Многогранный угол определение. Многогранные углы многогранный угол является пространственным аналогом многоугольника

Определения. Возьмём несколько углов (черт. 37): ASB, BSC, CSD, которые, примыкая последовательно один к другому, расположены в одной плоскости вокруг общей вершины S.

Повернём плоскость угла ASВ вокруг общей стороны SB так, чтобы эта плоскость составила некоторый двугранный угол с плоскостью BSC. Затем, не изменяя получившегося двугранного угла, повернём его вокруг прямой SC так, чтобы плоскость BSC составила некоторый двугранный угол с плоскостью CSD. Продолжим такое последовательное вращение вокруг каждой общей стороны. Если при этом последняя сторона SF совместится с первой стороной SA, то образуется фигура (черт. 38), которая называется многогранным углом . Углы ASB, BSC,... называются плоскими углами или гранями , стороны их SA, SB, ... называются рeбрами , а общая вершина S- вершиной многогранного угла.

Каждое ребро является вместе с тем ребром некоторого двугранного угла; поэтому в многогранном угле столько двугранных углов и столько плоских, сколько в нём всех рёбер. Наименьшее число граней в многогранном угле - три; такой угол называется трёхгранным . Могут быть углы четырёхгранные, пятигранные и т. д.

Многогранный угол обозначается или одной буквой S, поставленной у вершины, или же рядом букв SABCDE, из которых первая обозначает вершину, а прочие - рёбра по порядку их расположения.

Многогранный угол называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней, неограниченно продолженной. Таков, например, угол, изображённый на чертеже 38. Наоборот, угол на чертеже 39 нельзя назвать выпуклым, так как он расположен по обе стороны от грани ASB или от грани BSС.

Если все грани многогранного угла пересечём плоскостью, то в сечении образуется многоугольник (abcde ). В выпуклом многогранном угле этот многоугольник тоже выпуклый.

Мы будем рассматривать только выпуклые многогранные углы.

Теорема. В трёхгранном угле каждый плоский угол меньше суммы двух других плоских углов.

Пусть в трёхгранном угле SABC (черт. 40) наибольший из плоских углов есть угол ASC.

Отложим на этом угле угол ASD, равный углу ASB, и проведём какую-нибудь прямую АС, пересекающую SD в некоторой точке D. Отложим SB = SD. Соединив В с А и С, получим \(\Delta\)АВС, в котором

AD + DC < АВ + ВС.

Треугольники ASD и ASB равны, так как они содержат по равному углу, заключённому между равными сторонами: следовательно, AD = AB. Поэтому, если в выведенном неравенстве отбросить равные слагаемые AD и АВ, получим, что DC < ВС.

Теперь замечаем, что у треугольников SCD и SCB две стороны одного равны двум сторонам другого, а третьи стороны не равны; в таком случае против большей из этих сторон лежит больший угол; значит,

∠ CSD < ∠ CSВ.

Прибавив к левой части этого неравенства угол ASD, а к правой равный ему угол ASB, получим то неравенство, которое требовалось доказать:

∠ ASC < ∠ CSB + ∠ ASB.

Мы доказали, что даже наибольший плоский угол меньше суммы двух других углов. Значит, теорема доказана.

Следствие. Отнимем от обеих частей последнего неравенства по углу ASB или по углу CSB; получим:

∠ ASC - ∠ ASB < ∠ CSB;

∠ ASC - ∠CSB < ∠ ASB.

Рассматривая эти неравенства справа налево и приняв во внимание, что угол ASC как наибольший из трёх углов больше разности двух других углов, мы приходим к заключению, что в трёхгранном угле каждый плоский угол больше разности двух других углов .

Теорема. В выпуклом многогранном угле сумма всех плоских углов меньше 4d (360°) .

Пересечём грани (черт. 41) выпуклого угла SABCDE какой-нибудь плоскостью; от этого в сечении получим выпуклый n -угольник ABCDE.

Применяя теорему, доказанную ранее, к каждому из трёхгранных углов, вершины которых находятся в точках А, В, С, D и Е, пахолим:

∠ABC < ∠ABS + ∠SВC, ∠BCD < ∠BCS + ∠SCD и т. д.

