Рівняння cos x a. Зв'язок з іншими тригонометричними функціями

У п'ятому столітті до нашої ери давньогрецький філософ Зенон Елейський сформулював свої знамениті апорії, найвідомішою з яких є апорія "Ахілес і черепаха". Ось як вона звучить:

Припустимо, Ахіллес біжить у десять разів швидше, ніж черепаха, і знаходиться позаду неї на відстані тисячу кроків. За той час, за який Ахіллес пробіжить цю відстань, черепаха в той самий бік проповзе сто кроків. Коли Ахіллес пробіжить сто кроків, черепаха проповзе ще десять кроків, і таке інше. Процес продовжуватиметься до нескінченності, Ахіллес так ніколи і не наздожене черепаху.

Ця міркування стала логічним шоком для всіх наступних поколінь. Аристотель, Діоген, Кант, Гегель, Гільберт... Усі вони однак розглядали апорії Зенона. Шок виявився настільки сильним, що " ... дискусії продовжуються і в даний час, прийти до спільної думки про сутність парадоксів науковій спільнотіпоки що не вдалося... до дослідження питання залучалися математичний аналіз, теорія множин, нові фізичні та філософські підходи; жоден із них не став загальновизнаним вирішенням питання...[Вікіпедія, "Апорії Зенона"]. Всі розуміють, що їх дурять, але ніхто не розуміє, в чому полягає обман.

З погляду математики, Зенон у своїй апорії наочно продемонстрував перехід від величини до . Цей перехід передбачає застосування замість постійних. Наскільки я розумію, математичний апаратзастосування змінних одиниць виміру або ще розроблено, або його застосовували до апорії Зенона. Застосування нашої звичайної логіки приводить нас у пастку. Ми, за інерцією мислення, застосовуємо постійні одиниці виміру часу до оберненої величини. З фізичної точкизору це виглядає, як уповільнення часу до його повної зупинки в момент, коли Ахілес порівняється з черепахою. Якщо час зупиняється, Ахілес вже не може перегнати черепаху.

Якщо перевернути звичну нам логіку, все стає на свої місця. Ахіллес біжить з постійною швидкістю. Кожен наступний відрізок його шляху вдесятеро коротший за попередній. Відповідно, і час, що витрачається на його подолання, у десять разів менший за попередній. Якщо застосовувати поняття "нескінченність" у цій ситуації, то правильно буде говорити "Ахіллес нескінченно швидко наздожене черепаху".

Як уникнути цієї логічної пастки? Залишатися в постійних одиницяхвимірювання часу і переходити до зворотним величинам. Мовою Зенона це виглядає так:

За той час, за який Ахіллес пробіжить тисячу кроків, черепаха в той самий бік проповзе сто кроків. За наступний інтервал часу рівний першомуАхіллес пробіжить ще тисячу кроків, а черепаха проповзе сто кроків. Тепер Ахіллес на вісімсот кроків випереджає черепаху.

Цей підхід адекватно визначає реальність без жодних логічних парадоксів. Але це не повне рішенняпроблеми. На Зеноновську апорію "Ахіллес і черепаха" дуже схоже твердження Ейнштейна про непереборність швидкості світла. Цю проблему нам ще належить вивчити, переосмислити та вирішити. І рішення потрібно шукати не в нескінченно великих числах, а в одиницях виміру.

Інша цікава апорія Зенона оповідає про стрілу, що летить.

Летяча стріла нерухома, тому що в кожний момент часу вона спочиває, а оскільки вона спочиває в кожний момент часу, вона завжди спочиває.

У цій апорії логічний парадокс долається дуже просто - досить уточнити, що в кожний момент часу стріла, що летить, спочиває в різних точках простору, що, власне, і є рухом. Тут слід зазначити інший момент. За однією фотографією автомобіля на дорозі неможливо визначити ані факт його руху, ані відстань до нього. Для визначення факту руху автомобіля потрібні дві фотографії, зроблені з однієї точки в різні моментичасу, але з них не можна визначити відстань. Для визначення відстані до автомобіля потрібні дві фотографії, зроблені з різних точокпростору в один момент часу, але за ними не можна визначити факт руху (звісно, ​​ще потрібні додаткові дані для розрахунків, тригонометрія вам на допомогу). На що я хочу звернути особливу увагуТак це на те, що дві точки в часі і дві точки в просторі - це різні речі, які не варто плутати, адже вони надають різні можливості для дослідження.

