Галактическое скопление. Скопления галактик

Одной из самых загадочных на сегодняшний день наук является астрономия. В ней, как ни в какой другой столько вопросов, на которые мы не можем, но пытаемся найти ответы. Одним из таких глобальных вопросов является вопрос о возникновении и распределении различных форм материи нашей Вселенной. Когда с момента Большого Взрыва праматерия начала сформировываться в звёзды и галактики, которые мы можем наблюдать сегодня? Если предположить, что перед начавшимся сжатием материи, она была в большей или меньшей степени рассеяна, могла ли тогда Вселенная на начальной стадии своей эволюции заполниться различными типами вещества? Последние исследования в этой области помогают ответить на эти и другие вопросы, связанные с эволюцией вещества нашей Метагалактики. А недавние наблюдения подтверждают наличие сверхскоплений галактик-организованных структур, состоящих из множества скоплений галактик. Каждое такое скопление, в свою очередь, может состоять из сотен или даже тысяч индивидуальных галактик. Наличие таких сверхскоплений долгое время было лишь предположением, из-за того, что с их подтверждением был связан один большой парадокс, ставивших учёных в тупик: в некоторых, столь же больших участках космического пространства галактик не было вовсе.

Такие сверхскопления галактик столь обширны, что отдельные их члены двигаясь с произвольными скоростями, не могут пресечь больше половины диаметра всего сверхскопления в течение миллиардов лет с момента их возникновения. Очевидно, что исторически сложившиеся сверхскопления по своему устройству не имеют аналогов с подомными им меньшими системами. В масштабах меньших, чем такие сверхскопления, первоначальные распределение материи, было, скажем так, изменено эволюционным «миксингом». Астрономы надеются, что понимание и объяснение таких огромных конструкций в нашей Вселенной прояснит процессы, которые дали толчок к развитию структуры всех измерений: от галактик к звёздам и планетам.

На сегодняшний день невозможно определить, кто первым выдвинул идею о том, что скопления галактик могут быть членами много больших структур, названных сверхскоплениями галактик. Внегалактическая астрономия, наблюдения в рентгеновских, ультрафиолетовых и инфракрасных участках спектра открыли, да и продолжают открывать всё новые и новые тайны нашей Вселенной и справедливо будет сказать, что наиболее важная космологическая информация была собрана наземными телескопами в видимых и невидимых лучах.

Даже за долго до изобретения телескопа, наблюдатели могли созерцать в ночном небе не только звёзды и планеты, но также и маленькие туманные облачка света. После создания крупных телескопов в 19-том веке, некоторые из таких туманностей были разрешены на отдельные звёзды. Поначалу их считали самостоятельными звёздными системами, находящимися вдалеке от нашей собственной галактики. Впервые, такие туманности были описаны в каталоге Джона Гершеля в 1864 году. Назывался он GC (General Catalogue), а позднее в 1888 году в каталоге Дрейера (New General Catalogue.)

В последствии, астрономы, которые верили, что некоторые туманности составили одинокие системы, начали говорить о том, что такие объекты обладают тенденцией сформировываться в скопления. В 1908 году шведский астроном С.Чарлиер выдвинул идею о «иерархической» структуре скоплений. Он выделил несколько таких скоплений, из которых самыми большими были скопления в созвездиях Девы и Волосы Вероники. В 1922 году английский учёный Дж. Рейнолдс выяснил, что группа «туманностей» простирался от Большой Медведицы через Волосы Вероники в Деву, покрывая расстояние около 40о северного неба. Рейнолдс полагал также, что эти «туманности» были частью нашей собственной звёздной системы. Может быть, он был первым, кто вообще отождествил эти объекты, сейчас называемые Местной группой галактик, частью которой является и наша галактика.

К середине 1920-х годов Эдвин Пауэл Хаббл с обсерватории Маунт Вилсон доказал, что многие из этих «туманностей» составляли одиночные системы. К 1929 году он опубликовал совместно с М.Хьюмансоном своё исследование, посвящённое тому, что «чем удалённее галактика, тем больше её свет смещается в красную сторону спектра».Такое красное смещение, как известно, является своеобразным показателем того, насколько быстро галактика удаляется от нас в рамках всеобщего расширения космического пространства. Сегодня, красное смещение названо законом Хаббла, которое, помимо всего прочего, является основой современной наблюдательной космологии.

Значение красного смещения (z) вычисляется вычитанием остатка длинны волны красного смещения галактических спектральных линий от наблюдаемой длинны волны и делением оставшейся длинны. Наибольшее значение красного смещения найденной Хьюмансоном (в конце 40-х) составило 2, и было равно 60000 км/с. или 20% скорости света. Такая галактика находилась от нас на расстоянии около 2,6 млрд. световых лет. Но самыми удалёнными от нас объектами являются, конечно же, квазары, чьё красное смещение >=3,5. Они удаляются от нас со скоростью около 90% скорости света и находятся в 15 млрд. св. лет.

В 1930-х Хаббл и Харлоу Шепли (Гарвардская обсерватория) обратили внимание на то, что на северном небе число ярких галактик больше, чем на южном. Хаббл, также, сфотографировал огромное количество слабых галактик и был уверен, что нашёл возможный конец феномену скоплений, хотя это было только начало больших открытий, которые ждали нас впереди. Ещё один, очень важный и значительный вклад в науку Хаббл сделал, когда классифицировал различные формы галактик, известных в то время. Вкратце, об этой классификации можно сказать, что все галактики Хаббл разделил на два главных класса: эллиптические и спиральные, делящиеся, в свою очередь, ещё на несколько классов… К 1950 году, учёные могли согласиться с общей характеристикой скоплений галактик. Из известных тогда нескольких таких скоплений, наиболее крупным было скопление в Волосах Вероники, которое насчитывало более 1000 индивидуальных галактик. Такие скопления в большинстве своём состояли из эллиптических и SO галактик. Не более половины всех галактик располагались внутри таких скоплений; остальные, называвшиеся, «полевыми» объектами, считались изолированными звёздными системами (в большинстве своём спиральными), лежащими вне скоплений. Несколько астрономов предположили, что область в Деве может состоять больше чем из просто скопления и гипотеза, предложенная Чарлиером об иерархической структуре гораздо более крупных скоплений была подвергнута сомнениям исследованиями Хаббла по подсчёту удалённых галактик.

