. Н. Покровского, Е. В. Тарле.

После Октябрьской революции и Гражданской войны в СССР начался новый этап развития науки и техники. Особенно активно развивались научные направления, связанные с экономическими потребностями страны, – металлургия, авиастроение, физика и др.

ВЕРНАДСКИЙ Владимир Иванович (28.02(12.03).1863–06.01.1945 гг.) – один из основоположников геохимии, радиогеологии, создатель биогеохимии и учения о ноосфере.

Родился в Петербурге в семье профессора-экономиста И. В. Вернадского. В 1885 г. окончил естественное отделение физико-математического факультета Петербургского университета. Под влиянием работ В. В. Докучаева увлекся динамической минералогией и кристаллографией. Путешествовал по Западной Европе, участвовал в Международном геологическом конгрессе. С 1890 г. преподавал на кафедре минералогии в Московском университете, где впоследствии сложилась его научная школа (среди учеников А. Ферсман, Я. Самойлов).

В 1891 г. стал магистром геологии и геогнозии, в 1897 г. защитил докторскую диссертацию. В 1911 г. после избрания его экстраординарным академиком переехал в Петербург. Был участником земского движения в защиту высшей школы. Дважды избирался в Государственный совет от университета. В 1911 г. в знак протеста против мер министра народного просвещения Л. А. Кассо среди других 100 профессоров и преподавателей университета вышел в отставку.

В годы 1-й мировой войны возглавлял постоянную Комиссию по изучению естественных производительных сил России (КЕПС) при АН, которая вела поиски новых месторождений полезных ископаемых, изучала энергоресурсы и т. д. В 1917–1920 гг. стал первым президентом созданной им Украинской АН. В 1920-е гг. был директором Геологического и Минералогического музеев, организовал и возглавил Радиевый институт. В 1922–1926 гг. читал курс геохимии в Сорбонне, проводил эксперименты в институте М. Склодовской-Кюри.

Развивая учение о биосфере, ввел понятие «ноосфера» (сфера разума). При АН им были основаны Комитет по метеоритам и Комиссия по истории знаний, которую Вернадский возглавлял до 1930 г. В 1928 г. им была создана Биогеохимическая лаборатория АН СССР. Влияние его геохимической школы испытали ученые Франции, Чехословакии, США. В 1943 г. получил Государственную премию СССР. Умер и похоронен в Москве. Т. О.

ЖУКОВСКИЙ Николай Егорович (17(29).01.1847–17.03.1921 гг.) – основоположник аэродинамики, член-корреспондент РАН (1917 г.).

Родился в Москве, происходил из старинного дворянского рода. Окончил математический факультет Московского университета. В 1870 г. стал преподавателем математики в Московском высшем техническом училище (МВТУ). Защитил магистерскую диссертацию по гидродинамике, стажировался за границей – в Берлине и Сорбонне, где занимался исследованием движения воздушных потоков. В 1888 г. защитил докторскую диссертацию по прикладной механике, возглавил кафедру Московского университета. В 1902 г. в Московском университете построил аэродинамическую трубу.

В 1904 г. на базе его лаборатории в Кучино был создан первый в мире институт аэродинамических исследований, где он разработал теорию подъемной силы крыла летательного аппарата, методы расчета воздушных винтов и динамики полета. В 1910 г. в МВТУ создал лабораторию, ставшую расчетно-испытательным центром проверки аэродинамических свойств самолетов. Автор трудов по теории авиации, механике твердого тела, астрономии, математике, гидродинамике, гидравлике, прикладной механике.

По инициативе Жуковского были созданы Московский авиационный институт и Военно-воздушная академия. В его квартире в 1918 г. была организована лаборатория, впоследствии ставшая Центральным институтом аэро– и гидродинамики (ЦАГИ). В 1920 г. Жуковский был арестован и сослан в спецчасть НКВД. Т. О.

ПАВЛОВ Иван Петрович (14(26). 19-1849-27.02.1936 гг.) – физиолог, создатель учения о высшей нервной деятельности животных и человека, лауреат Нобелевской премии.

Родился в Рязани в семье священника. Обучался в духовном училище. С 1870 г. учился на естественном отделении Петербургского университета. За свое первое научное исследование (о секреторной иннервации поджелудочной железы) был награжден золотой медалью университета. Два года работал в Ветеринарном институте. В 1877 г. уехал в Бреслау, потом по приглашению С. П. Боткина работал в его клинике. В 1883 г. Павлову было присвоено звание доктора медицинских наук.

