Похідна 2х у кубі. Знайти похідну: алгоритм та приклади рішень

У співвідношенні

може бути завдання знайти будь-якого з трьох чисел за двома іншими, заданим. Якщо дані а то N знаходять дією зведення в ступінь. Якщо дані N і то а знаходять вилученням кореня ступеня х (або зведенням у ступінь). Тепер розглянемо випадок, коли з заданим а і N потрібно знайти х.

Нехай число N позитивно: число а позитивно і дорівнює одиниці: .

Визначення. Логарифмом числа N на підставі а називається показник ступеня, в який потрібно звести а, щоб отримати число N; логарифм позначається через

Таким чином, у рівності (26.1) показник ступеня знаходять як логарифм N на підставі а. Записи

мають однаковий зміст. Рівність (26.1) іноді називають основною тотожністю теорії логарифмів; насправді воно висловлює визначення поняття логарифму. за даному визначеннюоснова логарифму завжди позитивно і від одиниці; логарифмується N позитивно. Негативні числа та нуль логарифмів не мають. Можна довести, що всяке число при даній підставі має певний логарифм. Тому рівність тягне за собою. Зауважимо, що тут суттєва умова в інакшевисновок був би не обґрунтований, тому що рівність вірна за будь-яких значень х і у.

Приклад 1. Знайти

Рішення. Для отримання числа слід звести основу 2 у ступінь Тому.

Можна проводити записи при вирішенні таких прикладів у такій формі:

Приклад 2. Знайти.

Рішення. Маємо

У прикладах 1 і 2 ми легко знаходили шуканий логарифм, представляючи число, що логарифмується як ступінь підстави з раціональним показником. У загальному випадкунаприклад для і т. д., цього зробити не вдасться, так як логарифм має ірраціональне значення. Звернімо увагу на одне пов'язане з цим твердженням питання. У п. 12 ми дали поняття про можливість визначення будь-якої дійсного ступеняданого позитивного числа. Це було необхідне запровадження логарифмів, які, взагалі кажучи, може бути ірраціональними числами.

Розглянемо деякі властивості логарифмів.

Властивість 1. Якщо число та основа рівні, то логарифм дорівнює одиниці, І, навпаки, якщо логарифм дорівнює одиниці, то число і основа рівні.

Доведення. Нехай За визначенням логарифму маємо а звідки

Назад, нехай Тоді за визначенням

Властивість 2. Логарифм одиниці з будь-якої основи дорівнює нулю.

Доведення. За визначенням логарифму ( нульовий ступіньбудь-якої позитивної основи дорівнює одиниці, див. (10.1)). Звідси

що й потрібно було довести.

Правильне і зворотне твердження: якщо , то N = 1. Дійсно, маємо .

Перш ніж сформулювати таку властивість логарифмів, умовимося говорити, що два числа а і b лежать по одну сторону від третього числа с, якщо вони обидва або більше, або менше с. Якщо одне з цих чисел більше с, а інше менше с, то говоритимемо, що вони лежать по різні сторонивід с.

Властивість 3. Якщо число і основа лежать з одного боку від одиниці, то логарифм позитивний; якщо число та основа лежать по різні боки від одиниці, то логарифм негативний.

Доказ властивості 3 заснований на тому, що ступінь а більше одиниці, якщо основа більше одиниці і показник позитивний або основа менше одиниці і показник негативний. Ступінь менше одиниці, якщо основа більша за одиницю і показник від'ємний або основа менша за одиницю і показник позитивний.

Потрібно розглянути чотири випадки:

Обмежимося розбором першого їх, інші читач розгляне самостійно.

Нехай тоді в рівній мірі показник ступеня не може бути ні негативним, ні рівним нулю, отже, він позитивний, т. е. що потрібно було довести.

Приклад 3. З'ясувати, які із наведених нижче логарифмів позитивні, які негативні:

Рішення, а) оскільки число 15 і основа 12 розташовані по один бік від одиниці;

б) , оскільки 1000 та 2 розташовані по один бік від одиниці; при цьому несуттєво, що підстава більша за число, що логарифмується;

в) , оскільки 3,1 та 0,8 лежать по різні боки від одиниці;

г); чому?

д); чому?

