Уравнение прямой проходящей через 2. Уравнение прямой, которая проходит через две заданные точки: примеры, решения

Рассмотрим уравнение прямой проходящей через точку и нормальный вектор. Пусть в системе координат задана точка и ненулевой вектор (рис. 1).

Определение

Как видим, существует единственная прямая , что проходит через точку перпендикулярно направлению вектора (в этом случае называют нормальным вектором прямой ).

Рис. 1

Докажем, что линейное уравнение

это уравнение прямой , то есть координаты каждой точки прямой удовлетворяют уравнение (1), но координаты точки, что не лежит на , уравнения (1) не удовлетворяют.

Для доказательства, обратим внимание, что скалярное произведение векторов и = в координатной форме совпадает с левой частью уравнения (1).

Дальше используем очевидное свойство прямой : векторы и перпендикулярны тогда, и только тогда, когда точка лежит на . А при условии перпендикулярности обоих векторов их скалярное произведение (2) превращается в для всех точек , что лежат на , и только для них. Значит, (1) – уравнение прямой .

Определение

Уравнение (1) называется уравнением прямой, что проходит через данную точку с нормальным вектором = .

Превратим уравнение (1)

Обозначив = , получим

Таким образом, прямой линии отвечает линейное уравнение вида (3). Наоборот, за данным уравнением вида (3), где хотя бы один из коэффициентов и не равен нулю, можно построить прямую.

Действительно, пусть пара чисел удовлетворяют уравнение (3), то есть

Отнимая последнее от (3), получим соотношение , которое определяет прямую за вектором и точкой .

Исследование общего уравнения прямой

Полезно знать особенности размещения прямой в отдельных случаях, когда одно либо два из чисел равны нулю.

1. Общее уравнение выглядит так: . Ему удовлетворяет точка , значит, прямая проходит через начало координат. Его можно записать: = – x (см. рис. 2).

Рис. 2

Считаем, что:

Если положить , тогда , получается ещё одна точка (см. рис. 2).

2. , тогда уравнение выглядит так , где = –. Нормальный вектор лежит на оси , прямая . Таким образом, прямая перпендикулярна в точке , либо же параллельна оси (см. рис. 3). В частности, если и , тогда и уравнение – это уравнение оси ординат.

Рис. 3

3. Аналогично, при уравнение записывается , где . Вектор принадлежит оси . Прямая в точке (рис. 4) .

Если же , тогда уравнение оси .

Исследование можно сформулировать в такой форме: прямая параллельна той координатной оси, смена которой в общем уравнении прямой отсутствует.

Например:

Построим прямую по общему уравнению при условии, что – не равны нулю. Для этого достаточно найти две точки, что лежат на этой прямой. Такие точки иногда удобнее находить на координатных осях.

Положим , тогда = –.

При , тогда = –.

Обозначим – = , – = . Найдены точки и . Отложим на осях и и через них проведём прямую (см. рис. 5).

Рис. 5

От общего можно перейти к уравнению, в которое будут входить числа и :

И тогда получается:

Либо, согласно обозначению, получим уравнение,

Которое называется уравнением прямой в отрезках . Числа и с точностью к знаку равняются отрезкам, которые отсекаются прямой на координатных осях.

Уравнение прямой с угловым коэффициентом

Чтобы узнать, что такое уравнение прямой с угловым коэффициентом, рассмотрим уравнение (1):

Обозначив – = , получим

уравнение прямой, которая проходит через точку в заданном направлении. Геометрическое содержание коэффициента понятно из рис. 6.

В = = , где – наименьший угол, на который нужно повернуть положительное направление оси вокруг общей точки до совмещения её с прямой . Очевидно, что если угол – острый, тогда title="Rendered by QuickLaTeX.com" height="17" width="97" style="vertical-align: -4px;">; если же – тупой угол, тогда .

Раскроем скобки в (5) и упростим его:

где . Соотношение (6) – уравнение прямой с угловым коэффициентом . При , – отрезок, который отсекает прямую на оси (см. рис. 6).

Обратите внимание!

Для перехода от общего уравнения прямой к уравнению с угловым коэффициентом необходимо сначала решить относительно .

Рис. 6

= – x + – =

где обозначено = –, = –. Если же , тогда из исследования общего уравнения уже известно, что такая прямая перпендикулярна оси .

Рассмотрим каноническое уравнение прямой при помощи примера.

Пусть в системе координат задана точка и ненулевой вектор (рис. 7).