Ок. 20 лет занимался исследованиями по физиологии пищеварения. В 1891 г. Павлов стал заведующим физиологическим отделом Института экспериментальной медицины, в 1895–1925 гг. руководил исследованиями в Военно-медицинской академии. За работу по физиологии пищеварения в 1904 г. ему была присуждена Нобелевская премия.

После Октябрьской революции остался в России (был издан декрет о создании благоприятных условий для его работы). Несмотря на это, Павлов полагал, что революцию нужно было пресечь. Павлов сравнивал существующий режим с фашизмом, о чем открыто написал в 1934 г. в ЦИК СССР.

Умер в Ленинграде от пневмонии. Похоронен на Волковой кладбище. Т. О.

ЦИОЛКОВСКИЙ Константин Эдуардович (05(17).09.1857–19.09.1935 гг.) – ученый в области воздухоплавания и ракетной техники.

Родился в селе Ижевском Рязанской губернии в семье лесничего. В десятилетнем возрасте из-за осложнений после скарлатины потерял слух и школу не посещал. В 1873 г. по настоянию отца поселился в Москве у знакомого семьи – философа Н. Федорова, космогоническое учение которого оказало на него большое влияние и подтолкнуло к мысли о расселении человечества на других планетах. В 1879 г., сдав экзамен, получил звание учителя народных училищ и назначение в Боровск. Там он проработал до 1892 г., затем был переведен в Калугу, где до конца дней преподавал физику и математику в епархиальном училище и гимназии. Одновременно вел научную работу.

За работу «Механика животного организма» по предложению Д. Менделеева и А. Столетова был избран действительным членом Русского физико-химического общества. Ему принадлежит проект дирижабля (управляемого аэростата). Он также исследовал механику управляемого полета. Н. Жуковский использовал результаты его работы при создании теории расчета крыла. В 1903 г. опубликовал книгу «Исследования мировых пространств реактивными приборами», которая была замечена лишь в 1912 г.

В нач. 1910-х гг. в журнале «Вестник воздухоплавания» публиковал статьи по теории ракет и жидкостного ракетного двигателя, им была впервые решена задача посадки на поверхность безатмосферных планет. В 1920-е гг. вывел формулу, которая получила его имя, используемую при исчислении количества топлива для космического корабля, рассчитал оптимальную высоту для спутника (300–800 км), сделал ряд практических изобретений. Т. О.

Из книги От Бисмарка до Маргарет Тэтчер. История Европы и Америки в вопросах и ответах автора Вяземский Юрий Павлович

В начале XX века Вопрос 4.1В 1901 году американский миллиардер Эндрю Карнеги продал свои заводы и стал заниматься исключительно благотворительностью.Кому предназначался первый дар Карнеги?Вопрос 4.2В 1902 году будущему родоначальнику фашизма Бенито Муссолини было 19 лет. Он

Из книги Кто есть кто в истории России автора Ситников Виталий Павлович

автора

§ 24. Образование и наука в средние века Школьное образованиеСкладывание централизованных государств в Европе потребовало бо?льшего количества образованных людей. Королям нужны были грамотные чиновники, опытные юристы. Церкви требовались знатоки христианского

Из книги Расцвет и падение древних цивилизаций [Далекое прошлое человечества] автора Чайлд Гордон

Из книги Всемирная история: в 6 томах. Том 4: Мир в XVIII веке автора Коллектив авторов

НАУКА В ЗЕРКАЛЕ ИДЕЙНЫХ КОЛЛИЗИЙ ВЕКА ПРОСВЕЩЕНИЯ В культуре XVIII столетия Природа становится первичной реальностью. Критика традиционных общественных институтов и религиозных догм, мистических грез и темных суеверий, схоластической лжеучености и традиционных

Из книги История Кореи: с древности до начала XXI в. автора Курбанов Сергей Олегович

§ 1. Корея в начале X VII века Выше уже говорилось о тех огромных материальных и людских потерях, которые Корея понесла в годы Имчжинской войны. Поэтому король Сончжо, на время правления которого пришлись все тяготы войны с Японией, попытался начать некоторые реформы,

Из книги Отечественная история: конспект лекций автора Кулагина Галина Михайловна

Тема 14. Россия в начале XX века 14.1. Экономическое и социально-политическое развитие К началу XX в. окончательно складывается система российского капитализма. Россия благодаря индустриализации и промышленному подъему 1890-х гг. из отсталой аграрной страны становится

