Моделирование в информатике - это что такое? Виды и этапы моделирования.

В данной работе мы предлагаем как можно подробно разобрать тему моделирования в информатике. Этот раздел имеет большое значение для подготовки будущих специалистов в сфере информационных технологий.

Для решения любой задачи (производственной или научной) информатика использует следующую цепочку:

В ней стоит уделить особое внимание понятию «модель». Без наличия данного звена решение задачи не будет возможным. Зачем же используется модель и что под данным термином понимается? Об этом мы и поговорим в следующем разделе.

Модель

Моделирование в информатике - это составление образа какого-либо реально существующего объекта, который отражает все существенные признаки и свойства. Модель для решения задачи необходима, так как она, собственно, и используется в процессе решения.

В школьном курсе информатики тема моделирования начинает изучаться еще в шестом классе. В самом начале детей необходимо познакомить с понятием модели. Что это такое?

  • Упрощенное подобие объекта;
  • Уменьшенная копия реального объекта;
  • Схема явления или процесса;
  • Изображение явления или процесса;
  • Описание явления или процесса;
  • Физический аналог объекта;
  • Информационный аналог;
  • Объект-заменитель, отражающий свойства реального объекта и так далее.

Модель - это очень широкое понятие, как это уже стало ясно из вышеперечисленного. Важно отметить, что все модели принято делить на группы:

  • материальные;
  • идеальные.

Под материальной моделью понимают предмет, основанный на реально существующем объекте. Это может быть какое-либо тело или процесс. Данную группу принято подразделять еще на два вида:

  • физические;
  • аналоговые.

Такая классификация носит условный характер, ведь четкую границу между двумя этими подвидами провести очень трудно.

Идеальную модель охарактеризовать еще труднее. Она связаны с:

  • мышлением;
  • воображением;
  • восприятием.

К ней можно отнести произведения искусства (театр, живопись, литература и так далее).

Цели моделирования

Моделирование в информатике - это очень важный этап, так как он преследует массу целей. Сейчас предлагаем с ними познакомиться.

В первую очередь моделирование помогает познать окружающий нас мир. Испокон веков люди накапливали полученные знания и передавали их своим потомкам. Таким образом появилась модель нашей планеты (глобус).

В прошлые века осуществлялось моделирование несуществующих объектов, которые сейчас прочно закрепились в нашей жизни (зонт, мельница и так далее). В настоящее время можелирование направлено на:

  • выявление последствий какого-либо процесса (увеличения стоимости проезда или утилизации химических отходов под землей);
  • обеспечение эффективности принимаемых решений.

Задачи моделирования

Информационная модель

Теперь поговорим еще об одном виде моделей, изучаемых в школьном курсе информатики. Компьютерное моделирование, которое необходимо освоить каждому будущему IT-специалисту, включает в себя процесс реализации информационной модели при помощи компьютерных средств. Но что это такое, информационная модель?

Она представляет собой целый перечень информации о каком-либо объекте. Что данная модель описывает, и какую полезную информацию несет:

  • свойства моделируемого объекта;
  • его состояние;
  • связи с окружающим миром;
  • отношения с внешними объектами.

Что может служить информационной моделью:

  • словесное описание;
  • текст;
  • рисунок;
  • таблица;
  • схема;
  • чертеж;
  • формула и так далее.

Отличительная особенность информационной модели заключается в том, что ее нельзя потрогать, попробовать на вкус и так далее. Она не несет материального воплощения, так как представлена в виде информации.

Системный подход к созданию модели

В каком классе школьной программы изучается моделирование? Информатика 9 класса знакомит учеников с данной темой более подробно. Именно в этом классе ребенок узнает о системном подходе моделирования. Предлагаем об этом поговорить немного подробнее.

Начнем с понятия «система». Это группа взаимосвязанных между собой элементов, которые действуют совместно для выполнения поставленной задачи. Для построения модели часто пользуются системным подходом, так как объект рассматривается как система, функционирующая в некоторой среде. Если моделируется какой-либо сложный объект, то систему принято разбивать на более мелкие части - подсистемы.

Цель использования

Сейчас мы рассмотрим цели моделирования (информатика 11 класс). Ранее говорилось, что все модели делятся на некоторые виды и классы, но границы между ними условны. Есть несколько признаков, по которым принято классифицировать модели: цель, область знаний, фактор времени, способ представления.

Что касается целей, то принято выделять следующие виды:

  • учебные;
  • опытные;
  • имитационные;
  • игровые;
  • научно-технические.