Ж.Вакулер из Техасского университета в Остине, который занимался изучением более ярких галактик в северном галактическом полушарии с начала 50-х, был первым, кто определил и описал ближайшее к нам скопление. Согласно его исследованиям, оно расположено в скоплении Девы в 60 св. годах от нас и может иметь до 50 внерасположенных скоплений, названных группами, содержащими индивидуальные галактики, разбросанные между такими группами. Наша галактика находится в одном из скоплений, которое астрономы назвали Местной группой галактик, причём так, что она вне сверхскопления.

Второе великое открытие 50-80-х гг. — это растущая уверенность в том, что Местное сверхскопление не уникальное явление во Вселенной. Между 1950 и 1954 гг. всё северное небо было обозрено с широкоугольным 1,2м. телескопом им. Шмидта на горе Паломар. (Широко известный Паломарский обзор неба.) Вскоре после этого, Дж. Абелл из Калифорнийского университета в Лос-Анджелесе составил каталог 2712 больших скоплений галактик. Абелл заметил, что многие из таких скоплений, казалось, были членами сверхскоплений, состоящих, в среднем, из 5-6 скоплений каждое. Его предложение, однако, основывалось на данных другого каталога скоплений, составленного на базе похожего исследования, проведённого Ф.Цвикки и его коллегами из Калифорнийского университета. Каталог Цвики говорил о том, что скопления не могут состоять из структур высшего порядка. Разногласие может быть разрешено с учётом того, что скопления, описанные Цвикки немного больше чем аналогичные объекты из каталога Абелл и включают в себя несколько центров концентрации галактик. Примерно в то же время, но уже на основе другого обзора неба (дополненного Ликской обсерваторией), Дж. Нейман, Э.Скотт и С.Шейн из Калифорнийского университета в Беркли (сообщавшего об открытии огромных «облаков галактик» — их терминологии сверхскоплений), также опытно предположили, что каждая галактика во Вселенной принадлежит скоплению, в ней не может быть изолированных звёздных систем. В 70-х наиболее полный из всех каталогов, составленный П.Пиблсом и его коллегами из университета в Принстоне, учитывающий ещё и спектры галактических скоплений говорит нам, помимо этого то, что скопления имеют тенденцию располагаться близко друг от друга.

Третье великое открытие в изучении феномена скоплений с начала 50-х, было в использовании красного смещения. Первым шагом в исследованиях такого рода, стало измерение красных смещений всех галактик, ярче определённой звёздной величины. Применяя закон Хаббла к значениям красных смещений, расстояние каждой галактики может быть вычислено с достаточной точностью. Такой подход имеет намного больше преимуществ в сравнении с анализом данных из каталогов, которые дают только две координаты галактики в пространстве (прямое восхождение и склонение.) По данным таких каталогов третья величина-расстояние, может быть приблизительно определено только по блеску галактик. На основе же красного смещения, расстояние определяется довольно точно по закону Хаббла. Недостаток этого метода в том, что тогда как, положение тысяч галактик может быть получено из одной фотографии, спектральные красные смещения определяются только однажды. Другими словами измерение красных смещений гораздо более длительный и трудоёмкий процесс. Эти два метода несовместимы. Каталоги дают анализ большого числа галактик в значительных областях Вселенной; красные же смещения обеспечивают три пространственных измерения, но во много меньших областях.

Надо сказать, что вообще, исследования красных смещений стали возможны только благодаря прогрессу телескопостроения. В частности, Хаббл и Хьюмансон имели доступ к самым большим инструментом своей эпохи (100 футовый рефлектор в Маунт Вилсон, а позже и 200 футовый на Паломаре), но тогдашнее фотоэмульсии мало сравнимы с сегодняшними. Современные спектрографы обычно включают электронные устройства, которые усиливают изображение, по меньшей мере, в 20 раз, прежде чем оно появится на детекторе. Активно используются и цифровые приёмники, так как они способны улавливать даже отдельные фотоны. Как результат, нынешние астрономы могут принимать за полчаса столько информации, сколько Хаббл и его современники принимали целую ночь.

Если заглянуть в прошлое, то первое исследование красных смещений было представлено на конференции 1960 года по применению оптических систем в астрономии. Работая с таким из таких новых устройств (с 120 футовым рефлектором Ликской обсерватории) Н.Майял получил спектры 40 из 82 ярчайших галактик, расположенных в 4о от центра скопления галактик в Волосах Вероники. В 1972 Р.Руд и Т.Падж из Вэсленского университета дополнили и расширили первоначальное исследование Н.Майла. Дополненные красные смещения были зарегестрированны Е.Кинтнером из того же университета, который затем проанализировал имеющиеся образцы в сотрудничестве с Руд, Падж и И.Кингом из университета в Беркли. Их результаты представляют первое современное, детальное изучение красных смещений, выполненное для одиночного скопления галактик. Они сообщали, что скопление состоит, в большинстве своём, из эллиптических систем и галактик типа SO, двигающиеся со скоростями, более чем 1000 км. В секунду, и что они могу быть не влиять на размеры скопления.