Из книги Тайны русских волхвов [Чудеса и загадки языческой Руси] автора Асов Александр Игоревич

Истинное ведославие в XIX и начале XX века В те же годы сама традиция жила не в секте Кондратия-Петра и потом Распутина. Это только трагедия традиции. Носителями истинного духа ведославия, его философии, высокой поэзии являлись иные люди.Их мысли, образы тогда, в начале XIX

Из книги Александр III – Миротворец. 1881-1894 гг. автора Коллектив авторов

Культура и наука в конце 19 века Пореформенная эпоха стала временем высоких культурных достижений. Этот этап обусловил наступление «серебряного века» русской культуры. Российские ученые добивались блестящих результатов в точных и естественных науках. Благодаря трудам

Из книги Русская Япония автора Хисамутдинов Амир Александрович

Из книги Разные человечества автора Буровский Андрей Михайлович

Идеология и наука XIX века – основы современного знания Ученые часто и по разным поводам наивно говорят, что наука изменила мир. Верно! Но чтобы это произошло, мир должен был поручить науке изменять самое себя. Хотя бы тем, что общество и государство должны были дать науке

Из книги 50 великих дат мировой истории автора Шулер Жюль

Латинская Америка в начале XIX века Начиная с XVI в., испанские владения занимали большую часть американского континента. С севера, от Калифорнии, Новой Мексики, Техаса и Флориды они протянулись далеко на юг, до мыса Горн. Что касается Луизианы, то Франция вернула ее себе в

Из книги Всеобщая история. История средних веков. 6 класс автора Абрамов Андрей Вячеславович

§ 27. Образование и наука в средние века Школьное образованиеСкладывание централизованных государств в Европе потребовало большего количества образованных людей. Королям нужны были грамотные чиновники, опытные юристы. Церкви требовались знатоки христианского

Из книги Всеобщая история. История Нового времени. 8 класс автора Бурин Сергей Николаевич

Глава 5 Мир в конце XIX – начале XX века «Если суждена ещё когда-либо война в Европе, она начнётся из-за какого-нибудь ужасно несуразного случая на Балканах». Германский политик О. фон Бисмарк Союз России и Франции. Иллюстрация из французского

Из книги От древнего Валаама до Нового Света. Русская Православная Миссия в Северной Америке автора Григорьев Протоиерей Дмитрий

Из книги Последний император Николай Романов. 1894–1917 гг. автора Коллектив авторов

Россия в начале 20 века Царствование Николая II стало временем самых высоких в истории России темпов экономического роста. За 1880–1910 темпы роста промышленного производства превышали 9 % в год. По этому показателю Россия вышла на первое место в мире, опередив даже

Биткин Илья, Макаров Михаил, Клементьев Игорь

Презентация посвящена великим изобретениям русских ученых 20 века. Компьютер, телевизор, ранцевый парашют, лазер - всё это изобрели русские ученые.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Изобретения русских учёных 20 века Работу выполнили ученики 6б класса МБОУ СОШ №161 г.Нижнего Новгорода

Сегодня мы вам расскажем о пяти потрясающих изобретениях

Компьютер

Изобретатель компьютера В далеком 1968 году, за 8 лет до первого Apple , советский инженер-электромеханик Арсений Анатольевич Горохов изобрел машину под названием «Устройство для задания программы воспроизведения контура детали.

1960-е годы он отвёз компьютер в США, там выпустили первый коммерческий компьютер, оснащённый клавиатурой и монитором. Тогда он становятся быстрее, мощнее, компактнее.

Название не случайно, потому как предназначался разработанный аппарат, прежде всего, для создания сложных инженерных чертежей.

Компьютерная игра, изобретённая в СССР Алексеем Пажитновым и представленная общественности 6 июня 1984 года. Идею «Тетриса» ему подсказала,купленная им игра в пентамино.

Изобретатель тетриса Самый легендарный российский игровой программист - это, конечно, Алексей Пажитнов, автор Тетриса. Легенда гласит, что рядовой российский программист создал гениальную игру, которая обошла весь мир, размножившись миллионами копий, но не принесла своему создателю ни копейки. Нельзя сказать, что это неправда. Действительно: и Тетрис завоевал неслыханную популярность, и Пажитнов не получил причитающихся ему доходов полностью. Однако история распространения Тетриса полна нюансов, о которых известно немногим...