середа, 4 липня 2018 р.

Дуже добре відмінності між безліччю та мультимножиною описані у Вікіпедії. Дивимося.

Як бачите, "у множині не може бути двох ідентичних елементів", але якщо ідентичні елементи у множині є, така множина називається "мультимножина". Подібну логіку абсурду розумним істотам не зрозуміти ніколи. Це рівень папуг, що говорятьі дресованих мавп, у яких розум відсутній від слова "зовсім". Математики виступають у ролі звичайних дресирувальників, проповідуючи нам свої абсурдні ідеї.

Колись інженери, які збудували міст, під час випробувань мосту перебували у човні під мостом. Якщо міст обрушувався, бездарний інженер гинув під уламками свого творіння. Якщо міст витримував навантаження, талановитий інженер будував інші мости.

Як би математики не ховалися за фразою "чур, я в будиночку", точніше "математика вивчає абстрактні поняттяЄ одна пуповина, яка нерозривно пов'язує їх з реальністю. Цією пуповиною є гроші. математичну теоріюмножин до самих математиків.

Ми дуже добре вчили математику і зараз сидимо у касі, видаємо зарплатню. Ось приходить до нас математик по свої гроші. Відраховуємо йому всю суму та розкладаємо у себе на столі на різні стопки, в які складаємо купюри однієї гідності. Потім беремо з кожної стопки по одній купюрі і вручаємо його математику " математична безлічзарплати". Пояснюємо математику, що решта купюр він отримає тільки тоді, коли доведе, що безліч без однакових елементів не дорівнює безлічі з однаковими елементами. Ось тут почнеться найцікавіше.

Насамперед спрацює логіка депутатів: "до інших це застосовувати можна, до мене - низьзя!". Далі почнуться запевнення нас у тому, що на купюрах однакової гідності є різні номери купюр, а отже, їх не можна вважати однаковими елементами. Добре, відраховуємо зарплату монетами – на монетах немає номерів. Тут математик почне судомно згадувати фізику: на різних монетах є різна кількістьбруду, кристалічна структурата розташування атомів у кожної монети унікально...

А тепер у мене самий цікаве питання: де проходить та грань, за якою елементи мультимножини перетворюються на елементи множини і навпаки? Такої межі не існує – все вирішують шамани, наука тут і близько не валялася.

Ось дивіться. Ми відбираємо футбольні стадіони із однаковою площею поля. Площа полів однакова – значить у нас вийшло мультимножина. Але якщо розглядати назви цих стадіонів - у нас виходить безліч, адже назви різні. Як бачите, той самий набір елементів одночасно є і безліччю, і мультимножиною. Як правильно? А ось тут математик-шаман-шуллер дістає з рукава козирний туз і починає нам розповідати або про множину, або про мультимножину. У будь-якому разі він переконає нас у своїй правоті.

Щоб зрозуміти, як сучасні шамани оперують теорією множин, прив'язуючи її до реальності, достатньо відповісти на одне питання: чим елементи однієї множини відрізняються від елементів іншої множини? Я вам покажу, без усяких "мислиме як єдине ціле" чи "не мислиме як єдине ціле".

неділя, 18 березня 2018 р.

Сума цифр числа - це танець шаманів з бубном, який до математики жодного стосунку не має. Так, на уроках математики нас вчать знаходити суму цифр числа та користуватися нею, але на те вони й шамани, щоб навчати нащадків своїм навичкам та премудростям, інакше шамани просто вимруть.