Сложим почленно все эти неравенства. Тогда в левой части получим сумму всех углов многоугольника ABCDE, которая равна 2dn - 4d , а в правой - сумму углов треугольников ABS, SBC и т. д., кроме тех углов, которые лежат при вершине S. Обозначив сумму этих последних углов буквой х , мы получим после сложения:

2dn - 4d < 2dn - х .

Так как в разностях 2dn - 4d и 2dn - х уменьшаемые одинаковы, то, чтобы первая разность была меньше второй, необходимо, чтобы вычитаемое 4d было больше вычитаемого х ; значит, 4d > х , т. е. х < 4d .

Простейшие случаи равенства трёхгранных углов

Теоремы. Трёхгранные углы равны, если они имеют:

1) по равному двугранному углу, заключённому между двумя соответственно равными и одинаково расположенными плоскими углами , или

2) по равному плоскому углу, заключённому между двумя соответственно равными и одинаково расположенными двугранными углами .

1) Пусть S и S 1 - два трехгранных угла (черт. 42), у которых ∠ASB = ∠A 1 S 1 B 1 , ∠ASC = ∠A 1 S 1 C 1 (и эти равные углы одинаково расположены) и двугранный угол AS равен двугранному углу A 1 S 1 .

Вложим угол S 1 в угол S так, чтобы у них совпали точки S 1 и S, прямые S 1 A 1 и SA и плоскости A 1 S 1 B 1 и ASB. Тогда ребро S 1 B 1 пойдет по SB (в силу равенства углов A 1 S 1 B 1 и ASB), плоскость A 1 S 1 C 1 пойдёт по ASC (по равенству двугранных углов) и ребро S 1 C 1 пойдёт по ребру SC (в силу равенства углов A 1 S 1 C 1 и ASC). Таким образом, трёхгранные углы совместятся всеми своими рёбрами, т.е. они будут равны.

2) Второй признак, подобно первому, доказывается вложением.

Симметричные многогранные углы

Как известно, вертикальные углы равны, если речь идёт об углах, образованных прямыми или плоскостями. Посмотрим, справедливо ли это утверждение применительно к углам многогранным.

Продолжим (черт. 43) все рёбра угла SABCDE за вершину S, тогда образуется другой многогранный угол SA 1 B 1 C 1 D 1 E 1 , который можно назвать вертикальным по отношению к первому углу. Нетрудно видеть, что у обоих углов равны соответственно и плоские углы, и двугранные, но те и другие расположены в обратном порядке. Действительно, если мы вообразим наблюдателя, который смотрит извне многогранного угла на его вершину, то рёбра SА, SВ, SС, SD, SЕ будут казаться ему расположенными в направлении против движения часовой стрелки, тогда как, смотря на угол SA 1 B 1 C 1 D 1 E 1 , он видит рёбра SА 1 , SВ 1 , ..., расположенными по движению часовой стрелки.

Многогранные углы с соответственно равными плоскими и двугранными углами, но расположенными в обратном порядке вообще не могут совместиться при вложении; значит, они не равны. Такие углы называются симметричными (относительно вершины S). Подробнее о симметрии фигур в пространстве будет сказано ниже.

Другие материалы

Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны -- ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла (рис. 3).

Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник -- это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины -- вершинами многогранника.

Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам -- призмам и пирамидам, которые будут основным объектом нашего изучения,-- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

Многогранный угол

часть пространства, ограниченная одной полостью многогранной конической поверхности, направляющая которой - плоский многоугольник без самопересечений. Грани этой поверхности называются гранями М. у., вершину - вершиной М. у. М. у. называют правильным, если равны все его линейные углы и все его двугранные углы. Мерой М. у. является площадь, ограниченная сферическим многоугольником полученным пересечением граней М. у., сферой с радиусом, равным единице, и с центром в вершине М. у. См. также Телесный угол .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Многогранный угол" в других словарях:

    См. Телесный угол … Большой Энциклопедический словарь

    См. Телесный угол. * * * МНОГОГРАННЫЙ УГОЛ МНОГОГРАННЫЙ УГОЛ, см. Телесный угол (см. ТЕЛЕСНЫЙ УГОЛ) … Энциклопедический словарь