Четыре года спустя В.Тиффт из Аризонского университета и один из авторов данной статьи (Грегори) дополнили исследование по скоплению в Волосах Вероники, расширив и углубив его. Мы обнаружили, что само скопление занимает три градуса от центра, а число галактик формирует похожее на руку конструкцию, достигающую западной оконечностью ближайшего скопления А1367 и возможно соединяющуюся с ней. (А1367 стоит под номером 1367 в каталоге Абелл. Само скопление-Вероника-А1367.) Наши данные говорят о том, что красные смещения дают не только детальную картину удалённых скоплений, но также и важную информацию о галактиках, которые могут находиться на «переднем плане». Из-за того, что галактики на «переднем плане» кажутся находящимися в рассеянных «скоплениях», названных группами (или «облаками» если они ещё реже), красное смещение может обнаружить «скопления» разных размеров: от гигантских до самых маленьких. Действительно, редкие «переднеплановые» образцы могут очень много нам рассказать о том, как обычные скопления сформировываются в очень крупные и сложные структуры. Наши исследования также обращают внимание на малочисленность полевых галактик.

В стремительном и обширном потоке исследований очень часто можно встретить почти одинаковые результаты наблюдений, сделанных, однако, разными авторами. Также случилось и с Руд и Г.Чинкарини из университета в Оклахоме, которые занимались изучением галактик к западу от скопления в Веронике и обнаружили, что направленная на запад часть скопления, была всё ещё видна на расстоянии более 14о от основного скопления. Они также предположили, что эта западная часть может связывать скопление в Веронике и скопление А1367. Авторы статьи дополнили наблюдение скопления в Веронике новыми данными по его западной ветви и подтвердили, что эти два скопления могут быть связаны как бы мостом из галактик, который занимает 276 квадратных градусов и состоит из 278 галактик. (Данные собраны по наблюдениям Хэнса и Майла.)

Скопление в Веронике расположено около полюса нашей галактики, примерно в 90о от «покрывала» из пыли и газа, которое ограничивает видимость центральной области галактики. В нашем исследовании, мы решили взять спектры только тех галактик, которые ярче 15 звёздной величины, в миллионы раз дальше, чем Вега-одна из ярчайших звёзд северного неба. У нас, когда галактики показаны в двух измерениях, как они расположены на небе, можно видеть две главные концентрации: само скопление в Веронике на северо-востоке и скопление А1367 в юго-западном направлении (рис. 1.) По-другому, они производят очень сильное впечатление того, что карта составлена из многих удалённых друг от друга галактик, более или менее случайно распределённых между двумя центрами.

Результаты по исследованию красного смещения могут показать, как почти одинаковые галактики распределены согласно третьему измерению, то есть расстоянию, выявляя, при этом, довольно интересные результаты. Для этой цели, однако, достаточно использовать две позиционные координаты: радиальное расстояние (полученное из красных смещений) и угловое расстояние западно-восточных направлений неба (рис. 2.) Этот рисунок показывает нам неравномерное распределение галактик. Около нашей галактики также есть несколько небольших групп, напоминающих вершину своеобразного клина. Наиболее впечатляющей всё же является «густонаселённая» область в 315 млн. световых лет от нашей галактики (см. рис. 2.) Эта концентрация и называется сверхскоплением, так как она связывает не только два богатых скопления (в Веронике и А1367), но и несколько менее «населенных» скоплений, которые вместе образуют гигантскую межгалактическую структуру, простирающуюся на 70 млн. св. лет. Удивительно то, что наряду со сверхскоплениями на рисунке отчётливо видно, что существуют несколько «пустот» — районов, совершенно свободных от галактик. После завершения исследования, мы были уверены, что пустоты действительно существовали, но у нас были сомнения насчёт их уникальности. Понятно, что сначала мы считали их принадлежащими только этому участку неба.

С тех пор как было обнаружено первое сверхскопление по своей структуре и составу отличное от отдельных галактик, понадобилось найти другие сверхскопления, не похожие на Веронику-А1367, для того чтобы больше узнать об их природе. В 1982, по крайней мере, три ещё больших скопления находились под пристальным вниманием учёных. И все три имели свои особенности. В конце 70-х, начале 80-х гг., была исследована область скопления в Геркулесе одним из авторов данной статьи (Томпсоном) в сотрудничестве с Чинкарини, Руд, Тиффт и М.Таренгхи с двух метровыми телескопами Стюардской обсерватории (Аризонский университет) и национальной обсерваторией Китт-Пик. И снова исследования показали наличие довольно обширного сверхскопления, занимающего расстояние в 400-600 млн. св. лет. В отличие от Вероноики-А1367, скопление в Геркулесе не обладает одним или двумя дополнительными скоплениями. Несмотря на это, со скоплением в Веронике оно схоже в наличии обширной пустоты на переднем плане. Однако возможно наиболее удивительным явлением системы в Геркулесе является то, что большая часть населяющих его галактик-спирали. Они встречаются гораздо чаще, нежели эллиптические. Одна только эта особенность делает скопление в Геркулесе довольно примечательным.

Третьим по времени изучения сверхскоплением был участок звёздного неба с созвездиями Персея и Рыб. Сильно вытянутый в длину, он занимает более 40о, от хорошо известного скопления в Персее до маленькой группы галактик около эллиптической системы NGC 383. Новые наблюдения авторов в сотрудничестве с Тиффт показывают, что глубина видимого скопления не больше чем его ширина. В частности, мы можем полагать не только то, что скопление по форме напоминает нить, нитевидное волокно, но и также то, что отдельные галактики-члены скопления имеют довольно низкие скорости собственных движений. У нас также есть предположение, что многие галактики в скоплении Персей-Рыбы располагают плоскостями вращения или параллельными к оси скопления или же перпендикулярными ей. Данные наблюдения могут многое рассказать нам о том, как формируются галактики и сверхскопления. Третий обзор красных смещений покрывает только 2% видимого неба. Сразу несколько обсерваторий пытаются получить больше сведений о феномене сверхскоплений. Например, Д.Эйнасто, М. Йовир, Э.Саар и С.Таго из Эстонии, который независимо открыл скопление в Персее, а также пустоты в нём и проанализировал самый полный каталог галактических красных скоплений. Однако, каталог этот не достаточно подробен и нуждается в дополнении новыми результатами исследований.