Вам потрібні докази? Відкрийте Вікіпедію та спробуйте знайти сторінку "Сума цифр числа". Її немає. Немає в математиці формули, якою можна знайти суму цифр будь-якого числа. Адже цифри – це графічні символи, за допомогою яких записуємо числа і мовою математики завдання звучить так: "Знайти суму графічних символів, що зображують будь-яке число " . Математики це завдання вирішити що неспроможні, тоді як шамани - елементарно.

Давайте розберемося, що і як ми робимо для того, щоб знайти суму цифр заданого числа. Тож нехай у нас є число 12345. Що потрібно зробити для того, щоб знайти суму цифр цього числа? Розглянемо всі кроки по порядку.

1. Записуємо число на папірці. Що ми зробили? Ми перетворили число на графічний символ числа. Це не математична дія.

2. Розрізаємо одну отриману картинку на кілька картинок, що містять окремі цифри. Розрізання картинки - це математична дія.

3. Перетворюємо окремі графічні символи на числа. Це не математична дія.

4. Складаємо отримані числа. Це вже математика.

Сума цифр числа 12345 дорівнює 15. Ось такі ось "курси крою та шиття" від шаманів застосовують математики. Але це ще не все.

З погляду математики немає значення, у якій системі числення ми записуємо число. Так ось, у різних системахобчислення сума цифр однієї й тієї числа буде різною. У математиці система числення вказується як нижнього індексу праворуч від числа. З більшим числом 12345 я не хочу голову морочити, розглянемо число 26 зі статті про . Запишемо це число у двійковій, вісімковій, десятковій та шістнадцятковій системах числення. Ми не розглядатимемо кожен крок під мікроскопом, це ми вже зробили. Подивимося результат.

Як бачите, у різних системах числення сума цифр одного й того ж числа виходить різною. Подібний результат до математики жодного стосунку не має. Це все одно, що при визначенні площі прямокутника в метрах і сантиметрах ви отримували б різні результати.

Нуль у всіх системах числення виглядає однаково і суми цифр немає. Це ще один аргумент на користь того, що . Питання математикам: як у математиці позначається те, що є числом? Що для математиків нічого, крім чисел, не існує? Для шаманів я можу таке припустити, але для вчених – ні. Реальність складається не лише з чисел.

Отриманий результат слід як доказ те, що системи числення є одиницями виміру чисел. Адже ми не можемо порівнювати числа з різними одиницямивимірювання. Якщо одні й самі дії з різними одиницями виміру однієї й тієї величини призводять до різних результатів після їх порівняння, це має нічого спільного з математикою.

Що таке справжня математика? Це коли результат математичної діїне залежить від величини числа, що застосовується одиниці виміру і від того, хто цю дію виконує.

Табличка на дверях Відчиняє двері і каже:

Ой! А це хіба не жіночий туалет?
- Дівчино! Це лабораторія з вивчення індефільної святості душ під час вознесіння на небеса! Німб зверху і стрілка вгору. Який ще туалет?

Жіночий... Німб зверху та стрілочка вниз – це чоловічий.

Якщо у вас перед очима кілька разів на день мелькає ось такий витвір дизайнерського мистецтва,

Тоді не дивно, що у своєму автомобілі ви раптом виявляєте дивний значок:

Особисто я роблю над собою зусилля, щоб в людині, яка кавала (одна картинка), побачити мінус чотири градуси (композиція з декількох картинок: знак мінус, цифра чотири, позначення градусів). І я не вважаю цю дівчину дурою, не знає фізику. Просто у неї дугою стереотип сприйняття графічних образів. І математики нас цього постійно навчають. Ось приклад.

1А - це не "мінус чотири градуси" або "один а". Це "какая людина" або число "двадцять шість" у шістнадцятковій системі числення. Ті люди, які постійно працюють у цій системі числення, автоматично сприймають цифру та букву як один графічний символ.

Ми знаємо, що значення косинуса укладено у проміжку [-1; 1], тобто. -1 ≤ cos α ≤ 1. Тому якщо |а| > 1, то рівняння cos x = а немає коренів. Наприклад, рівняння cos x = -1,5 коріння немає.