    Часть пространства, ограниченная одной полостью многогранной конич. поверхности, направляющая к рой плоский многоугольник без самопересечений. Грани этой поверхности наз. гранями М. у., вершина верши н о й М. у. Многогранный угол наз. правильным … Математическая энциклопедия

    См Телесный угол … Естествознание. Энциклопедический словарь

    многогранный угол - матем. Часть пространства, ограниченная несколькими плоскостями, проходящими через одну точку (вершину угла) … Словарь многих выражений

    МНОГОГРАННЫЙ, многогранная, многогранное (книжн.). 1. Имеющий несколько граней или сторон. Многогранный камень. Многогранный угол (часть пространства, ограниченная несколькими плоскостями, пересекающимися в одной точке; мат.). 2. перен.… … Толковый словарь Ушакова

    - (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β 1 Ο 1 Α 1. Наложим их так, чтобы… …

    - (мат.). Если из точки О на данной плоскости проведем прямые ОА и 0В, то получим угол АОВ (черт. 1). Черт. 1. Точка 0 наз. вершиною угла, а прямые ОА и 0В сторонами угла. Предположим, что даны два угла ΒΟΑ и Β1Ο1Α1. Наложим их так, чтобы вершины О … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Угол (значения). Угол ∠ Размерность ° Единицы измерения СИ Радиан … Википедия

    Плоский, геометрическая фигура, образованная двумя лучами (сторонами У.), выходящими из одной точки (вершины У.). Всякий У., имеющий вершину в центре О некоторой окружности (центральный У.), определяет на окружности дугу AB, ограниченную… … Большая советская энциклопедия

МНОГОГРАННЫЕ УГЛЫ

Многогранный угол является пространственным аналогом многоугольника. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной и ограниченной ею внутренней областью. Будем считать аналогом точки на плоскости луч в пространстве и аналогом отрезка на плоскости плоский угол в пространстве. Тогда аналогом простой замкнутой ломаной на плоскости является поверхность, образованная конечным набором плоских углов A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 с общей вершиной S (рис. 1), в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом . Общая вершина S называется вершиной многогранного угла. Лучи SA 1 , …, SA n называются ребрами многогранного угла, а сами плоские углы A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 гранями многогранного угла. Многогранный угол обозначается буквами SA 1 … A n , указывающими вершину и точки на его ребрах. В зависимости от числа граней многогранные углы называются трехгранными, четырехгранными, пятигранными (рис. 2) и т. д.

Многогранный угол называется выпуклым , если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок. На рисунке 2 трехгранный и четырехгранный углы выпуклые, а пятигранный угол – нет.
Рассмотрим некоторые свойства треугольников и аналогичные им свойства трехгранных углов.
Свойство 1 (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.
Аналогичным свойством для трехгранных углов является следующее свойство.
Свойство 1 ". Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.
Доказательство. Рассмотрим трехгранный угол SABC . Пусть наибольший из его плоских углов есть угол ASC . Тогда выполняются неравенства

ASB ASC < ASC + BSC ;BSC ASC < ASC + ASB .

Таким образом, остается доказать неравенство ASС < ASB + BSC .
Отложим на грани ASC угол ASD , равный ASB , и точку B выберем так, чтобы SB = SD (рис. 3). Тогда треугольники ASB и ASD равны (по двум сторонам и углу между ними) и, следовательно, AB = AD . Воспользуемся неравенством треугольника AC < AB + BC . Вычитая из обеих его частей AD = AB , получим неравенство DC < BC. В треугольниках DSC и BSC одна сторона общая (SC ), SD = SB и DC < BC. В этом случае против большей стороны лежит больший угол и, следовательно, DSC < BSC . Прибавляя к обеим частям этого неравенства угол ASD , равный ASB , получим требуемое неравенство ASС < ASB + BSC .