Рис. 7

Необходимо составить уравнение прямой, что проходит через точку параллельно вектору , который называется направляющим вектором. Произвольная точка принадлежит этой прямой тогда и только тогда, когда . Так как вектор – задан, а вектор , тогда согласно условию параллельности, координаты этих векторов пропорциональны, то есть:

Определение

Соотношение (7) называется уравнением прямой, которая проходит через заданную точку в заданном направлении или каноническом уравнением прямой.

Обратим внимание, что к уравнению вида (7) можно перейти, например, от уравнения пучка прямых (4)

или от уравнения прямой через точку и нормальный вектор (1):

Выше предполагалось, что направляющий вектор – ненулевой, но может так случиться, что одна из его координат, например, . Тогда выражение (7) формально запишется:

который, вообще не имеет смысла. Однако, принимают и получают уравнение прямой перпендикулярной оси . Действительно, из уравнения видно, что прямая определена точкой и направляющим вектором , перпендикулярным оси . Если в этом уравнении освободиться от знаменателя, тогда получим:

Либо – уравнение прямой, перпендикулярной оси . Аналогично было бы получено для вектора .

Параметрическое уравнение прямой

Чтобы понять, что такое параметрическое уравнение прямой, необходимо вернуться к уравнению (7) и приравнять каждую дробь (7) до параметра . Так как хотя бы один из знаменателей в (7) не равен нулю, а соответствующий числитель может приобретать произвольные значения, тогда область смены параметра – вся числовая ось.

Определение

Уравнение (8) называется параметрическим уравнением прямой.

Примеры задач на прямую линию

Конечно же, сложно что-либо решить исключительно по определениям, ведь нужно решить самостоятельно хотя бы несколько примеров или задач, которые помогут закрепить пройденный материал. Поэтому, давайте разберём основные задачи на прямую линию, так как похожие задачи часто попадаются на экзаменах и зачётах.

Каноническое и параметрическое уравнение

Пример 1

На прямой линии заданной уравнением , найти точку , которые находятся от точки этой прямой на расстоянии 10 единиц.

Решение:

Пусть искомая точка прямой, тогда для расстояния запишем . При условии . Так как точка принадлежит прямой , у которой есть нормальный вектор , тогда уравнение прямой можно записать: = = и далее получается:

Тогда расстояние . При условии , или . Из параметрического уравнения:

Пример 2

Задача

Точка движется равномерно со скоростью по направлению вектора от начальной точки . Найти координаты точки через от начала движения.

Решение

Сначала нужно найти единичный вектор . Его координаты – это направляющие косинусы:

Тогда вектор скорости:

X = x = .

Каноническое уравнение прямой теперь запишется:

= = , = – параметрическое уравнение. После этого нужно воспользоваться параметрическим уравнением прямой при .

Решение:

Уравнение прямой, которая проходит через точку находим по формуле пучка прямых , где угловой коэффициент для прямой и = для прямой .

Учитывая рисунок, где видно, что между прямыми и – два угла: один острый , а второй – тупой . Согласно формуле (9) – это тот угол между прямыми и , на который нужно повернуть прямую против часовой стрелки относительно их точки пересечения до совмещения её с прямой .

Итак, формулу вспомнили, с углами разобрались и теперь можно вернуться к нашему примеру. Значит, учитывая формулу (9) находим сначала и уравнения катета .

Так как поворот прямой на угол против часовой стрелки относительно точки приводит к совмещению с прямой , тогда в формуле (9) , а . Из уравнения :

По формуле пучка уравнения прямой запишется:

Аналогично находим , а ,

Уравнение прямой :

Уравнение прямой – виды уравнения прямой: проходящее через точку, общее, каноническое, параметрическое и т.д. обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Пусть даны две точки М 1 (х 1 ,у 1) и М 2 (х 2 ,у 2) . Запишем уравнение прямой в виде (5), где k пока неизвестный коэффициент:

Так как точка М 2 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (5): . Выражая отсюда и подставив его в уравнение (5) получим искомое уравнение:

Если это уравнение можно переписать в виде, более удобном для запоминания:

(6)

Пример. Записать уравнение прямой, проходящей через точки М 1 (1,2) и М 2 (-2,3)

Решение . . Используя свойство пропорции, и выполнив необходимые преобразования, получим общее уравнение прямой:

Угол между двумя прямыми

Рассмотрим две прямые l 1 и l 2 :

l 1 : , , и

l 2 : , ,

φ- угол между ними (). Из рис.4 видно: .

Отсюда , или

С помощью формулы (7) можно определить один из углов между прямыми. Второй угол равен .

Пример . Две прямые заданы уравнениями у=2х+3 и у=-3х+2. найти угол между этими прямыми.