К первому виду относятся учебные материалы. Ко второму уменьшенные или увеличенные копии реальных объектов (модель сооружения, крыла самолета и так далее). позволяет предугадать исход какого-либо события. Имитационное моделирование часто применяется в медицине и социальной сфере. Наример, модель помогает понять, как люди отреагируют на ту или иную реформу? Прежде чем сделать серьезную операцию человеку по пересадке органа, было проведено множество опытов. Другими словами, имитационная модель позволяет решить проблему методом «проб и ошибок». Игровая модель - это своего рода экономическая, деловая или военная игра. С помощью данной модели можно предугадать поведение объекта в разных ситуациях. Научно-техническую модель используют для изучения какого-либо процесса или явления (прибор имитирующий грозовой разряд, модель движения планет Солнечной системы и так далее).

Область знаний

В каком классе учеников более подробно знакомят с моделированием? Информатика 9 класса делает упор на подготовку своих учеников к экзаменам для поступления в высшие учебные заведения. Так как в билетах ЕГЭ и ГИА встречаются вопросы по моделированию, то сейчас необходимо как можно подробнее рассмотреть эту тему. И так, как происходит классификация по области знаний? По данному признаку выделяют следующие виды:

  • биологические (например, искусственно вызванные у животных болезни, генетические нарушения, злокачественные новообразования);
  • поведения фирмы, модель формирования рыночной цены и так далее);
  • исторические (генеалогическое дерево, модели исторических событий, модель римского войска и тому подобное);
  • социологические (модель личного интереса, поведение банкиров при адаптации к новым экономическим условиям) и так далее.

Фактор времени

По данной характеристике различают два вида моделей:

  • динамические;
  • статические.

Уже, судя по одному названию, не трудно догадаться, что первый вид отражает функционирование, развитие и изменение какого-либо объекта во времени. Статическая наоборот способна описать объект в какой-то конкретный момент времени. Этот вид иногда называют структурным, так как модель отражает строение и параметры объекта, то есть дает срез информации о нем.

Примерами являются:

  • набор формул, отражающих движение планет Солнечной системы;
  • график изменения температуры воздуха;
  • видеозапись извержения вулкана и так далее.

Примерами статистической модели служат:

  • перечень планет Солнечной системы;
  • карта местности и так далее.

Способ представления

Для начала очень важно сказать, что все модели имеют вид и форму, они всегда из чего-то делаются, как-то представляются или описываются. По данному признаку принято таким образом:

  • материальные;
  • нематериальные.

К первому виду относятся материальные копии существующих объектов. Их можно потрогать, понюхать и так далее. Они отражают внешние или внутренние свойства, действия какого-либо объекта. Для чего нужны материальные модели? Они используются для экспериментального метода познания (опытного метода).

К нематериальным моделям мы уже тоже обращались ранее. Они используют теоретический метод познания. Такие модели принято называть идеальными либо абстрактными. Эта категория делится еще на несколько подвидов: воображаемые модели и информационные.

Информационные модели приводят перечень различной информации об объекте. В качестве информационной модели могут выступать таблицы, рисунки, словесные описания, схемы и так далее. Почему данную модель называют нематериальной? Все дело в том, что ее нельзя потрогать, так как она не имеет материального воплощения. Среди информационных моделей различают знаковые и наглядные.

Воображаемая модель - это один из Это творческий процесс, проходящий в воображении человека, который предшествует созданию материального объекта.

Этапы моделирования

Тема по информатике 9 класса «Моделирование и формализация» имеет большой вес. Она обязательна к изучению. В 9-11 классе преподаватель обязан познакомить учеников с этапами создания моделей. Этим мы сейчас и займемся. Итак, выделяют следующие этапы моделирования:

  • содержательная постановка задачи;
  • математическая постановка задачи;
  • разработки с использованием ЭВМ;
  • эксплуатация модели;
  • получение результата.

Важно отметить, что при изучении всего, что окружает нас, используется процессы моделирования, формализации. Информатика - это предмет, посвященный современным методам изучения и решения каких-либо проблем. Следовательно, упор делается на модели, которые можно реализовать при помощи ЭВМ. Особое внимание в этой теме следует уделить пункту разработки алгоритма решения при помощи электронно-вычислительных машин.

Связи между объектами

Теперь поговорим немного о связях между объектами. Всего выделяют три вида:

  • один к одному (обозначается такая связь односторонней стрелкой в одну или в другую сторону);
  • один ко многим (множественная связь обозначается двойной стрелкой);
  • многие ко многим (такая связь обозначается двойной стрелкой).

Важно отметить, что связи могут быть условными и безусловными. Безусловная связь предполагает использование каждого экземпляра объекта. А в условной задействованы только отдельные элементы.