Следствие 1. Сумма плоских углов трехгранного угла меньше 360 ° .
Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A , образованный гранями ABS, ACS и углом BAC . В силу доказанного свойства, имеет место неравенство BAС < BAS + CAS . Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС < ABS + CBS , ACB < ACS + BCS . Складывая эти неравенства и учитывая, что сумма углов треугольника ABC равна 180 ° , получаем 180 ° < BAS +CAS + ABS + CBS +BCS + ACS = 180 ° - ASB + 180 ° - BSC + 180 ° - ASC . Следовательно, ASB + BSC + ASC < 360 ° .
Следствие 2. Сумма плоских углов выпуклого многогранного угла меньше 360.
Доказательство аналогично предыдущему.
Следствие 3. Сумма двугранных углов трехгранного угла больше 180 ° .
Доказательство. Пусть SABC – трехгранный угол. Выберем какую-нибудь точку P внутри него и опустим из нее перпендикуляры PA 1 , PB 1 , PC 1 на грани (рис. 4).

Плоские углы B 1 PC 1 , A 1 PC 1 , A 1 PB 1 дополняют соответствующие двугранные углы с ребрами SA, SB, SC до 180 ° . Следовательно, сумма этих двугранных углов равна 540 ° - (B 1 PC 1 +A 1 PC 1 + A 1 PB 1 ). Учитывая, что сумма плоских углов трехгранного с вершиной P угла меньше 360 ° , получаем, что сумма двугранных углов исходного трехгранного угла больше 180 ° .
Свойство 2. Биссектрисы треугольника пересекаются в одной точке.
Свойство 2". Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.
Доказательство аналогично плоскому случаю. А именно, пусть SABC – трехгранный угол. Биссектральная плоскость двугранного угла SA является ГМТ угла, равноудаленных от его граней ASC и ASB . Аналогично, биссектральная плоскость двугранного угла SB является ГМТ угла, равноудаленных от его граней BSA и BSC . Линия их пересечения SO будет равноудалена от всех граней трехгранного угла и, следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC .
Свойство 3. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Свойство 3". Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.
Доказательство аналогично доказательству предыдущего свойства.
Свойство 4. Медианы треугольника пересекаются в одной точке.
Свойство 4". Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол SABC, SA = SB = SC (рис. 5). Тогда биссектрисы SA 1 , SB 1 , SC 1 углов BSC, ASC, ASB являются медианами соответствующих треугольников. Поэтому AA 1 , BB 1 , CC 1 – медианы треугольника ABC . Пусть O – точка их пересечения. Прямая SO содержится во всех трех рассматриваемых плоскостях и, следовательно, является линией их пересечения.

Свойство 5. Высоты треугольника пересекаются в одной точке.
Свойство 5 ". Плоскости, проходящие через ребра трехгранного угла и перпендикулярные противоположным граням, пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол с вершиной S и ребрами a, b, c. Обозначим a 1 , b 1 , c 1 – линии пересечения граней с плоскостями, проходящими через соответствующие ребра и перпендикулярные этим граням (рис. 6). Зафиксируем точку C на ребре c и опустим из нее перпендикуляры CA 1 и CB 1 на прямые a 1 и b 1 . Обозначим A и B пересечения прямых CA 1 и CB 1 с прямыми a и b . Тогда SA 1 является проекцией AA 1 на грань BSC . Так как BC перпендикулярна SA 1 , то она перпендикулярна и AA 1 . Аналогично, AC перпендикулярна BB 1 . Таким образом, AA 1 и BB 1 являются высотами треугольника ABC . Пусть O – точка их пересечения. Плоскости, проходящие через прямые a и a 1 , b и b 1 перпендикулярны плоскости ABC и, следовательно, линия их пересечения SO перпендикулярна ABC . Значит, SO перпендикулярна AB . С другой стороны, CO перпендикулярна AB . Поэтому плоскость, проходящая через ребро c и SO будет перпендикулярна противоположной грани.
Свойство 6 (теорема синусов). В треугольнике ABC со сторонами a, b, c соответственно, имеют место равенства a : sin A = b : sin B = c : sin C.
Свойство 6". Пусть a , b , g - плоские углы трехгранного угла, a, b, c – противолежащие им двугранные углы. Тогда sin a : sin a = sin b : sin b = sin g : sin c .
Доказательство. Пусть SABC – трехгранный угол. Опустим из точки C перпендикуляр CC 1 на плоскость ASB и перпендикуляр CA 1 на ребро SA (рис. 7). Тогда угол CA 1 C 1 будет линейным углом двугранного угла a . Поэтому CC 1 = CA 1 sin a = SC sin b sin a. Аналогично показывается, что CC 1 = CB 1 sin b = SC sin a sin b. Следовательно, имеет место равенство sin b sin a = sin a sin b и, значит, равенство sin a : sin a = sin b : sin b . Аналогичным образом доказывается, что имеет место равенство sin b : sin b = sin g : sin c .