Подобным образом, Чинкарини и Руд проанализировали распределении удаленных галактик, которые первыми сделали С.Рубин, В.Форд и их коллеги из отдела земного магнетизма Института Карнеги в Вашингтоне. Исследование Рубин-Форда покрывает всё небо, но имеет небольшие подробности в каждой его области. Это, в свою очередь, даёт возможность Чинкарини и Руд подтвердить наличие трёх сверхскоплений, которые мы описал выше и добавит ещё одну, ранее не отождествлённую структуру в южном полушарии: скопление в Гидра-Центавре. Труды Чинкарини, Руд, Эйнасто, Йовир, Саар и Таго дают основание полагать, что сверхскопления расположены далеко за пределами тех областей, которые мы упоминули в нашем исследовании красных смещений. Согласно их расчётам, скопление в Веронике-А1367 и Персее могут занимать площадь в 10 раз большую, чем ту, которую мы изначально предполагали.

Эти гипотезы получили дополнительную поддержку со стороны исследования, проведённого Р.Киршнер из университета в Мичигане, А.Омлер, П.Шечтер из Китт-Пик и С.Шетчман из обсерваторий Маунт-Вилсон и Лас Кампанас. Их исследование покрывает три маленьких участка северного галактического полушария. В каждой такой области они обнаружили галактики с красными смещениями, близкими к тем, которые были у галактик скопления Вероника-А1367. Они также были уверены, что нашли огромную пустоту, чьи размеры могли составлять 30на 1024 кубических св. лет. Из нескольких небольших областей на небе, сконцентрированных около северного галактического полюса, три казалось, были абсолютно свободными от галактик с красными смещениями около 12000-18000 км/с. В четырёх других областях, где они ожидали обнаружить около 25 галактик с красными смещениями в том же диапазоне, они, вопреки ожиданиями, нашли только одну такую галактику. Таким образом, вычисленная на основе всего исследования пустота расположена на расстоянии 570-780 млн. св. лет.

На основании настоящей работы, мы рассмотрели три наиболее хорошо определённых сверхскопления: Вероника-А1367, скопление в Геркулесе и Персее (см. рис. 3.) В таком представлении, наша галактика находится в центре. Тенденция галактик группироваться в скопления выглядит довольно своеобразно. Распределение пустот, которое мы посчитали сперва неуверенно, теперь не вызывает никаких сомнений. Вселенная могла так самоорганизоваться, что пространство между скоплениями могло быть заполнено более мелкими группами галактик, помимо того, что пустоты являются частью процесса формирования скоплений и сверхскоплений.

Изучение сверхскоплений относится не только к оптической астрономии; радио и рентгеновская астрономия также вносят существенный вклад. Радиоастрономы в состоянии зафиксировать наличие межгалактического газа, прежде всего тем, что некоторые радиоисточники в скоплениях и сверхскоплениях выдали себя вероятностью того, что газ был с низкой плотностью, а не высокой температуры. Если бы этот газ наполнял все сверхскопления таким же образом, каким они наполняют только некоторые из них, его вклад в общую массу сверхскоплений был бы огромен. Рентгеновская астрономия зафиксировала исключительно горячий газ у удалённых сверхскоплений. Непонятно, однако, идёт ли излучение только из центров ярких скоплений или же из областей между этими центрами. Дж. Бёрнс из университета в Нью – Мексико и один из авторов (Грегори) сравнили значения красных смещений различных скоплений, полученных Китт-Пик, радио карты «Очень большого радиотелескопа» в Сокорро и данные с рентгеновской обсерваторией Эйнштейн. Другие астрономы применили свои методы для собственного исследования красных смещений. Они были определены на основе наблюдений смещения 21-см. радиоэмиссионной линии неионизированного водорода в межзвёздном пространстве. Одно такое исследование было выполнено Р.Фишером и Р.Тулли из Гавайского университета в Маноа, которые нанесли на карту галактики местного сверхскопления. Наиболее чувствительный для такого рода наблюдений радио телескоп –303 метровая антенна в Аресибо (Пуэрто-Рико); на которой, собственно, и были проведены наблюдения всех трёх, уже упоминавшихся ранее скоплений. Учёные, работавшие над этимпроектом, включали С.Чинкарини, Т.Бания, Р.Джиованелли, М.Хайнеса и одного из авторов (Томпсона.) Наблюдения эти довольно не однозначны, так как проведены не только для одной галактики, но также и для различных образований внутри нескольких сверхскоплений. Также эти исследования не достаточно «продвинуты» для того, чтобы сделать новые выводы о внутренней организации скоплений, и нуждаются в будущих наблюдениях.

Из исследований красных смещений стало ясно, что настоящее распределение галактик довольно не однородно на расстояниях в сотни миллионов световых лет. Довольно вероятным кажется тот факт, что эта неоднородность «тянется» на миллиарды световых лет и характерна для всей Вселенной. Однако следует добавить, что Вселенная может содержать в себе намного больше материи, чем кажется. Возможное существование такой материи (названной скрытой массой) сейчас предмет обширных дискуссий.