правила Случайные фигурки падают сверху в прямоугольный стакан. В полёте игрок может поворачивать фигурку и двигать её по горизонтали. Также можно «сбрасывать» фигурку, то есть ускорять её падение, когда уже решено, куда фигурка должна упасть. Фигурка летит, пока не наткнётся на другую фигурку либо на дно стакана. Если при этом заполнился горизонтальный ряд из 10 клеток, он пропадает и всё, что выше него, опускается на одну клетку. В специальном поле игрок видит фигурку, которая будет следовать после текущей - эта подсказка позволяет планировать свои действия. Темп игры постепенно увеличивается. Название игры происходит от количества клеток, из которых состоит каждая фигура. Игра заканчивается, когда новая фигурка не может поместиться в стакан.

телевизор

Телевизор сегодня так привычен и доступен, что даже самые скромные интерьеры не обходятся без его присутствия: по нему показывают и Путина. И если кто-то не смотрит телепередачи, то только по причине сильной занятости или желания быть оригинальным. Однако и такие люди обычно все же смотрят телефильмы пользуясь телевизором как домашним кинотеатром.

Профессор технологического института в Петербурге Борис Львович Розинг 25 июля 1907 года подал свою заявку на изобретение под названием «Способ электрической передачи изображений на расстояния». Именно он тогда доказал, что можно применить катодно-лучевую трубку для преобразования электрических сигналов в точки визуального изображения. изобретатель

В 1878 году была выдвинута идея нового устройства, способного передавать изображение по проводам. Она принадлежит португальскому профессору Адриано Де Пайва. Однако на этом этапе не вышло обеспечить свечение экрана на станции приема.

Ранцевый парашют

В ХХ веке стала бурно развиваться авиация. Потребовались парашюты для спасения летчиков. Парашюты прежней конструкции были громоздки и не могли применяться в авиации. Специальный парашют для летчиков создал русский изобретатель Глеб Евгеньевич Котельников. В 1911 год он зарегистрировал свое изобретение - ранцевый парашют свободного действия. Парашют имел круглую форму, укладывался в металлический ранец.

Изобретатель парашюта Котельников не был конструктором - он был актером. Но за новое дело принялся с жаром. Спасательные купола уже использовались воздухоплавателями, предстояло сделать из них средство экстренного реагирования, которое всегда было бы под рукой.

На сегодняшний день значение парашютов переоценить сложно. Их используют и для обеспечения безопасности летчиков, пассажиров, и для организации зрелищных мероприятий, и для самостоятельных прыжков. Парашюты стали гораздо надежнее и прочнее. Перебои в их функционировании практически невозможны.

Лазерная техника еще очень молода - ей нет и полувека. Однако за это совсем небольшое время лазер из любопытного лабораторного устройства превратился в средство научного исследования, в инструмент, применяемый в промышленности. Трудно найти такую область современной техники, где бы не работали лазеры.

Изобретатели В Лаборатории колебаний Физического института АН СССР этой же темой занимались старший научный сотрудник Александр Прохоров и его аспирант Николай Басов. В мае 1952 года на Общесоюзной конференции по радиоспектроскопии они сделали доклад о возможности создания квантового усилителя СВЧ– излучения, работающего на пучке молекул все того же аммиака. В 1964 году Таунс, Басов и Прохоров за эти исследования были удостоены Нобелевской премии.

Свет - это поток испускаемых атомами особых частиц - фотонов, или квантов электромагнитного излучения. Их следует представлять себе в виде отрезков волны, а не как частицы вещества. Каждый фотон несёт строго определённую порцию энергии, выброшенной атомом. Но чтобы атом мог излучать энергию, он должен иметь некоторый её запас.

Калининградский институт туризма -филиал рмат

Кафедра менеджмента и туристско-гостиничного бизнеса

Контрольная работа по истории

Тема:”Достижение в российской науке в 19 начале 20 века. “

Выполнила студентка 1 курса: Старцева Анастасия Владимировна.

Калининград

1. Научно-технические общества……………………………..3-4

2. Образование в России……………………………………….4-6

3. Развитие генетики, биологии, медицины………………...6-7

4. Совершенствование военной техники…………………….7-9

5. Развитие в области физики и химии …………………….9-10

6. Открытия в географии……………………………………..10

7.Список используемой литературы………………………...11


Этот период (конец 19-го, начало 20-го века) для развития культуры России в целом означал очень многое. Происходит подъём в литературе, архитектуре, живописи, музыке и др. Так же происходит значительный расцвет науки. В этот раз этот подъём отразился не только в культуре нашей страны, но и нашёл место за её пределы. В конце XIX - начале XX века произошла революция в естествознании, которая оказала огромное влияние на развитие общества. В этот период были сделаны крупнейшие научные открытия, которые привели к пересмотру прежних представлений об окружающем мире. Рассмотрим подробнее.