Свойство 7. Если в выпуклый четырехугольник можно вписать окружность, то суммы противоположных сторон равны.
Свойство 7". Если в выпуклый четырехгранный угол можно вписать сферу, то суммы противоположных плоских углов равны.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963.
4. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

В планиметрии одним из объектов изучения является угол.

Угол - это геометрическая фигура, состоящая из точки - вершины угла и двух лучей, исходящих из этой точки.

Два угла одна сторона, которых общая и две другие являются продолжением одна другой, в планиметрии называются смежными.

Циркуль можно рассматривать как модель плоского угла.

Вспомним понятие двухгранного угла.

Это фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

Крыша дома наглядно демонстрирует двухгранный угол.

Но крыша дома на рисунке два выполнена в виде фигуры образованной из шести плоских углов с общей вершиной так, что углы берутся в определенном порядке и каждая пара соседних углов, включая первый и последний, имеет общую сторону. Как называется такая форма крыши?

В геометрии фигура, составленная из углов

А углы из которых составлен этот угол называются плоскими углами. Стороны плоских углов называются ребрами многогранного угла. Точка О называется вершиной угла.

Примеры многогранных углов можно найти в тетраэдре и параллелепипеде.

Грани тетраэдра DBA, ABC, DBC образуют многогранный угол ВADC. Чаще он называется трёхгранным углом.

В параллелепипеде грани АА1D1D, ABCD, AA1B1B образую трехгранный угол AA1DB.

Ну а крыша дома выполнена в форме шестигранного угла. Она состоит из шести плоских углов.

Для многогранного угла справедлив ряд свойств. Сформулируем их и докажем. Здесь говорится, что утверждение

Во-первых, для любого выпуклого многогранного угла существует плоскость, пересекающая все его рёбра.

Рассмотри для доказательства многогранный угол ОА1А2 А3…Аn.

По условию он выпуклый. Угол называется выпуклым, если он лежит по одну сторону от плоскости каждого из своих плоских углов.

Так как по условию этот угол выпуклый, то точки О, А1, А2 ,А3, Аn лежат по одну сторону от плоскости ОА1А2

Проведем среднюю линию KM треугольника ОА1А2 и выберем из ребер ОА3, ОА4, ОАn то ребро которое образует с плоскостью ОКМ, наименьший двугранный угол. Пусть это будет ребро ОАi.(оа итое)

Рассмотрим полуплоскость α с границей КМ, делящую двугранный угол ОКМАi на два двухгранных угла. Все вершины от А до Аn лежат по одну сторону от плоскости α, а точка О по другую сторону. Следовательно, плоскость α пересекает все ребра многогранного угла. Утверждение доказано.

Выпуклые многогранные углы обладают ещё одним важным свойством.

Сумма плоских углов выпуклого многогранного угла меньше 360°.

Рассмотрим выпуклый многогранный угол с вершиной в точке О. В силу доказанного утверждения существует плоскость, которая пересекает все его ребра.

Проведем такую плоскость α, пусть она пересекает рёбра угла в точках А1, А2, А3 и так далее Аn.

Плоскость α от внешней области плоского угла будет отсекать треугольник. Сумма углов которого 180°. Получим, что сумма всех плоских углов от А1ОА2 до АnОА1 равна выражению преобразуем, данное выражение перегруппируем слагаемые, получим

В данном выражении суммы указанные в скобках, являются суммами плоских углов трехгранного угла, а как известно они больше третьего плоского угла.

Данное неравенство можно записать для всех трёхгранных углов образующих данный многогранный угол.

Следовательно, получим следующее продолжение равенства

Полученный ответ доказывает, что сумма плоских углов выпуклого многогранного угла меньше 360 градусов.