Вывод. Любой язык является одним из способов формализации.
УЭ-5 Цель: уметь применять основной принцип формализацииЗадание 1
Подобный материал:
  • Лекция 5 Методы построения математических моделей асу , 53.76kb.
  • Лекция 1 Тема: Введение в экономико-математическое моделирование , 121.17kb.
  • Тема урока Основные понятия , 1555.36kb.
  • Моделирование фартука Цель урока , 68.15kb.
  • Лекции по дисциплине «Социальное моделирование и программирование» , 44.69kb.
  • Лекция Моделирование физических процессов , 111.71kb.
  • Термины и понятия (лекция) , 51.44kb.
  • Лекция равновесие на товарном рынке. Простая кейнсианская модель или модель «кейнсианского , 1285.07kb.
  • 1 11 Тема 2 12 тема 3 13 Тема 4 14 Тема 5 15 Тема 6 17 Тема 7 20 Тема 8 22 Тема , 284.17kb.
  • Моделирование и формализация Моделирование как метод познания Моделирование , 143.04kb.
Лекция №1

Тема : «Модель и моделирование»

УЭ-0 Интегрирующая цель : усвоив понятие о моделях и моделировании попробуем сформулировать основной тезис формализации и закрепить его на примерах.

УЭ-1 Цель: выясним, что мы знаем о моделях и моделировании вообще, попробуем дать определение модели и моделированию


Познакомься с примером и выдели главное

Главный термин

1. Маленькие дети больше всего любят играть в машинки, куклы, плюшевых мишек и т.д. Общим свойством этих игрушек является то, что они 

Похожи на людей, технику или животных, которых они представляют в детских играх

2. Возможные конструкторы позволяют построить макеты зданий, космических станций, интерьера комнат, причем часто «выдуманных», не существующих в действительности 

Макеты

3.А ещё дети любят играть в строителей, в школу, в магазин. В этом случае в игре они 

Воспроизводят отношения , которые складываются в процессе совместной деятельности людей.

4.Конструкторы разрабатывают новый самолетный двигатель. Как он поведет себя в сложных погодных условиях, будет ли достаточно надежен?. Осуществлять проверку в реальных условиях невозможно по нескольким причинам (каким?) . Но ведь можно 

…….представить все возможные полетные условия на специальных испытательных стендах. Это и безопасно и диапазон условий можно выбрать достаточно широкий.

Вывод:

  1. Во всех примерах есть объект, который мы хотим как-то описать или представить (объект моделирования )
  2. Любая создаваемая модель, каким-то образом соответствует объекту, подобна ему. Причем соответствие может быть по внешнему виду (похожесть), по структуре (выделены составляющие элементы объекта и указаны их взаимосвязи), по поведению (модель реагирует на внешние взаимодействия так же как это делает объект, либо находится в подобных отношениях с другими объектами)
  3. любая модель строится в соответствии с некоторой целью , которая заранее определяется тем, кто занимается моделированием, т.е. субъектом моделирования (человеком).
  4. Модель является либо представлением ( реальным, воображаемым или изобразительным), либо описанием некоторых свойств объекта. Выбираются те или иные свойства в зависимости от того, с какой целью строится модель, для чего она предназначена. Такие свойства называются существенными для данной модели с точки зрения целей моделирования (существенность является понятием относительным в зависимости от решаемой задачи)
  5. Модель создается для получения информации об объекте, необходимой для решения поставленной задачи. Следовательно, в зависимости от решаемой задачи один и тот же объект может иметь много моделей
С какой целью создаются модели?

(любое познание, а научное в особенности, не мыслиться без построения и исследования моделей, их уточнения в процессе дальнейшей экспериментальной работы или признания их противоречивости и перехода к другим моделям изучаемого объекта, менее противоречивым или более прогностичным. Любое распространение знаний также основано на «передаче» моделей.

Модели Солнечной системы Птолемея, Н. Коперника и Г Галилея, модели рассуждений в логике Аристотеля, геометрические модели, построенные Евклидом, Н. Лобачевским, Б.Риманом - все они составляют основу нашего представления о мире, являются системобразующими элементами нашего знания)

Следовательно, модель - новый объект,который отражает некоторые стороны изучаемого объекта, процесса или явления, существенные с точки зрения целей моделирования.

Все модели делятся на три класса:

  1. Материальные (натурные) модели - уменьшенные или увеличенные копии, воспроизводящие внешний вид моделируемого объекта, его структуру (глобус, модель кристаллической решетки ), или поведение (модель самолета, велотренажер ), макеты, муляжи, эталоны
  2. Воображаемые модели (геометрическая точка, математический маятник, идеальный газ, бесконечность )
  3. Информационные модели - описание моделируемого объекта на одном из языков кодирования информации (словесное описание, схемы, чертежи, карты, рисунки, научные формулы, программы и т.д )

Моделирование - это:

    1. построение моделей реально существующих объектов
    2. замена реального объекта его подходящей копией
    3. исследование объектов познания на их моделях
Моделирование является неотъемлемым элементом любой целенаправленной деятельности

Моделирование представляет собой один из основных методов познания

УЭ-2 Цель: уметь, используя понятия модель и моделирование, сформулировать этапы построения моделей

Предположим, что есть объект моделирования и определена цель построения данной модели объекта. С чего начать? Что дальше?