Если сегодня Вселенная неоднородна, то, очевидно, что на ранних этапах своего развития она всё же была однородна. Очевидность эта исходит из того факта, что мягкое, фоновое излучение Земли, которое «опутывает» нашу планету в микроволновом радиодиапазоне удивительно стабильно. Преобладающая точка зрения заключается в том, что фоновое излучение представляет собой расширившийся и охлаждённый остаток ранней, горячей Вселенной. Однако в 80 –х гг. были обнаружены некоторые неоднородности небольшого размера, но простирающиеся на огромные расстояния в пространстве. Можно ли представить себе такие неоднородности? Мы надеемся на то, что отдельные галактики и наличие огромных пустот внесут определённую ясность в вопрос о формировании галактик, скоплений галактик и сверхскоплений. На этот счёт существуют две ведущие гипотезы. Более условная модель говорит о том, что отдельные галактики появились вне близкой, однородной материи. Главная трудность данной гипотезы состоит в объяснении того, как Вселенная развилась из стохастического состояния в состояние, когда уже начали формироваться галактики. Согласно этой гипотезе, с тех пор как сформировались галактики, небольшие неоднородности в их распределении медленно расширились под длительным воздействием гравитационных сил. Конечным результатом такого расширения явились сверхскопления, которые мы и можем и наблюдать сегодня.

Следующие теоретические объяснения вопроса формирования галактик были предложены в 1972 г. двумя российскими учёными: Яковом Зельдовичем и Рашидом Сюняевым. Согласно предложенной ими модели газ молодой Вселенной не сразу компактифицировался в звёзды и галактики. Вместо этого, масштабные неоднородности в общем распределении газа увеличивались в ответ на гравитационное притяжение и стали большей частью неправильными. В конце концов, газ стал достаточно плотным для того, чтобы сконденсироваться в обширные пространства материи (названные «блинами»), которые затем сформировались в галактики. Таким образом, согласно данным предположениям, скопления и сверхскопления сперва были просто сгустками газа и только потом в них появились галактики.

Но получила ли какая-нибудь из этих моделей поддержку наблюдениями, которые мы выполнили для сверхскоплений? Например, модель Зельдовича – Сюняева требовала, чтобы все галактики входили в скопления или сверхскопления, «полевые» галактики или просто отдельные звёздные острова должны были быть самостоятельными, изолированными системами. Если такая модель правильна и галактики могут образовываться где угодно, только позднее формируясь в группы или скопления, отдельные галактики должны быть довольно распространёнными. Вообще, только группы изолированных галактик, которые мы открыли по нашим красным смещениям, были группами, разбросанными по границам сверхскоплений. Пустоты же оказались действительно свободными от галактик. Мы полагаем, что отдельные галактики, разбросанные внутри сверхскоплений, были когда-то членами небольших групп, впоследствии разрушенными столкновениями внутри плотных сверхскоплений. Кажется вероятным предположить, что в одно время все галактики были членами групп или скоплений. В целом, исследованное распределение галактик внутри сверхскоплений и наличие огромных пустот между ними полностью согласуются с моделью Зельдовича – Сюняева. Сторонники же альтернативной гипотезы надеются найти поддержку в объяснении того, как небольшие неоднородности могли превратиться в большие посредством случайных процессов.

В описании нитевидного скопления Персей-Рыбы мы предположили вероятность того, что оси вращения некоторых галактик находились в соответствии не только с осями вращения других галактик, но и возможно с массивной структурой самого скопления. Эта идея получила поддержку со стороны исследований, проведённых Марком Адамсом, Стефаном Стромом и Кареном Стромом из Китт – Пик, которые обнаружили похожие соответствия вращений в сразу нескольких скоплениях. Если такие соответствия подтвердятся, сторонники условной модели галактической формации столкнутся с непреодолимыми препятствиями в объяснении их собственных гипотез. Случайные статические процессы в условной модели не ведут к пониманию вращательных движений в больших диапазонах. Модель же Зельдовича – Сюняева готова объяснить такие соответствия.

Каковы перспективы подобных исследований в ближайшем будущем? Одним из самых обещающих направлений таких исследований является продолжение измерения микроволнового, фонового излучения. Даже небольшие неоднородности, замеченные в данном излучении, свидетельствуют о наличии вещества молодой Вселенной. Их параметры близки к тем, которые необходимы для проверки двух моделей галактической формации.

Наши последние комментарии касаются подведению итогов ко всему выше сказанному. Во–первых: Являются ли сверхскопления наиболее высокоорганизованными структурами в нашей Вселенной? Есть ли ещё что – нибудь кроме них? Для многих наших коллег, сверхскопления являются структурами, созданными гравитацией и кроме них больших образований нет. На наш взгляд, сверхскопления представляют собой возможно нынешнее состояние галактик, которые изолированы от других звёздных систем внутри самих скоплений.

Во – вторых, универсальность скоплений. Мы полагаем, что каждое богато населённое скопление в каталоге Abell является частью сверхскопления. Мы, однако, думаем, что необходимое условие для формирования крупного скопления именно в наличии скоплений – компаньонов. Наконец, мы хотим оставить читателя с чувством восхищения перед величием сверхскоплений. Скопление Вероника – А1367, на пример, находится более чем в 300 млн. св. лет от нашей галактики. Причем, находясь на таком огромном расстоянии, оно занимает, по меньшей мере, 20о на нашем небе, простираясь по созвездиям Волос Вероники и Льва. Чинкарини и Руд говорят о том, что оно может быть в 10 раз больше. Для астрономов и космологов, структуры нашей Вселенной подобных размеров оставляют поистине огромное количество вопросов и загадок для будущих наблюдений и исследований.