Розглянемо кілька завдань.

Розв'язати рівняння cos x = 1/2.

Рішення.

Згадаймо, що cos x – це абсцис точки кола з радіусом, рівним 1, отриманої в результаті повороту точки Р (1; 0) на кут х навколо початку координат.

Абсцис 1/2 є у двох точок кола М 1 і М 2 . Оскільки 1/2 = cos π/3, то точку М 1 ми можемо отримати з точки Р (1; 0) шляхом повороту на кут х 1 = π/3, а також на кути х = π/3 + 2πk, де k = +/-1, +/-2, …

Точка М 2 виходить із точки Р (1; 0) поворотом на кут х 2 = -π/3, а також на кути -π/3 + 2πk, де k = +/-1, +/-2, …

Отже, все коріння рівняння cos x = 1/2 можна знайти за формулами
х = π/3 + 2πk
х = -π/3 + 2πk,

Дві подані формули можна поєднати в одну:

х = +/-π/3 + 2πk, k € Z.

Розв'язати рівняння cos x = -1/2.

Рішення.

Абсцис, рівну - 1/2, мають дві точки кола М 1 і М 2 . Оскільки -1/2 = cos 2π/3, то кут х 1 = 2π/3, тому кут х 2 = -2π/3.

Отже, усі корені рівняння cos x = -1/2 можна знайти за формулою: х = +/-2π/3 + 2πk, k€Z.

Таким чином, кожне з рівнянь cos x = 1/2 та cos x = -1/2 має безлічкоріння. На відрізку 0 ? х ?

Число π/3 називають арккосинусом числа 1/2 і записують: arccos 1/2 = π/3, а число 2π/3 – арккосинусом числа (-1/2) і записують: arccos (-1/2) = 2π/3 .

Взагалі рівняння cos x = а, де -1 ≤ а ≤ 1, має на відрізку 0 ≤ х ≤ π лише один корінь. Якщо а ≥ 0, корінь укладений у проміжку ; якщо а< 0, то в промежутке (π/2; π]. Этот корень называют арккосинусом числа а и обозначают: arccos а.

Таким чином, арккосинусом числа а € [-1; 1] називається таке число а €, косинус якого дорівнює а:

arccos а = α, якщо cos α = а та 0 ≤ а ≤ π (1).

Наприклад, arccos √3/2 = π/6, оскільки cos π/6 = √3/2 та 0 ≤ π/6 ≤ π;
arccos (-√3/2) = 5π/6, оскільки cos 5π/6 = -√3/2 та 0 ≤ 5π/6 ≤ π.

Аналогічно тому, як це зроблено в процесі розв'язання задач 1 і 2, можна показати, що всі корені рівняння cos x = а де |а| ≤ 1, виражаються формулою

x = +/-arccos a + 2 πn, n € Z (2).

Розв'язати рівняння cos x = -0,75.

Рішення.

За формулою (2) знаходимо, х = +/- arccos (-0,75) + 2 πn, n € Z.

Значення arcos (-0,75) можна приблизно знайти на малюнку, вимірявши кут за допомогою транспортира. Наближені значення арккосинусу можна також знаходити за допомогою спеціальних таблиць (таблиці Брадіса) або мікрокалькулятора. Наприклад, значення arccos (-0,75) можна обчислити на мікрокалькуляторі, отримавши приблизне значення 2,4188583. Отже, arccos (-0,75) ≈ 2,42. Отже, arccos (-0,75) ≈ 139 °.

Відповідь: arccos (-0,75) ≈ 139 °.

Розв'язати рівняння (4cos x – 1)(2cos 2x + 1) = 0.

Рішення.

1) 4cos x – 1 = 0, cos x = 1/4, x = +/-arcos 1/4 + 2 πn, n € Z.

2) 2cos 2x + 1 = 0, cos 2x = -1/2, 2х = +/-2π/3 + 2πn, х = +/-π/3 + πn, n€ Z.

Відповідь. х = +/-arcos 1/4 + 2 πn, х = +/-π/3 + πn.