Решение . Из уравнений видно, что k 1 =2, а k 2 =-3. подставляя данные значения в формулу (7), находим

. Таким образом, угол между данными прямыми равен .

Условия параллельности и перпендикулярности двух прямых

Если прямые l 1 и l 2 параллельны, то φ=0 и tgφ=0 . из формулы (7) следует, что , откуда k 2 =k 1 . Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

Если прямые l 1 и l 2 перпендикулярны, то φ=π/2 , α 2 = π/2+ α 1 . . Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку.

Расстояние от точки до прямой

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k 1 = -3; k 2 = 2 tgj= ; j = p/4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.



Находим уравнение стороны АВ: ; 4x = 6y – 6;

2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k= . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.

Расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из точки на прямую.

Если прямая параллельна плоскости проекции (h | | П 1) , то для того чтобы определить расстояние от точкиА до прямой h необходимо опустить перпендикуляр из точки А на горизонталь h .

Рассмотрим более сложный пример, когда прямая занимает общее положение. Пусть необходимо определить расстояние от точки М до прямойа общего положения.

Задача на определение расстояния между параллельными прямыми решается аналогично предыдущей. На одной прямой берется точка, из нее опускается перпендикуляр на другую прямую. Длина перпендикуляра равна расстоянию между параллельными прямыми.

Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат. В общем случае Ах 2 + 2Вху +Су 2 + 2Дх + 2Еу +F = 0,



где А, В, С, Д, Е, F – действительные числа и по крайней мере одно из чисел А 2 +В 2 +С 2 ≠0.

Окружность

Центр окружности – это геометрическое место точек в плоскости равностоящих от точки плоскости С(а,b).

Окружность задается следующим уравнением:

Где х,у – координаты произвольной точки окружности, R - радиус окружности.

Признак уравнения окружности

1. Отсутствует слагаемое с х,у

2. Равны Коэффициенты при х 2 и у 2

Эллипс

Эллипсом называется геометрическое место точек в плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости называется фокусами (постоянная величина).

Каноническое уравнение эллипса:

Х и у принадлежат эллипсу.

а – большая полуось эллипса

b – малая полуось эллипса

У эллипса 2 оси симметрии ОХ и ОУ. Оси симметрии эллипса – его оси, точка их пересечения – центр эллипса. Та ось на которой расположены фокусы, называется фокальной осью . Точка пересечения эллипса с осями – вершина эллипса.

Коэффициент сжатия (растяжения): ε = с/а – эксцентриситет (характеризует форму эллипса), чем он меньше, тем меньше вытянут эллипс вдоль фокальной оси.

Если центры эллипса находятся не в центре С(α, β)

Гипербола

Гиперболой называется геометрическое место точек в плоскости, абсолютная величина разности расстояний, каждое из которых от двух данных точек этой плоскости, называемых фокусами есть величина постоянная, отличная от ноля.

Каноническое уравнение гиперболы

Гипербола имеет 2 оси симметрии:

а – действительная полуось симметрии

b – мнимая полуось симметрии

Ассимптоты гиперболы:

Парабола

Параболой называется геометрическое место точек в плоскости, равноудаленных от данной точки F, называемой фокусом и данной прямой, называемой директрисой.

Каноническое уравнение параболы:

У 2 =2рх, где р – расстояние от фокуса до директрисы (параметр параболы)

Если вершина параболы С (α, β), то уравнение параболы (у-β) 2 =2р(х-α)

Если фокальную ось принять за ось ординат, то уравнение параболы примет вид: х 2 =2qу


Эта статья является частью темы уравнение прямой на плоскости . Здесь мы разберем со всех сторон: начнем с доказательства теоремы, которая задает вид общего уравнения прямой, далее рассмотрим неполное общее уравнение прямой, приведем примеры неполных уравнений прямой с графическими иллюстрациями, в заключении остановимся на переходе от общего уравнения прямой к другим видам уравнения этой прямой и приведем подробные решения характерных задач на составление общего уравнения прямой.

Навигация по странице.

Общее уравнение прямой - основные сведения.

Разберем этот алгоритм при решении примера.

Пример.

Напишите параметрические уравнения прямой, которая задана общим уравнение прямой .

Решение.

Сначала приведем исходное общее уравнение прямой к каноническому уравнению прямой:

Теперь принимаем левую и правую части полученного уравнения равными параметру . Имеем

Ответ:

Из общего уравнения прямой вида получить уравнение прямой с угловым коэффициентом возможно лишь тогда, когда . Что нужно сделать для перехода? Во-первых, в левой общего уравнения прямой оставить только слагаемое , остальные слагаемые нужно перенести в правую часть с противоположным знаком: . Во-вторых, разделить обе части полученного равенства на число B , которое отлично от нуля, . И все.