Этапы моделирования:

  1. Постановка цели моделирования. Цель моделирования возникает, когда субъект моделирования решает стоящую перед ним задачу, и зависит как от решаемой задачи , так и от субъекта моделирования . (То есть цель моделирования имеет двойственную природу: с одной стороны, она объективна, т.к. вытекает из задачи исследования, с другой - субъективна, поскольку исследователь всегда корректирует её в зависимости от опыта, интересов, мотивов деятельности)
  2. Анализ объекта и выделение всех его известных свойств
  3. Анализ выделенных свойств с точки зрения цели моделирования и определение, какие из них следует считать существенными
  4. Выбор формы представления модели
  5. Формализация, т.е приведение существенных свойств и признаков объекта моделирования к выбранной форме. Формами представления информационной модели могут быть: словесное описание, таблица, рисунок, схема, чертёж, формула, алгоритм, компьютерная программа и т.п
  6. Анализ полученной модели на непротиворечивость. Если модель не противоречит реальному объекту то перейти к следующему этапу, в противном случае переходим ко второму этапу
  7. Анализ адекватности полученной модели объекту и цели моделирования. Модель адекватна реальному объекту, следовательно, моделирование прошло успешно, в противном случае перейти ко второму этапу.

УЭ-3 Цель: проверим наши знания:

Определить в чем заключается противоречивость следующих моделей (если таковая есть)

  1. Модель - словесное описание образа.
«Я живу в высотном доме на последнем – втором – этаж. Наша квартира большая и светлая, её единственное окно выходит на северную сторону. Моя домашняя библиотека маленькая, в ней всего 5000 томов»
  1. Модели - математическая формула
  1. Модель - описания поведения
Смотрит, а не видит. Слушает, а не слышит
  1. Модель - описания ситуации
« Я потерял себя. Меня объял испуг.

Но вот себя в тебе я обнаружил вдруг…

Сколь омрачен мой дух, вселившийся в тебя!..

…Но от себя меня не отдавай мне более…

И нет меня во мне, когда я не с тобою».

Поэт XVII века П. Флеминг

УЭ-3 . Цель: Как понять основной тезис формализации. Попробуем его сформулировать, опираясь на известные понятия и определения.

В процессе познания и общения мы сталкиваемся с формализацией на каждом шагу: форму лируем мысли, оформ ляем отчеты, заполняем всевозможные формуляры, преобразуем формулы.

В общем виде формализация понимается как сведение некоторого содержания (содержания некоторого текста, смысла научной теории, воспринимаемых сигналов) к выбранной форме.

Возможность формализации опирается на фундаментальное положение, которое мы будем называть основным тезисом формализации. Суть его состоит в принципиальной возможности разделения объекта и его обозначения (имени объекта)

Из основного тезиса формализации следует сама идея моделирования. Поскольку объект нужно как-то обозначать, то необходимо ввести некоторый набор знаков для обозначения. Знак – это элемент конечного множества отличных друг от друга элементов.

Свобода выбора обозначений и многозначность соответствия знак – обозначение, создают проблему понимания, какой объект обозначается данным знаком в конкретной ситуации. Причем это понимание должно быть более или менее одинаковым для разных людей. В противном случае общение невозможно. Следовательно, чтобы обеспечить нормальное общение, нужно договориться о правилах использования знаков, т.е. выработать язык – знаковую систему, используемую для целей коммуникации и познания.

Все языки можно разделить на искусственные и естественные . Естественными языками называют обычные, «разговорные» языки, которые складываются в течение долгого времени.

Искусственные языки создаются людьми для специальных целей или для определенных групп людей. Примеры искусственных языков: язык математики, язык программирования. Характерной особенностью искусственных языков является однозначная определенность их словаря, правил образования выражений и правил придания им значений.

Естественный и искусственный языки обладают набором правил . Они могут быть явно и строго сформулированными (формализованными), а могут допускать различные варианты их использования.

Язык выступает инструментом, с помощью которого можно создавать различные конструкции для описания объектов, их внешнего вида, свойств, структуры, поведения, отношений между ними и пр. Такие конструкции являются информационными моделями.

Вывод.