Научно-технические общества.

Столь высокому количеству открытий способствовало создание научных кружков, обществ. Они объединяли учёных, практиков, любителей-энтузиастов и существовали на взносы своих членов, частные пожертвования. Некоторые получали большие правительственные субсидии. Самыми известными были: Вольно экономическое общество (оно было основано ещё в 1756 г.), Общество истории и древностей (1804 г.) Географическое, Техническое, Физико-Химическое,

Ботаническое, Металлургическое, несколько медицинских, сельскохозяйственных и др. Наряду с известными научными кружками существовали тайные. Например, Общество Космонавтики. В него вошли Королёв, Циолковский и др. Они проводили свои опыты тайно, собирались в подвале одного дома (Не знаю его названия). Эти общества не только являлись центрами научно-исследовательской работы, но и широко пропагандировали научно-технические знания среди населения. Характерной чертой научной жизни того времени были съезды естествоиспытателей, врачей, инженеров, юристов, археологов и т.д.

Но всё же не научно-технические общества и кружки строят образование всей страны. Сами эти общества выходили из университетов, лицеев и др. Но отрицать их вклад в развитие науки в России нельзя.

Образование в России.

Процесс модернизации предусматривал не только коренные изменения в социально-экономической и политической сферах, но и существенное повышение грамотности, образовательного уровня населения. К чести правительства, эта потребность им учитывалась. Государство увеличило свои расходы на народное образование с 1900 по 1915 гг. более чем в пять раз! В период конца 19-го, начала 20-го века было проведено множество реформ образования. Было введено всеобщее начальное образование. Вводилось несколько типов начальных школ, наиболее распространенными из них были церковно-приходские (в 1905 г. Около 43 тыс.). Выросло число земских училищ. В 1904 г. Их было 20,7 тыс. а в 1914г. – 28,2 тыс. В 1900 г. В начальных школах Министерства народного просвещения обучалось более 2,5 млн. учащихся, а в 1914 г.- уже около 6 млн.

Началась перестройка системы среднего образования. Росло число гимназий и реальных училищ. В Гимназиях увеличилось количество часов, отводимых на изучение предметов естественно-математического цикла. Выпускникам реальных училищ было дано право поступать в высшие технические учебные заведения, а после сдачи экзамена по латинскому языку – на физико-математические факультеты университетов. (Отсюда и объяснение столь большого числа открытий в этой области).

По инициативе предпринимателей создавались коммерческие 7-8-летние училища, которые давали общеобразовательную и специальную подготовку. В них, в отличие от гимназии и реальных училищ, было введено совместное обучение юношей и девушек. В 1913 г. В 250 коммерческих училищах, находившихся под покровительством торгово-промышленного капитала, обучалось 55 тыс. человек, в том числе 10 тыс. девушек. Возросло количество средних специальных учебных заведений: промышленных, технических, железнодорожных и др.

Расширилась сеть высших учебных заведений: новые технические вузы появлялись в Петербурге, Новочеркасске, Томске, Харькове и др. В Саратове был открыт университет – в крупном промышленном центре Поволжья. Известным физиком П. Н. Лебедевым была открыта первая физическая школа. Для обеспечения реформы начальной школы в Москве и Петербурге открывались педагогические институты, а также свыше 30 высших женских курсов, положивших начало массовому доступу женщин к высшему образованию. К 1914 году насчитывалось около 100 высших учебных заведений, в которых обучалось примерно 130 тыс. человек. При этом 60% студентов не принадлежали к дворянскому сословию! Всего к 1917 году в России действовало 12 университетов, причем в годы Первой мировой войны университетскими городами стали Ростов-на-Дону и Воронеж (сюда эвакуировали соответственно Варшавский и Юрьевский университеты), а потом и Пермь, где открылся филиал Санкт-Петербургского университета. Особенно росли в популярности кадетские корпуса и военные училища.