Пример.

Прямую в прямоугольной системе координат Oxy задает общее уравнение прямой . Получите уравнение этой прямой с угловым коэффициентом.

Решение.

Проведем необходимые действия: .

Ответ:

Когда прямая задана полным общим уравнением прямой, то легко получить уравнение прямой в отрезках вида . Для этого переносим число С в правую часть равенства с противоположным знаком, делим обе части полученного равенства на –С , и в заключении переносим в знаменатели коэффициенты при переменных x и y :

Пусть прямая проходит через точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Уравнение прямой, проходящей через точку М 1 , имеет вид у- у 1 = k (х - х 1), (10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку М 2 (х 2 у 2), то координаты этой точки должны удовлетворять уравнению (10.6): у 2 -у 1 = k (х 2 -х 1).

Отсюда находим Подставляя найденное значениеk в уравнение (10.6), получим уравнение прямой, проходящей через точки М 1 и М 2:

Предполагается, что в этом уравнении х 1 ≠ х 2 , у 1 ≠ у 2

Если х 1 = х 2 , то прямая, проходящая через точки М 1 (х 1 ,у I) и М 2 (х 2 ,у 2) параллельна оси ординат. Ее уравнение имеет вид х = х 1 .

Если у 2 = у I , то уравнение прямой может быть записано в виде у = у 1 , прямая М 1 М 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке М 1 (а;0), а ось Оу – в точке М 2 (0;b). Уравнение примет вид:
т.е.
. Это уравнение называетсяуравнением прямой в отрезках, т.к. числа а и b указывают, какие отрезки отсекает прямая на осях координат .

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку Мо (х О; у о) перпендикулярно данному ненулевому вектор n = (А; В).

Возьмем на прямой произвольную точку М(х; у) и рассмотрим вектор М 0 М (х - х 0 ; у - у о) (см. рис.1). Поскольку векторы n и М о М перпендикулярны, то их скалярное произведение равно нулю: то есть

А(х - хо) + В(у - уо) = 0. (10.8)

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору .

Вектор n= (А; В), перпендикулярный прямой, называется нормальным нормальным вектором этой прямой .

Уравнение (10.8) можно переписать в виде Ах + Ву + С =0 , (10.9)

где А и В координаты нормального вектора, С = -Ах о - Ву о - свободный член. Уравнение (10.9) есть общее уравнение прямой (см. рис.2).

Рис.1 Рис.2

Канонические уравнения прямой

,

Где
- координаты точки, через которую проходит прямая, а
- направляющий вектор.

Кривые второго порядка Окружность

Окружностью называется множество всех точек плоскости, равноотстоящих от данной точки, которая называется центром.

Каноническое уравнение круга радиуса R с центром в точке
:

В частности, если центр кола совпадает с началом координат, то уравнение будет иметь вид:

Эллипс

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точек и, которые называются фокусами, есть величина постоянная
, большая чем расстояние между фокусами
.

Каноническое уравнение эллипса, фокусы которого лежат на оси Ох, а начало координат посредине между фокусами имеет вид
где
a длина большой полуоси; b– длина малой полуоси (рис. 2).

Зависимость между параметрами эллипса
ивыражается соотношением:

(4)

Эксцентриситетом эллипса называется отношение межфокусного расстояния к большой оси 2а:

Директрисами эллипса называются прямые, параллельные оси Оу, которые находятся от этой оси на расстоянии. Уравнения директрис:
.

Если в уравнении эллипса
, тогда фокусы эллипса находятся на оси Оу.

Итак,


В этой статье получено уравнение прямой, проходящей через две заданные точки в прямоугольной декартовой системе координат на плоскости, а также выведены уравнения прямой, которая проходит через две заданные точки в прямоугольной системе координат в трехмерном пространстве. После изложения теории показаны решения характерных примеров и задач, в которых требуется составить уравнения прямой различного вида, когда известны координаты двух точек этой прямой.

Навигация по странице.

Уравнение прямой, проходящей через две заданные точки на плоскости.

Прежде чем получить уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат на плоскости, вспомним некоторые факты.

Одна из аксиом геометрии гласит, что через две несовпадающие точки на плоскости можно провести единственную прямую. Другими словами, задав две точки на плоскости, мы однозначно определяем прямую линию, которая через эти две точки проходит (при необходимости обращайтесь к разделу способы задания прямой на плоскости).