Можна довести, що для будь-якого € [-1; 1] справедлива формула arccos (-а) = π - arccos а (3).

Ця формула дозволяє виражати значення арккосінусів негативних чиселчерез значення арккосинусов позитивних чисел. Наприклад:

arccos (-1/2) = π – arccos 1/2 = π – π/3 = 2π/3;

arccos (-√2/2) = π – arсcos √2/2 = π – π/4 = 3π/4

з формули (2) випливає, що коріння рівняння, cos x = а при а = 0, а = 1 та а = -1 можна знаходити за більш простими формулами:

cos x = 0 x = π/2 + πn, n € Z (4)

cos x = 1 x = 2πn, n € Z (5)

cos x = -1 x = π + 2πn, n € Z (6).

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Приклади:

\(\cos(⁡30^°)=\)\(\frac(\sqrt(3))(2)\)
\(\cos⁡\)\(\frac(π)(3)\) \(=\)\(\frac(1)(2)\)
\(\cos⁡2=-0,416…\)

Аргумент та значення

Косинус гострого кута

Косинус гострого кутаможна визначити за допомогою прямокутного трикутника – він дорівнює відношенню прилеглого катета до гіпотенузи.

приклад :

1) Нехай дано кут і потрібно визначити косинус цього кута.


2) Добудуємо на цьому куті будь-який прямокутний трикутник.


3) Вимірявши, необхідні сторони, можемо обчислити косинус.


Косинус числа

Числове коло дозволяє визначити косинус будь-якого числа, але зазвичай знаходять косинус чисел якось пов'язаних з : \(\frac(π)(2)\) , \(\frac(3π)(4)\) , \(-2π\ ).

Наприклад, для числа \(\frac(π)(6)\) - косинус дорівнюватиме \(\frac(\sqrt(3))(2)\) . А для числа \(-\)\(\frac(3π)(4)\) він дорівнюватиме \(-\)\(\frac(\sqrt(2))(2)\) (приблизно \(-0 ,71 \)).


Косинус для інших часто зустрічаються в практиці чисел див.

Значення косинуса завжди лежить у межах від (-1) до (1). При цьому обчислений косинус може бути абсолютно будь-якого кута і числа.

Косинус будь-якого кута

Завдяки числового коламожна визначати косинус не тільки гострого кута, Але й тупого, негативного, і навіть більшого, ніж (360 °) ( повний оборот). Як це робити - простіше один раз побачити, ніж (100) раз почути, тому дивіться картинку.


Тепер пояснення: нехай потрібно визначити косинус кута КОАз градусною міроюв (150 °). Поєднуємо точку Проз центром кола, а бік ОК- З віссю \ (x \). Після цього відкладаємо (150 °) проти годинникової стрілки. Тоді ордината точки Апокаже нам косинус цього кута.

Якщо ж нас цікавить кут із градусним заходом, наприклад, в \(-60°\) (кут КОВ), робимо також, але (60 ° \) відкладаємо за годинниковою стрілкою.


І, нарешті, кут більший (360°) (кут КІС) - все аналогічно тупому, тільки пройшовши за годинниковою стрілкою повний оборот, вирушаємо на друге коло і «добираємо нестачу градусів». Саме в нашому випадку кут (405 °) відкладений як (360 ° + 45 °).


Нескладно здогадатися, що для відкладання кута, наприклад, в \(960°\), треба зробити вже два обороти (\(360°+360°+240°\)), а для кута в \(2640°\) - цілих сім.

Як можна замінити, і косинус числа, і косинус довільного кута визначається практично однаково. Змінюються лише спосіб знаходження точки на колі.

Знаки косинуса по чвертях

За допомогою осі косінусів (тобто осі абсцис, виділеної на малюнку червоним кольором) легко визначити знаки косінусів по числовому (тригонометричному) колу:

Там, де значення на осі від (0) до (1), косинус матиме знак плюс (I і IV чверті - зелена область),
- там, де значення на осі від (0) до (-1), косинус матиме знак мінус (II і III чверті - фіолетова область).