Тем не менее, несмотря на успехи в деле образования, 3\4 населения страны оставалось неграмотными. Средняя и высшая школа из-за высокой платы за обучение была недоступна значительной части жителей России. На просвещение тратилось 43 коп. на душу населения, в то время как в Англии и Германии - около 4 руб., в США – 7 руб. (в переводе на наши деньги)

И всё же, несмотря на все недостатки, виден огромный прорыв в образовании, а значит и в науке. Тогдашние учебные заведения уже могли подготовить профессиональные кадры. Хотя в это время всё ещё пользовались приоритетом дворянские дети: вплоть до конца XIX в. классических гимназиях более 50% всех учеников приходилось на детей дворян и чиновников. Но с начала XX столетия положение меняется: в 1913 г. В гимназиях обучалось 27,5% детей дворян и чиновников, 39,4% - выходцев из городских и 26% - из сельских сословий.

В общем, ситуация с течением времени менялась в лучшую для развития науки в России сторону. И тяжелое политическое и социальное положение в стране не помешало этому рывку вперёд. Наконец образованию, а значит и науке было уделено достаточное внимание со стороны правителства!

Развитие генетики, биологии, медицины

Опираясь на достижения биологии (учение о клеточном строении организмов) и теорию чешского натуралиста Г.Менделя о факторах, влияющих на наследственность, немецкий ученый I А.Вейсман и американский ученый Т.Морган создали основы генетики - науки о передаче наследственных признаков в растительном и животном мире. Классические исследования в области физиологии сердечно - сосудистой системы, органов пищеварения осуществил русский ученый И.П.Павлов. В 1904 г. Ему была присуждена Нобелевская премия за исследован7ия в области физиологии пищеварения. В 1908 г. Нобелевскую премию получил И. И. Мечников за труды по иммунологии и инфекционным заболеваниям. Изучив влияние высшей нервной деятельности на ход физиологических процессов, он разработал теорию условных рефлексов.

Достижения биологии дали мощный толчок развитию медицины. Продолжая исследования выдающегося французского бактериолога Л.Пастера, сотрудники Пастеровского института в Париже впервые разработали предохранительные прививки против ряда болезней: сибирской язвы, куриной холеры и бешенства. Немецкий микробиолог Р.Кох и его многочисленные ученики открыли возбудителей туберкулеза, брюшного тифа, дифтерита, сифилиса и создали лекарства против них.

Благодаря успехам химии медицина пополнилась рядом новых препаратов. В лекарственном арсенале врачей появились широко известные ныне аспирин, пирамидон и другие средства. Врачами разных стран мира разрабатывались основы научной санитарии и гигиены, меры по профилактике и предупреждению эпидемий.

Совершенствование военной техники

Рост агрессивности ведущих держав, с одной стороны, и технические возможности, с другой, привели к быстрому развитию и совершенствованию военной техники. Американский инженер Х.Максим в 1883 г. изобрел станковый пулемет. Затем появились легкие пулеметы других систем. К началу Первой мировой войны было создано несколько типов автоматических винтовок. Тенденция к автоматизации наблюдалась и в артиллерии, где появились образцы полуавтоматических орудий.

Первые проекты боевой бронированной машины, названной впоследствии танком, были предложены в России (1911-1915) инженерами В.Д.Менделеевым, А.А.Пороховщиковым, А.А.Васильевым", в Великобритании -Де Молем (1912), в Австро-Венгрии - Г.Бурштыном (1913), но они не получили развития, хотя боевая машина Пороховщикова («Вездеход») была изготовлена в мае 1915 г. Англичане к осени 1916 г. создали несколько десятков танков («Марка-1») и 15 сентября первыми применили их в сражении близ р.Сомма (32 машины) во время Первой мировой войны. В ходе войны Франция производила танки «Рено», а у немцев они появились только в 1918г. Всего за время войны было выпущено в Великобритании - 2 900, Франции - 6 200, Германии - 100 танков.

Появление первых военных самолетов относится к 1909-1910 гг. В России самолеты в военных целях впервые были использованы на маневрах Петербургского, Варшавского и Киевского военных округов в 1911 г. В боевых действиях самолеты впервые применялись в ходе Балканских войн (1912-1913). К началу Первой мировой войны Россия имела 263 военных самолета (преимущественно французского производства), Франция -156, Великобритания - 30, США - 30, Германия - 232, Австро-Венгрия - 65.

В России в 1914 г. на вооружение был принят первый в мире бомбардировщик «Илья Муромец». В 1915 г. на вооружение поступили одноместные самолеты-истребители: во Франции «Ньюпорт» и «Спад», в Германии «Фоккер».