Любой язык является одним из способов формализации. Разница в том, что специальные языки - это строго формализованные системы, а естественные языки - частично формализованные системы

Язык характеризуется:

  1. Набором используемых знаков,
  2. Правилами образования из этих знаков - слов, фраз и текстов
  3. Набором синтаксических (структура слов и предложений), семантических (смысловой, т.е. правила интерпретации знаков и составленных из них выражений) и прагматических (отношение между знаковыми системами и теми, кто ими пользуется) правил использования этих языковых конструкций

Упорядоченный набор знаков, используемый в языке, называется - алфавитом

УЭ-5 Цель: уметь применять основной принцип формализации

Задание 1

Предложите несколько различных знаков - словесных и графических - для обозначения или выражения следующих объектов:

  1. сигнала, смысл которого в правилах дорожного движения - запрещение движения в данном направлении
  2. манипулятора типа мышь
  3. чувства радости
  4. вашего учебного заведения
  5. набора компьютерных программ для обработки текстовых документов

Задание 2

Поставьте в соответствие каждому знаку из левой колонки таблицы его возможный денотат


Знак

Денотат (обозначаемый объект)
  1. Слово «Дерево»
  1. Операция удаления, выполняемая PC
  1. Этикетка к товару
  1. Пальто и шляпа
  1. Номер в гардеробе
  1. Определение пройденного пути
  1. Чертеж болта
  1. Товар ценой в 1 рубель
  1. Клавиша Delete на клавиатуре
  1. Растение, имеющее ствол, корень и ветви
  1. Формула S=vt
  1. Ожидание опасности
  1. Рублевая ассигнация
  1. Товар
  1. Красный сигнал светофора
  1. Запрещение движения
  1. Звук набата

Выполните задание, проверьте себя.

Общая цель моделирования подчинена цели любых естественно-научных исследований – прогнозировать результаты предстоящих экспериментов (в том числе результаты эксплуатации любых устройств и систем).

1. Обеспечить поддержку принятия решений при решении тактических и стратегических задач управления. Существует иерархия задач управления технологическими комплексами. На верхнем уровне решаются задачи планирования производства, материально-технического снабжения и реализации продукции. На нижележащих уровнях иерархии решаются задачи распределения программы выпуска продукции на весь плановый период, задачи календарного планирования и текущего управления. Этой иерархии задач соответствует иерархия математических моделей.

Успех управления в значительной мере зависит от возможности и своевременности использования информации на всех организационных уровнях.

Стратегические задачи связаны с созданием новых или реконструкцией существующих объектов. Тактические задачи связаны с изменением технологических режимов и решаются при условии, что структура объекта сохраняется.

Например, математические модели, поддерживающие решения стратегических задач, позволяют прогнозировать развитие проектируемого предприятия и разрабатывать меры, направленные на предотвращение, ликвидацию или ограничение опасных последствий горных работ.

Основной чертой современных информационных систем является обилие информации, вследствие чего возрастает значение ее адекватного отбора.

Совместно обрабатывая разнородную информацию (результаты экспресс-контроля, показания датчиков, результаты экспертных оценок), необходимо осуществить селекцию (отбор) той информации, которая совместима с известными закономерностями процесса, имеющими, например, вид аналитических моделей.

Качественная и количественная селекция информации позволяет повысить эффективность управления.

Таким образом, математическая модель выполняет роль связующего элемента всей информации о ходе исследуемого процесса и позволяет ответить на следующие вопросы.

Какова существующая технологическая ситуация? Ответ на этот вопрос требует интерпретации потока сообщений, поступающих от объекта, и отнесения существующей ситуации к определенному классу.

Какие ресурсы необходимы для ведения процесса на прогнозируемом интервале времени?

Как нужно изменить технологический режим для предотвращения аварийных ситуаций и оптимизации технологического режима? Ответ на последний вопрос подразумевает наличие прогнозирования развития технологической ситуации и знание соответствующих регулировочных характеристик.

2. Заменить недопустимые на реальном объекте опыты экспериментами на его модели. Модели реальных объектов издавна используются в науке и технике для проверки идей, отработки гипотез, получения экспериментального материала. Так, при проектировании карьера возникает задача определения его глубины и конечных границ. Для решения этой задачи необходима математическая модель месторождения, позволяющая из различных вариантов выбрать оптимальный, исходя из минимизации затрат на разработку всех запасов руды. При этом мы заменяем недопустимые на реальном объекте опыты вычислительными экспериментами на его модели. Необходимым условием успешности такого подхода является соответствие модели реальному объекту.

3. Свести исследование реального, “нематематического” объекта к решению математической задачи. Такое сведение открывает возможность использования для изучения реального объекта хорошо разработанного математического аппарата и мощной вычислительной техники. Необходимо отметить, что математические модели – это не только уравнения математической задачи, но и условия их применимости.

Уместно напомнить девиз британского Королевского научного общества: “Ничего словами!” Все научные положения должны основываться на математических доказательствах и подтверждаться результатами экспериментов.