Данная статья была впервые опубликована в журнале Scientific American Стефаном А. Грегори и Лаярдом А. Томпсоном и содержит подробнейшую хронологию исследования сверхскоплений галактик – самых величественных образований нашей Вселенной. Авторы данной работы – это учёные, непосредственно занимающиеся проблемой сверхскоплений галактик, а также исследующие другие deep – sky объекты, новые и сверхновые звёзды. Грегори – профессор астрономии, работает в Нью – Йоркском гос. университете, а Томпсон – доктор философии, работает в Гавайском университете в Маноа сотрудником кафедры астрономии

Скопления и сверхскопления галактик. Местная группа. Галактика Млечный путь

Галактика Млечный Путь входит в семью соседних галактик, известных как Местная группа, и образует вместе с ними скопление галактик. Наша Галактика является одной из самых крупных в Местной группе. Галактика Андромеды, входящая в Местную группу, является самым удаленным объектом, видимым невооруженным глазом. 25 галактик Местной группы разбросаны на протяжении 3 миллионов световых лет. Скопление галактик удерживается вместе силами гравитации. Более крупными скоплениями галактик являются Скопление Девы (несколько тысяч объектов) и Скопление в созвездии Волосы Вероники (около 1000 ярких эллиптических галактик и несколько тысяч более мелких объектов). Наша Галактика с соседями по Местной группе медленно движется в направлении к Скоплению Девы.

Скопления галактик, в свою очередь, группируются в семьи. Местное скопление скоплений, известное как Местное сверхскопление, - это образование, в которое входит и Местная группа и Скопление Девы. Центр масс расположен в Скоплении Девы. Другое сверхскопление находится в созвездии Геркулеса. До него 700 миллионов световых лет. Сверхскопления отделены друг от друга гигантскими пустыми пространствами и образуют во Вселенной губчатую структуру.

Характеристика галактик, входящих в Местную группу

Галактика Млечный Путь

Млечный Путь - это наша Галактика, состоящая из 100 миллиардов звезд. В нашей Галактике есть 4 спиральных рукава, звезды, газ и пыль. В пределах 1000 световых лет от центра Галактики звезды расположены очень плотно. В самом центре Галактики находится загадочный источник колоссальной энергии. Возможно, в центре Галактики находится черная дыра. Галактика вращается. Внутренние ее части вращаются быстрее, чем внешние. Диск Галактики окружен облаком-гало - из невидимого вещества.

9/10 Галактики Млечный Путь невидимы. Наши соседние две галактики - Большое и Малое Магеллановы Облака - притягиваются невидимым гало и поглощаются Галактикой Млечный Путь.

Характеристика галактики Млечный Путь

* Более далекие звезды плоской составляющей имеют более длительные периоды обращения; находящиеся ближе к центру звезды - меньшие периоды. Центральная часть Галактики вращается подобно твердому телу.

Подсистемы Галактики

Среднее значение удаления объектов подсистемы от галактической плоскости, кпс; Т - возраст входящих в подсистему звезд, лет; М - масса подсистемы (в % от общей массы Галактики); N - предполагаемое общее число объектов.

Ядро Галактики - форма эллиптическая, размеры 4,8 ? 3,1 кпс; число звезд?3·E10 7 .

Центральное ядро Галактики - форма эллиптическая, размеры ~ 15 ? 30 пс; число звезд ~ 3·E10 6 .

Ядрышко Галактики - диаметр ~ 1 пс; в центре его компактный объект (черная дыра массой 108-09 масс Солнца).

Звездные скопления (сравнительно тесные группы звезд):

рассеянные - диаметр от 1,5 до 15 пс; возраст от нескольких миллионов до нескольких миллиардов лет; число звезд от нескольких десятков до нескольких тысяч; принадлежат к подсистеме галактической плоскости;

шаровые - диаметр от 15 до 200 пс; возраст 8-10 млрд лет; число звезд 10 5 -10 7 ; принадлежат к промежуточной и крайней сферическим подсистемам.

Общее число звезд в Галактике 1,2-10 11 .

Из книги Все обо всем. Том 1 автора Ликум Аркадий

Что такое Млечный Путь? Самым загадочным и прекрасным на небе, по-видимому, является Млечный Путь, протянувшийся подобно ожерелью из драгоценных камней от одного края неба до другого. В древности люди, глядя на эту картину, как и мы, удивлялись и восторгались этой красотой.

Из книги Большая Советская Энциклопедия (ГА) автора БСЭ

Из книги Большая Советская Энциклопедия (МЛ) автора БСЭ

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

Из книги Русский рок. Малая энциклопедия автора Бушуева Светлана

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Что такое Местная группа галактик? Наша Галактика (Млечный Путь) вместе с галактикой Туманность Андромеды входит в небольшую группу из 30–40 галактик, которую астрономы называют Местной группой галактик. Наиболее удаленная из галактик Местной группы отстоит от Солнца

Из книги Новейшая книга фактов. Том 2 [Мифология. Религия] автора Кондрашов Анатолий Павлович

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

Как возник Млечный Путь? Страшась ревности Геры, Алкмена отнесла новорожденного Геракла в поле под стены Фив. В это время Афина по наущению Зевса как бы невзначай предложила Гере прогуляться по этому полю. «Смотри, дорогая! Какой красивый и крепкий ребенок! – воскликнула

Из книги Астрономия автора Брейтот Джим

ГАЛАКТИКИ 2: МЕСТНАЯ ГРУППА Галактики варьируют по размерам от карликовых, гораздо меньших, чем Млечный Путь, до гигантских - значительно более крупных, чем Млечный Путь.Солнце - одна из многих миллионов звезд в Галактике Млечный Путь, диаметр которой превышает 100 000

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

ГАЛАКТИКИ 3: СКОПЛЕНИЯ И СВЕРХСКОПЛЕНИЯ Большинство галактик принадлежит к какому-либо скоплению. Ближайшее скопление галактик по отношению к нашей Местной группе находится в созвездии Девы и содержит более 3000 галактик. Его можно видеть как пятно неправильной формы

Из книги Энциклопедия славянской культуры, письменности и мифологии автора Кононенко Алексей Анатольевич

МЛЕЧНЫЙ ПУТЬ Солнце - одна из многих миллиардов звезд в Млечном Пути, спиральной Галактике диаметром около 100 000 световых лет. Солнце расположено в одном из рукавов спиральной Галактики. Сама Галактика вращается, совершая один полный оборот примерно за 240 млн. лет.Тот