Пусть на плоскости зафиксирована Oxy . В этой системе координат любой прямой линии соответствует некоторое уравнение прямой на плоскости . С этой же прямой неразрывно связан направляющий вектор прямой . Этих знаний вполне достаточно, чтобы составить уравнение прямой, проходящей через две заданные точки.

Сформулируем условие задачи: составить уравнение прямой a , которая в прямоугольной декартовой системе координат Oxy проходит через две несовпадающие точки и .

Покажем самое простое и универсальное решение этой задачи.

Нам известно, что каноническое уравнение прямой на плоскости вида задает в прямоугольной системе координат Oxy прямую линию, проходящую через точку и имеющую направляющий вектор .

Напишем каноническое уравнение прямой a , проходящей через две заданные точки и .

Очевидно, направляющим вектором прямой a , которая проходит через точки М 1 и М 2 , является вектор , он имеет координаты (при необходимости смотрите статью ). Таким образом, мы имеем все необходимые данные, чтобы написать каноническое уравнение прямой a – координаты ее направляющего вектора и координаты лежащей на ней точки (и ). Оно имеет вид (или ).

Также мы можем записать параметрические уравнения прямой на плоскости , проходящей через две точки и . Они имеют вид или .

Разберем решение примера.

Пример.

Напишите уравнение прямой, которая проходит через две заданные точки .

Решение.

Мы выяснили, что каноническое уравнение прямой, проходящей через две точки с координатами и , имеет вид .

Из условия задачи имеем . Подставим эти данные в уравнение . Получаем .

Ответ:

.

Если нам потребуется не каноническое уравнение прямой и не параметрические уравнения прямой, проходящей через две заданные точки, а уравнение прямой другого вида, то от канонического уравнения прямой всегда можно к нему прийти.

Пример.

Составьте общее уравнение прямой , которая в прямоугольной системе координат Oxy на плоскости проходит через две точки и .

Решение.

Сначала напишем каноническое уравнение прямой, проходящей через две заданные точки. Оно имеет вид . Теперь приведем полученное уравнение к требуемому виду: .

Ответ:

.

На этом можно и закончить с уравнением прямой, проходящей через две заданные точки в прямоугольной системе координат на плоскости. Но хочется напомнить, как мы решали такую задачу в средней школе на уроках алгебры.

В школе нам было известно лишь уравнение прямой с угловым коэффициентом вида . Найдем значение углового коэффициента k и числа b , при которых уравнение определяет в прямоугольной системе координат Oxy на плоскости прямую линию, проходящую через точки и при . (Если же x 1 =x 2 , то угловой коэффициент прямой бесконечен, а прямую М 1 М 2 определяет общее неполное уравнение прямой вида x-x 1 =0 ).

Так как точки М 1 и М 2 лежат на прямой, то координаты этих точек удовлетворяют уравнению прямой , то есть, справедливы равенства и . Решая систему уравнений вида относительно неизвестных переменных k и b , находим или . При этих значениях k и b уравнение прямой, проходящей через две точки и , принимает вид или .

Запоминать эти формулы не имеет смысла, при решении примеров проще повторять указанные действия.

Пример.

Напишите уравнение прямой с угловым коэффициентом, если эта прямая проходит через точки и .

Решение.

В общем случае уравнение прямой с угловым коэффициентом имеет вид . Найдем k и b , при которых уравнение соответствует прямой, проходящей через две точки и .

Так как точки М 1 и М 2 лежат на прямой, то их координаты удовлетворяют уравнению прямой , то есть, верны равенства и . Значения k и b находим как решение системы уравнений (при необходимости обращайтесь к статье ):

Осталось подставить найденные значения и в уравнение . Таким образом, искомое уравнение прямой, проходящей через две точки и , имеет вид .

Колоссальный труд, не так ли?

Намного проще записать каноническое уравнение прямой, проходящей через две точки и , оно имеет вид , и от него перейти к уравнению прямой с угловым коэффициентом: .

Ответ:

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , и заданы две несовпадающие точки и , через которые проходит прямая M 1 M 2 . Получим уравнения этой прямой.

Нам известно, что канонические уравнения прямой в пространстве вида и параметрические уравнения прямой в пространстве вида задают в прямоугольной системе координат Oxyz прямую линию, которая проходит через точку с координатами и имеет направляющий вектор .

Направляющим вектором прямой M 1 M 2 является вектор , и эта прямая проходит через точку ), тогда канонические уравнения этой прямой имеют вид (или ), а параметрические уравнения - (или ).

.

Если потребуется задать прямую М 1 М 2 с помощью уравнений двух пересекающихся плоскостей , то сначала следует составить канонические уравнения прямой, проходящей через две точки и , и из этих уравнений получить нужные уравнения плоскостей.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.