Математическая модель – это всегда приближенное, упрощенное представление объекта. Отсюда следует, что моделей, характеризующих один и тот же объект с одних и тех же позиций, может быть много и можно говорить о “хороших” и “плохих” моделях с точки зрения определенных критериев.

Всякая математическая модель является схемой исследуемого явления, из которой с помощью формальной логики можно извлекать следствия, касающиеся свойств этого явления.

4. Получить эффективный инструмент исследования сложных систем. Математическое моделирование является эффективным инструментом исследования сложных систем. Один из основоположников применения математических методов в биологии А. А. Ляпунов считал, что “это единственная возможность отчетливого совместного рассмотрения ряда одновременно протекающих процессов и выбора разумного способа вмешательства в их течение, т. е. управления ими”.

5. Обобщить знания, накопленные об объекте. Модели служат как бы аккумуляторами знаний об объектах.

С помощью моделей можно имитировать функционирование и прогнозировать будущие свойства объектов или их свойства в новых, ранее не описанных ситуациях. Моделирование позволяет сократить число необходимых опытов и наблюдений и более четко интерпретировать их результаты.

Модели выполняют особую смыслообразующую роль в системе научного знания. Если модель адекватна реальному объекту, то это свидетельствует с большой вероятностью о том, что мы правильно понимаем процессы, происходящие в реальном объекте.

Создавая модель, исследователь “познает” систему , т. е. выделяет ее из окружающей среды и строит ее формальное описание в соответствии с поставленными целями, задачами и имеющимися возможностями.

Важнейшей характеристикой математической модели является ее проблемная ориентированность , т. е. математическая модель всегда ориентирована на решение определенных проблем, например, повышение стабильности качественных характеристик товарной продукции, снижение потерь, повышение надежности и т. д. Назвав проблему, мы определяем систему выходных переменных (показателей процесса).

Разнообразие целей моделирования хорошо иллюстрируется перечнем задач, связанных с бизнес-процессами, когда требуется получить описание финансовых, производственных, логистических и маркетинговых характеристик затрат, доходов, прибыли, инвестиций, производственных мощностей, каналов снабжения и сбыта, процессов, функций, информационных потоков, организационных структур и т. д.

Средства построения моделей определяются видами моделей и пристрастиями разработчика. Так, язык IDEF0 используется для описания связи функций друг с другом по входам, выходам, контролю и исполнению. Модели “сущность – связь” используют для описания параметров объекта и взаимозависимости между ними для проектирования БД. Потоковые модели (Data Flow Diagrams) предназначены для описания связей функциональной и информационной моделей – какие функции, какими потоками данных управляют.

Рассмотрим теперь вопрос, для чего вообще нужно моделирование, в каких случаях можно обойтись без модели, исследуя собственно саму систему?

Моделирование имеет две основных цели:

- Прогнозирование , когда необходимо предсказать новые свойства или новые результаты (параметры) исследуемых систем, когда необходимо спрогнозировать развитие процесса.

Например, предприятие занимается составлением перспективного плана своего развития. Естественно, что для решения этой задачи необходимо проанализировать динамику развития рынка и спроса на продукцию предприятия. Но прогноз просто так, «глядя в потолок» не построишь. Единственный путь - построить математическую модель динамики спроса. В экономике моделирование применяется повсеместно. Если модель адекватна, то можно получить достаточно обоснованные перспективы развития предприятия. Во всяком случае, это будет хорошей поддержкой для принятия управленческих решений. Такие модели строятся и на уровне экономики Государства, отрасли, на уровне предприятии и на уровне решения локальных управленческих задач.

Но существуют процессы, которые смоделировать не только сложно, но и практически не возможно. Например, спрогнозировать динамику фондового рынка или курса доллара не получается - слишком много случайных факторов влияют на процесс. Модель получается не адекватная.

- Оптимизация управления, когда необходимо организовать процесс управления какой - либо системой или процессом нужным (или оптимальным) способом. Такая цель ставится при решении локальных управленческих задач, в основном экономических.

Например,предприятие выпускает большой ассортимент продукции, себестоимость выпуска которой различна и прибыль от реализации различных товаров так же различна. Требуется так построить производственный план, что бы прибыль была максимальной.

У человека всегда имеется две возможностидля достижения этих целей: провести исследования, экспериментируя непосредственно с реальной системой (натурные эксперименты), либо построить модель.

В каких случаях строятся модели? Модели строят только тогда, когда без них обойтись нельзя, поскольку моделирование - трудоемкая и дорогостоящая процедура. В случаях же, когда можно проводить прямое исследование систем, обходятся без моделей.

Бывают ситуации, когда модель построить нельзя, мы просто не имеем информации о реальном объекте. Такая ситуация называется «черный ящик». Здесь исследование будет заключаться в непосредственном воздействии на объект (в эксперименте) и фиксации реакций объекта.