Наступні властивості 4-6 часто називають правилами логарифмування: вони дозволяють, знаючи логарифми деяких чисел, знайти логарифми їхнього твору, приватного, ступеня кожного з них.

Властивість 4 (правило логарифмування твору). Логарифм добутку кількох позитивних чисел за цій підставі дорівнює сумілогарифмів цих чисел з тієї ж підстави.

Доведення. Нехай дані позитивні числа.

Для логарифму їхнього твору напишемо визначальну логарифм рівність (26.1):

Звідси знайдемо

Порівнявши показники ступеня першого та останнього виразів, Отримаємо необхідну рівність:

Зауважимо, що умова суттєво; логарифм твору двох негативних чиселмає сенс, але в цьому випадку отримаємо

У випадку, якщо добуток кількох співмножників позитивно, його логарифм дорівнює сумі логарифмів модулів цих співмножників.

Властивість 5 (правило логарифмування приватного). Логарифм приватного позитивних чисел дорівнює різниці логарифмів діленого і дільника, взятих з тієї ж підстави. Доведення. Послідовно знаходимо

що й потрібно було довести.

Властивість 6 (правило логарифмування ступеня). Логарифм ступеня якогось позитивного числа дорівнює логарифмуцього числа, помноженого на показник ступеня.

Доведення. Запишемо знову основну тотожність (26.1) для числа:

що й потрібно було довести.

Слідство. Логарифм кореня з позитивного числа дорівнює логарифму підкореного числа, поділеному на показник кореня:

Довести справедливість цього слідства можна, представивши, як і скориставшись властивістю 6.

Приклад 4. Прологарифмувати на підставі а:

а) (передбачається, що всі величини b, с, d, е позитивні);

б) (передбачається, що).

Рішення, а) Зручно перейти в даному виразі до дробових ступенів:

На підставі рівностей (26.5)-(26.7) тепер можна записати:

Ми зауважуємо, що над логарифмами чисел виконуються дії простіші, ніж над самими числами: при множенні чисел їх логарифми складаються, при розподілі - віднімаються і т.д.

Саме тому логарифми набули застосування у обчислювальній практиці (див. п. 29).

Дія, зворотне логарифмування, називається потенціюванням, а саме: потенціюванням називається дія, за допомогою якого за даним логарифмом числа знаходиться саме це число. По суті потенціювання не є якоюсь особливою дією: воно зводиться до зведення основи в ступінь ( рівну логарифмучисла). Термін "потенціювання" можна вважати синонімом терміна "зведення в ступінь".

При потенціювання треба користуватися правилами, зворотними по відношенню до правил логарифмування: суму логарифмів замінити логарифмом твору, різниця логарифмів - логарифмом приватного і т. д. Зокрема, якщо перед знаком логарифму знаходиться якийсь множник, то його при потенці ступеня під знак логарифму.

Приклад 5. Знайти N, якщо відомо, що

Рішення. У зв'язку з щойно висловленим правилом потенціювання множники 2/3 і 1/3, які стоять перед знаками логарифмів у правій частині цієї рівності, перенесемо до показників ступеня під знаками цих логарифмів; отримаємо

Тепер різницю логарифмів замінимо логарифмом приватного:

для отримання останнього дробу у цьому ланцюжку рівностей ми попередній дріб звільнили від ірраціональності у знаменнику (п. 25).

Властивість 7. Якщо основа більше одиниці, то більша кількістьмає більший логарифм (а менше - менший), якщо основа менше одиниці, то більше число має менший логарифм (а менше - більший).

Цю властивість формулюють також як правило логарифмування нерівностей, обидві частини яких позитивні:

При логарифмуванні нерівностей на підставі, більшому одиниці, знак нерівності зберігається, а при логарифмуванні на підставі, меншій одиниці, знак нерівності змінюється на протилежний (див. також п. 80).

Доказ заснований на властивості 5 і 3. Розглянемо випадок, коли Якщо , то і, логарифмуючи, отримаємо

(а та N/М лежать по один бік від одиниці). Звідси

Випадок отже, читач розбере самостійно.

Випливають із його визначення. І так логарифм числа bна підставі авизначається як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x=log a b, рівнозначне рішенню рівняння a x = b.Наприклад, log 2 8 = 3тому що 8 = 2 3 . Формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа.