Из книги Авторская энциклопедия фильмов. Том II автора Лурселль Жак

Из книги Рок-энциклопедия. Популярная музыка в Ленинграде-Петербурге, 1965–2005. Том 1 автора Бурлака Андрей Петрович

Из книги Полное руководство по методам, принципам и навыкам персонального коучинга автора Старр Джули

Из книги автора

ГАЛАКТИКА Даже среди прочих военмеховских групп, которые во второй половине 60-х, несомненно, лидировали в Питере по части своего профессионального уровня, технического оснащения и степени приближения кавер-версий западных хитов к их оригиналам, группа ГАЛАКТИКА

Из книги автора

Путь коуча: пусть это будет ваш путь Со временем вы выработаете собственные способы, привычки и процедуры, которые будут соответствовать вашей манере ведения коучинга.Например, вы можете всегда начинать с обзора задач всего коучинга, которые были обговорены еще на

Скопления галактик

70 миллионов световых лет:

Через центр скопления галактик в Деве проходит замечательная вереница галактик, известная как цепочка Маркаряна. Показанная на фото цепочка начинается вверху справа с двух больших, но невыразительных линзовидных галактик – M84 и M86. Ниже и левее находится пара взаимодействующих галактик, известных как "Глаза". Скопление галактик в Деве, членами которого являются все эти галактики – это ближайшее к нам скопление галактик. В нём – более 2000 галактик, и его гравитационное притяжение оказывает заметное влияние на Местную группу галактик, окружающую нашу Галактику Млечный Путь. Центр скопления в Деве находится на расстоянии около 70 миллионов световых лет в созвездии Девы. По крайней мере семь галактик в цепочке движутся в одном направлении, остальные, по-видимому, случайно оказались в этом месте.

100 миллионов световых лет:

Это трио галактик иногда называют группой NGC 5985/Дракона, оно находится в северном созвездии Дракона. Слева направо на фото расположены повернутая плашмя спиральная галактика NGC 5985, эллиптическая галактика NGC 5982 и, наконец, видимая с ребра спираль NGC 5981 - все они попали в одно поле зрения, поскольку расстояние меду ними чуть больше половины диаметра полной Луны. Эта группа слишком мала, чтобы быть скоплением галактик, она также не была занесена в каталоги как компактная группа. Эти галактики удалены от Земли примерно на 100 миллионов световых лет. Детальное спектрографическое исследование яркого ядра замечательной видимой плашмя спиральной галактики NGC 5985 показало заметное излучение в определенных спектральных линиях, что позволяет астрономам классифицировать эту галактику как сейфертовскую, то есть отнести её к одному из типов активных галактик. На этом глубоком изображении также видны слабые и ещё более далёкие галактики фона.


250 миллионов световых лет:

Это один из самых больших объектов нашего небосвода. Каждое из этих туманных пятнышек - галактика. Вместе они образую скопление галактик в Персее - одно из самых близких к нам скоплений галактик. Мы видим его сквозь расположенные на переднем плане слабые звёзды Млечного Пути. Почти в центре скопления, примерно в 250 миллионах световых лет от нас находится главная галактика скопления NGC 1275. На картинке эту большую галактику можно увидеть слева. NGC 1275 является поразительным источником рентгеновского и радиоизлучения. Она накапливает вещество по мере того, как не неё падает окружающий газ и другие галактики. Скопление галактик в Персее записано в каталог под именем Абель 426. Оно является частью сверхскопления Рыбы-Персей, которое занимает на небе около 15 градусов и насчитывает более 1000 галактик. На расстоянии до галактики NGC 1275 эта фото покрывает ~15 миллионов световых лет.

300 миллионов световых лет:

Галактика NGC 1132 выглядит однородной - но как она сформировалась? NGC 1132 - это эллиптическая галактика, в ней мало пыли и газа, и в ней в настоящее время почти не образуются звёзды. Хотя многие эллиптические галактики находятся в скоплениях галактик, NGC 1132 - это большая изолированная галактика в созвездии Эридана. Чтобы изучить историю этого привлекающего внимание шара из миллиардов звезд, получили изображения NGC 1132 в видимом свете с помощью космического телескопа Хаббла и в рентгеновских лучах на рентгеновской обсерватории Чандра. На этом составном фото видимое свечение показано белым, а рентгеновское излучение – голубым цветом. Рентгеновское излучение показывает неожиданное присутствие очень горячего газа, вероятно, оно также отслеживает распределение тёмной материи. Согласно одной из гипотез, NGC 1132 сформировалась в результате последовательного слияния галактик, входящих первоначально в небольшую группу галактик. Расстояние до NGC 1132 - более 300 миллионов световых лет. На фото можно увидеть также множество замечательных далеких галактик.


450 миллионов световых лет:

Эта группа галактик очень далека. До нее ~450 миллионов световых лет (скопление галактик Эйбелл S0740). Доминирует огромная центральная эллиптическая галактика ESO 325-G004. На этом четком фото, полученном телескопом Хаббла, можно увидеть множество галактик с удивительно разнообразными формами и размерами, и всего несколько звёзд ближнего фона, которые легко отличить по дифракционным лучам. Диаметр гигантской эллиптической галактики – более 100 000 световых лет, в ней почти 100 миллиардов звезд, и по размеру она сравнима с нашей спиральной галактикой. Телескоп Хаббла позволяет даже в таких далеких галактиках увидеть многие структурные детали, включая великолепные спиральные рукава и полосы пыли, звездные скопления, кольцевые структуры и дуги, возникшие в результате гравитационного линзирования.