Модели создаются, когда необходимо определить свойства и характеристики проектируемых объектов еще до их изготовления и при необходимости скорректировать, уточнить их структуру и параметры. Это позволяет получить проект работоспособной системы, которую не придется существенно дорабатывать тогда, когда она будет изготовлена. Таким образом, моделирование сокращает и удешевляет процесс проектирования и реализации систем.


Модели создаются, когда необходимо проверить поведение объектов в экстремальных условиях и режимах, с тем, чтобы знать, как они себя поведут и к каким последствиям это приведет. Очевидно, что такие эксперименты на реальном объекте могут быть не только дороги, но и небезопасны, в то время как моделирование позволяет получить нужную информацию о процессе или системе без лишних затрат и, главное, без негативных последствий.

Модель строится там, где непосредственное экспериментальное исследование может быть вообще неосуществимо. В ряде же случаев мы вообще не имеем возможности наблюдать систему в интересующем нас состоянии. Например, разбор аварии на техническом объекте приходится вести по ее протокольному описанию. Или, например, прогноз поведения космического корабля на орбите. Имеется в виду этап первоначальных исследований, до первого запуска космических аппаратов .

Таким образом, моделирование позволяет исследовать такие системы, прямой эксперимент с которыми:

Трудно выполним;

Экономически невыгоден;

Вообще невозможен.

Формальная схема моделирования

Рассмотрим саму схему моделирования, как происходит замещение объекта моделью.

Пусть мы имеем некоторую систему (объект - оригинал) А . Мы собираемся исследовать ее свойства S с помощью модели (например, математической модели).

Моделирование предполагает наличие некоторых знаний о системе.

Рис.1. Общая схема моделирования.

На основании имеющейся информации в нашем сознании формируется некоторый образ системы. По определению, образ - целостное, но неполное представление системы, является продуктом психической деятельности человека.

Если исходная информация отсутствует, то и модель построить невозможно. В этом случае мы имеем ситуацию типа «черный ящик». Образ системы не сформирован. Исследование объекта производится методом проб.

Основное свойство образа - он не может быть адекватен системе, поскольку всей информации получить невозможно, иначе не было бы смысла строить модель.

Прежде чем строить саму математическую модель, мы описываем исследуемую систему и ее предполагаемые свойства на содержательном уровне.

Необходимо помнить, что модель создается для решения конкретной практической задачи. В практике математического моделирования исходным пунктом является некоторая эмпирическая ситуация. То есть появляется задача, на которую требуется найти ответ. Выдержит ли мост предполагаемую нагрузку, хватит ли закупленного угля до конца отопительного сезона и сколько, откуда и куда следует привезти груза, - иными словами, необходимо получить конкретные ответы на конкретные вопросы.

Содержательное описание системы уже само является моделью. Такая содержательная модель называется концептуальной. Она содержит описание структуры, предполагаемых свойств, связей и известные значения параметров. Здесь формулируются гипотезы о поведении системы и все ограничения применимости будущей математической модели. Построение концептуальной модели является первым этапом моделирования.

Далее выбираем математический аппарат и создаем систему уравнений или арифметических соотношений. Таким образом мы создаем некоторый искусственный (математический) объект А, исследование которого средствами математики и должно ответить на поставленные вопросы о свойствах S системы. Мы переводим концептуальную модель на формальный математический язык.

В такой постановке А называется математической моделью системы А относительно совокупности S ее свойств.

В действительности мы моделируем не реальную систему А, а ее образ, сформированный нашим сознанием.

Результаты моделирования сравниваются со свойствами системы. Мы уточняем образ и соответственно модель.

Моделирование, как мы видим из схемы - процесс циклический. Это означает, что за первым циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. В процессе моделирования и познания свойств, образ все больше приближается к реальному объекту. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах.

Формальная схема моделирования включает ряд последовательных этапов:

Постановка задачи;

Выбор нужного инструментария (математического аппарата) для модели;

Построение математической модели (переводисходной информации на математический язык - концептуальной модели в математическую);

Если модель реализуется программно, то существует этап разработки алгоритма и собственно программирования;

Интерпретация результатов моделирования;

Оценка валидности модели (валидность - достоверность результатов, способность выполнять задачу).

МНОГООБРАЗИЕ МОДЕЛЕЙ СИСТЕМ

Общая классификация

Прежде, чем приступать к моделированию, необходимо определиться какую модель мы собираемся создавать. Существуют различные виды моделей и различные признаки их классификации.

Чаще встречается классификация моделей по способам реализации (исполнения), это наиболее полная классификация, хотя четкой границы между классами провести всегда сложно.