З логарифмами, як і з будь-якими числами, можна виконувати операції складання, відніманняі всіляко трансформувати. Але через те, що логарифми - це не зовсім ординарні числа, тут застосовні свої особливі правила, які називаються основними властивостями.

Складання та віднімання логарифмів.

Візьмемо два логарифми з однаковими підставами: log a xі log a y. Тоді зними можна виконувати операції складання та віднімання:

log a x + log a y = log a (x · y);

log a x - log a y = log a (x: y).

log a(x 1 . x 2 . x 3 ... x k) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k.

З теореми логарифму приватногоможна отримати ще одну властивість логарифму. Загальновідомо, що log a 1= 0, отже,

log a 1 /b= log a 1 - log a b= - log a b.

А значить має місце рівність:

log a 1 / b = - log a b.

Логарифми двох взаємно зворотних чиселпо тому самому підставі будуть різні друг від друга виключно знаком. Так:

Log 3 9 = - log 3 1/9; log 5 1/125 = -log 5 125.

Що таке логарифм?

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Що таке логарифм? Як вирішувати логарифми? Ці питання багатьох випускників вводять у ступор. Традиційно тема логарифмів вважається складною, незрозумілою та страшною. Особливо – рівняння з логарифмами.

Це зовсім не так. Абсолютно! Не вірите? Добре. Зараз, за ​​якісь 10 – 20 хвилин ви:

1. Зрозумієте, що таке логарифм.

2. Навчіться вирішувати цілий клас показових рівнянь. Навіть якщо про них нічого не чули.

3. Навчіться обчислювати прості логарифми.

Причому для цього вам потрібно буде знати лише таблицю множення, та як зводиться число до ступеня...

Відчуваю, сумніваєтеся ви... Ну гаразд, засікайте час! Поїхали!

Для початку вирішіть в умі ось таке рівняння:

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Інструкція

Запишіть задане логарифмічний вираз. Якщо у виразі використовується логарифм 10, його запис коротшає і виглядає так: lg b - це десятковий логарифм. Якщо ж логарифм має у вигляді основи число е, записують вираз: ln b – натуральний логарифм. Мається на увазі, що результатом будь-якого є ступінь, в який треба звести число основи, щоб вийшло число b.

При знаходженні від суми двох функцій необхідно просто їх по черзі продиференціювати, а результати скласти: (u+v)" = u"+v";

При знаходженні похідної від добутку двох функцій необхідно похідну від першої функції помножити на другу і додати похідну другої функції, помножену на першу функцію: (u*v)" = u"*v+v"*u;

Для того, щоб знайти похідну від частки двох функцій необхідно, від твору похідної ділимого, помноженої на функцію дільника, відняти твір похідної дільника, помноженої на функцію ділимого, і все це розділити на функцію дільника зведену в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Якщо дана складна функція, то необхідно перемножити похідну від внутрішньої функціїта похідну від зовнішньої. Нехай y=u(v(x)), тоді y"(x)=y"(u)*v"(x).

Використовуючи отримані вище, можна продиференціювати практично будь-яку функцію. Отже, розглянемо кілька прикладів:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Також зустрічаються завдання на обчислення похідної у точці. Нехай задана функція y=e^(x^2+6x+5), необхідно визначити значення функції у точці х=1.
1) Знайдіть похідну функції: y"=e^(x^2-6x+5)*(2*x +6).

2) Обчисліть значення функції в заданій точці y"(1)=8*e^0=8

Відео на тему

Корисна порада

Вивчіть таблицю елементарних похідних. Це помітно заощадить час.

Джерела:

  • похідна константи

Отже, чим відрізняється ір раціональне рівняннявід раціонального? Якщо невідома змінна знаходиться під знаком квадратного кореня, то рівняння вважається ірраціональним.

Інструкція

Основний метод розв'язання таких рівнянь – метод зведення обох частин рівнянняу квадрат. Втім. це природно, насамперед необхідно позбутися знака. Технічно цей метод не складний, але іноді це може спричинити неприємності. Наприклад, рівняння v(2х-5) = v(4х-7). Звівши обидві його сторони квадрат, ви отримаєте 2х-5=4х-7. Таке рівняння вирішити не складе труднощів; х = 1. Але число 1 не буде цього рівняння. Чому? Підставте одиницю в рівняння замість значення х. Таке значення не припустимо квадратного кореня. Тому 1 - сторонній корінь, і отже дане рівнянняне має коріння.