650 миллионов световых лет:

На фото изображены галактики скопления в Геркулесе - архипелага "островов Вселенной", который находится на расстоянии 650 миллионов световых лет от нас. В этом скоплении галактик содержатся наполненные газом, пылью и областями звездообразования спиральные галактики и относительно небольшое число эллиптических галактик, в которых почти отсутствуют газ и пыль и связанные с ними только что родившиеся звезды. На этой составной картинке галактики со звездообразованием голубого цвета, а эллиптические галактики - желтоватого оттенка. На этом космическом пейзаже видно, что многие галактики сталкиваются или сливаются, а другие галактики кажутся искаженными. Это свидетельствует о том, что галактики скопления взаимодействуют. Со временем взаимодействие галактик будет влиять на состав скопления. Астрономы считают, что скопление галактик в Геркулесе очень похоже на молодые скопления, которые находятся далеко и существовали уже в ранней Вселенной. Изучая типы галактик и их взаимодействие в более близком скоплении в Геркулесе, учёные надеются разгадать эволюцию галактик и скоплений галактик.


8000 миллионов световых лет:

Это изображение группы слабых очень далеких галактик, полученное космическим телескопом им. Хаббла, является снимком молодой Вселенной. Голубоватые неправильные галактики на фото находятся на расстоянии 8 миллиардов лет от нас и проходят стадию столкновения галактик и вспышки звездообразования. Изучение этих объектов - трудная задача, потому что они очень слабые. Исследование этих галактик поможет понять, как образовался наш Млечный Путь.

10000 миллионов световых лет:

Можем ли мы посмотреть в самое начало жизни нашей Вселенной? Можем, так как свет, который пришел к нам из самого начала, пролетел всю Вселенную, и время, которое потребовалось свету достичь нас, равно возрасту Вселенной. Поэтому, наблюдая за далекими объектами, мы можем узнать, как выглядела Вселенная в начале своей жизни. Телескопы представляют собой в некотором смысле "временные ворота". При наблюдениях далеких скоплений галактик (внутри светового конуса) можно видеть, когда и как формировались эти огромные конгломераты галактик. Ранее самым далеким зарегистрированным скоплением галактик было скопление с красным смещением, равным 1.5, то есть оно находится на расстоянии 9 млрд. световых лет. Недавно, используя рентгеновские изображения, полученные на рентгеновской обсерватории Чандра и другие данные, ученые обнаружили новое самое далекое скопление. Объект, который обозначили JKCS041, показан на фото. Красное смещение скопления равно 1.9, то есть скопление находится на один миллиард световых лет дальше предыдущего рекордсмена. Горячий газ, светящийся в рентгеновских лучах, позволяет сделать вывод, что мы наблюдаем не случайную группу галактик, а настоящее скопление. На картинке газ показан синим цветом. Рентгеновское изображение газа наложено на оптическое изображение, на котором видны звезды, расположенные на переднем плане. Сейчас мы видим JKCS041 таким, каким скопление было, когда возраст Вселенной составлял только четверть настоящего возраста.

Галактики редко бывают одиночными. 90 процентов галактик концентрируются в скопления, в которые входят от десятков до нескольких тысяч членов. Средний диаметр скопления галактик 5 Мпк, среднее число галактик в скоплении – 130.

В Местную группу галактик, размеры которой 1,5 Мпк, входит наша Галактика, Туманность Андромеды M31, Туманность Треугольника M33, Большое Магелланово Облако (БМО), Малое Магелланово Облако (ММО), неправильные галактики NGC 6822, IC 1613, карликовые галактики – всего около сорока галактик, связанных взаимной гравитацией. Согласно последним исследованиям Местная группа движется со скоростью 635 км/с относительно соседних скоплений.

Скопления сферической формы, состоящие из тысяч галактик, называются регулярными. В них чаще всего встречаются эллиптические галактики. Как правило, они являются сильными радиоисточниками. Одним из самых больших скоплений, содержащим 40 000 галактик, является скопление в созвездии Волосы Вероники. Оно находится от нас на расстоянии 100 Мпк. Скопление занимает на небе область диаметром около 10°, а его размеры достигают десяти миллионов световых лет.

В иррегулярных скоплениях много спиральных галактик, но общее число галактик значительно меньше по сравнению с регулярными скоплениями.

Одно из них – скопление в созвездии Девы, находящееся в 15 Мпк от Местной группы. Скопление Девы огромно: оно покрывает участок неба, в 200 раз превышающий площадь, занимаемую Луной. Одна только эллиптическая галактика M87 из этого скопления по размеру сравнима с нашей Местной группой.

Наивысшая плотность галактик наблюдается в центральных областях крупных скоплений. Галактики здесь часто сталкиваются. Конечно, расстояния между звездами огромны, и при столкновении двух галактик звезды одной из них свободно проходят между звездами другой. Однако галактики притягивают друг друга, звезды сходят с орбит; в некоторых случаях галактики сливаются.

Пространство между галактиками заполнено газом, температура которого более десяти миллионов кельвинов. В среднем на каждый кубический дециметр пространства приходится всего один атом, однако в связи с огромным объемом скопления полная масса газа сопоставима с массой всех галактик скопления.

Чтобы столь горячий газ не покидал скопление, его должна удерживать большая сила тяготения. По оценкам ученых суммарного гравитационного поля всех галактик для этого не достаточно. Необходимо предположить, что существует так называемая скрытая масса. К этому же выводу можно прийти, рассматривая устойчивость самих скоплений: скорости отдельных галактик настолько высоки, что без скрытой массы они разлетелись бы в разные стороны.

Скопления галактик, по-видимому, самые крупные устойчивые системы во Вселенной. Области повышенной концентрации скоплений галактик чередуются с пустотами в сотни миллионов световых лет. Местная группа (вместе с сотнями других скоплений) также расположена в сверхскоплении, центр масс которого находится в созвездии Девы. Другое сверхскопление находится в созвездии Геркулеса на расстоянии около 700 миллионов световых лет.