По этому признаку все множество моделей можно разделить на три основных класса: физические, виртуальные и абстрактные.


Рис.2. Общая классификация моделей (по форме представления)

Физические модели (они часто называются предметными).

Физические модели — это материальные модели, эквивалентные или подобные в той или иной степени оригиналу. В общем случае у физических моделей процесс функционирования такой же, как у оригинала. Он имеет ту же, или подобную физическую природу. Они различаются по критерию подобия. Критерием подобия является безразмерная величина, представляющая отношение одноименных физических величин объекта и модели.

- Геометрически подобные , масштабные. Эти модели воспроизводят пространственно- геометрические характеристики оригинала (макеты зданий и сооружений, учебные муляжи, большинство детских игрушек и др.). Критерием подобия является соотношение размеров.

Иногда физические модели выполняют в натуральную величину, например, при создании макетов космических модулей. Тогда критерий подобия равен единице.

- Физические модели . Они могут строиться на основании подобия любой физической величины, характеризующей свойства оригинала (аэродинамические модели летательных аппаратов, гидродинамические модели судов и т.п.).

Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и параметры реального, но еще не существующего объекта.

- Аналоговые или приборные . Аналоговое моделирование основано на том, что свойства и параметры воспроизводятся с помощью модели иной, чем у оригинала физической природы. Например, моделью колебательных систем может быть электрический колебательный контур (школа), состоящий из индуктивности, емкости, сопротивлений, проводов, источника электричества.

Виртуальные модели.

Виртуальные модели - это в основном компьютерные визуальные модели реального или придуманного пространства (виртуальный - это кажущийся). Из определения понятно, что моделируются свойства некоторого пространства с эффектом присутствия в этом пространстве самого пользователя.

Интернет так же является моделью виртуального пространства. В этом пространстве реализуется вполне реально мировая интернет-экономика.

К виртуальным моделям относятся различные тренажеры. Например, тренажеры летного состава. Моделирование различных ситуаций на таком тренажере настолько реальны, что по физической и психологической нагрузке на человека такие модели практически не отличаются от реальных процессов.

В настоящее время виртуальные модели находят широкое использование в учебной практике. Как известно, процесс обучения может осуществляться в форме усвоения обучаемым «готового» знания и в форме учебного исследования. Источник готового знания - это книга. Учебное исследование - это эксперимент. Виртуальная обучающая модель (манипулятивная динамическая модель) как раз и дает возможность проведения экспериментов с объектами виртуальной учебной среды. Это метод компьютерного воссоздания формы, структуры, функций какой либо живой системы, либо неживой природы. Обучающийся в интерактивном режиме может изменять параметры системы, исследуя ее реакцию изучать саму систему с различных сторон ее проявления. Это новая информационная культура обучения.

К некомпьютерным виртуальным моделям можно отнести словесный портрет, используемый в криминалистике. Живопись, кинофильм - все это фактически виртуальные модели, поскольку создают виртуальную среду сопереживания человека.

Абстрактные модели.

Абстрактные модели часто называются информационными. Они отражают информационную сторону системы с помощью языковых, математических, графических, алгоритмических и других средств абстрагирования. Они не имеют физического сходства с оригиналом и не обладают его физическими свойствами. В абстрактных моделях физические свойства системы представлены их формализованными, абстрактными, символическими отображениями.

Следует отметить, что границы между классами моделей провести, достаточно четко не удается. Поэтому классификация не всегда бывает однозначной. Например, виртуальные компьютерные модели, используемые в процессе преподавания школьникам естественных наук. С одной стороны, действительно, это виртуальные модели. Они организуют деятельность учащихся в виртуальной среде, максимально приближенной средствами компьютерной графики к процессу реализации реальных экспериментов. С другой стороны, эти модели вполне законно можно отнести к классу абстрактных моделей. Они фактически являются компьютерной реализацией дифференциальных уравнений, моделирующих реальные физические процессы.

Абстрактные модели можно разделить на концептуальные, графические и математические.

Концептуальными моделями являются языковые (вербальные) описания систем (описание свойств и параметров на некотором естественном языке, текстовые материалы проектной документации, словесное описание результатов технического эксперимента).

Графическая модель - это представление систем средствами графики.

К графическим моделям относятся графы, графики, логические схемы и т.д. Блок-схемы алгоритмов программ так же являются графическими моделями.

Сюда же можно отнести конструкторские чертежи, графические изображения объектов. Хотя геометрия и является одной из отраслей математики, целесообразно к этому классу отнести и геометрические модели объектов.

Математические модели представляют собой формализованное описание изучаемой системы с помощью абстрактного языка, в частности, с помощью формул, уравнений, неравенств, логических условий, матриц, операторов и т. д., отображающих процесс функционирования системы.