Отже, ірраціональне рівняння вирішується за допомогою методу зведення у квадрат обох його частин. І вирішивши рівняння, необхідно обов'язково, щоб відсікти стороннє коріння. Для цього підставте знайдене коріння в оригінальне рівняння.

Розгляньте ще один.
2х+vх-3=0
Звичайно ж, це рівняння можна вирішити за тим самим, що й попереднє. Перенести складові рівняння, що не мають квадратного кореня, в праву частину і далі використовувати метод зведення в квадрат. вирішити отримане раціональне рівняння та коріння. Але й інший, більш витончений. Введіть нову змінну; vх = y. Відповідно, ви отримаєте рівняння виду 2y2+y-3=0. Тобто звичайне квадратне рівняння. Знайдіть його коріння; y1=1 та y2=-3/2. Далі вирішіть два рівняння vх = 1; vх = -3/2. Друге рівняння коренів немає, з першого знаходимо, що х=1. Не забудьте про необхідність перевірки коренів.

Вирішувати тотожності досить просто. Для цього потрібно здійснювати тотожні перетворення, Поки поставленої мети не буде досягнуто. Таким чином, за допомогою найпростіших арифметичних дійпоставлене завдання буде вирішено.

Вам знадобиться

  • - папір;
  • - Ручка.

Інструкція

Найпростіший таких перетворень – алгебраїчні скороченого множення (такі як квадрат суми (різниці), різниця квадратів, сума (різниця), куб суми (різниці)). Крім того існує безліч і тригонометричних формул, які за своєю суттю тими самими тотожностями.

Справді, квадрат суми двох доданків дорівнює квадратупершого плюс подвоєний добуток першого на друге і плюс квадрат другого, тобто (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab +b^2.

Спростіть обох

Загальні засади рішення

Повторіть за підручником з математичного аналізуабо вищої математики, Що являє собою певний інтеграл. Як відомо, рішення певного інтегралує функція, похідна якої дасть підінтегральний вираз. Ця функціяназивається первісною. за даним принципомта будується основних інтегралів.
Визначте за видом підінтегральної функції, який із табличних інтегралів підходить у даному випадку. Не завжди вдається це визначити одразу ж. Часто, табличний вигляд стає помітним лише після кількох перетворень зі спрощення підінтегральної функції.

Метод заміни змінних

Якщо підінтегральною функцією є тригонометрична функція, в аргументі якої певний багаточлен, то спробуйте використати метод заміни змінних. Для того, щоб це зробити, замініть багаточлен, що стоїть в аргументі підінтегральної функції, на деяку нову змінну. За співвідношенням між новою та старою змінною визначте нові межі інтегрування. Диференціюванням даного виразузнайдіть новий диференціал у . Таким чином, ви отримаєте новий видколишнього інтеграла, близький або навіть відповідний будь-якому табличному.

Рішення інтегралів другого роду

Якщо інтеграл є інтегралом другого роду, векторний вид підінтегральної функції, то вам буде потрібно скористатися правилами переходу від даних інтегралів до скалярних. Одним із таких правил є співвідношення Остроградського-Гаусса. Цей закондозволяє перейти від потоку ротора деякої векторної функції до потрійного інтеграла дивергенції даного векторного поля.

Підстановка меж інтегрування

Після знаходження первинної необхідно підставити межі інтегрування. Спочатку підставте значення верхньої межі у вираз для первісної. Ви отримаєте кілька. Далі відніміть з отриманого числа інше число, отримане нижньої межі первісну. Якщо одна з меж інтегрування є нескінченністю, то при підстановці її в первісну функціюнеобхідно перейти до межі і знайти, чого прагне вираз.
Якщо інтеграл є двовимірним або тривимірним, то вам доведеться зображувати геометричні межі інтегрування, щоб розуміти, як розраховувати інтеграл. Адже у випадку, скажімо, тривимірного інтеграла межами інтегрування можуть бути цілі площини, що обмежують обсяг, що інтегрується.