Зв'язок з іншими тригонометричними функціями:

- того ж кута (або числа): основним тригонометричним тотожністю\(\sin^2⁡x+\cos^2⁡x=1\)
- того ж кута (або числа): формулою \(1+tg^2⁡x=\)\(\frac(1)(\cos^2⁡x)\)
- і синусом того ж кута (або числа): формулою \(ctgx=\)\(\frac(\cos(x))(\sin⁡x)\)
Інші найчастіше застосовувані формули дивись.

Розв'язання рівняння \(\cos⁡x=a\)

Рішення рівняння \(\cos⁡x=a\), де \(a\) - число не більше \(1\) і не менше \(-1\) тобто. \(a∈[-1;1]\):

\(\cos ⁡x=a\) \(⇔\) \(x=±\arccos⁡a+2πk, k∈Z\)


Якщо \(a>1\) або \(a<-1\), то решений у уравнения нет.

приклад . Розв'яжіть тригонометричне рівняння \(\cos⁡x=\)\(\frac(1)(2)\).
Рішення:

Розв'яжемо рівняння за допомогою числового кола. Для цього:
1) Побудуємо осі.
2) Побудуємо коло.
3) На осі косінусів (осі \(y\)) відзначимо точку \(\frac(1)(2)\) .
4) Проведемо перпендикуляр до осі косінусів через цю точку.
5) Зазначимо точки перетину перпендикуляра та кола.
6)Підпишемо значення цих точок: \(\frac(π)(3)\) ,\(-\)\(\frac(π)(3)\) .
7) Запишемо всі значення, що відповідають цим точкам за допомогою формули \(x=t+2πk\), \(k∈Z\):
\(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\);


Відповідь: \(x=±\frac(π)(3)+2πk\) \(k∈Z\)

Функція \(y=\cos(x)\)

Якщо відкласти по осі (x) кути в радіанах, а по осі (y) - відповідні цим кутам значення косинуса, ми отримаємо наступний графік:


Графік даної називається і має наступні властивості:

Область визначення – будь-яке значення ікса: \(D(\cos(⁡x))=R\)
- область значень – від \(-1\) до \(1\) включно: \(E(\cos(x))=[-1;1]\)
- парна: \(\cos⁡(-x)=\cos(x)\)
- періодична з періодом \(2π\): \(\cos⁡(x+2π)=\cos(x)\)
- Точки перетину з осями координат:
вісь абсцис: \((\)\(\frac(π)(2)\) \(+πn\),\(;0)\), де \(n ϵ Z\)
вісь ординат: \((0;1)\)
- Проміжки знакостійності:
функція позитивна на інтервалах: \((-\)\(\frac(π)(2)\) \(+2πn;\) \(\frac(π)(2)\) \(+2πn)\), де \(n Z Z)
функція негативна на інтервалах: \((\)\(\frac(π)(2)\) \(+2πn;\)\(\frac(3π)(2)\) \(+2πn)\), де \(n Z Z)
- Проміжки зростання та спадання:
функція зростає на інтервалах: \((π+2πn;2π+2πn)\), де \(n ϵ Z\)
функція зменшується на інтервалах: \((2πn;π+2πn)\), де \(n ϵ Z\)
- максимуми та мінімуми функції:
функція має максимальне значення \(y=1\) у точках \(x=2πn\), де \(n ϵ Z\)
функція має мінімальне значення \(y=-1\) в точках \(x=π+2πn\), де \(n Z Z).


Приклади:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Як вирішувати тригонометричні рівняння:

Будь-яке тригонометричне рівняння потрібно прагнути звести до одного з видів:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

де \(t\) - вираз з іксом, \(a\) - число. Такі тригонометричні рівняння називаються найпростішими. Їх легко вирішувати за допомогою () або спеціальних формул:


приклад . Розв'яжіть тригонометричне рівняння \(\sin⁡x=-\)\(\frac(1)(2)\).
Рішення:

Відповідь: \(\left[ \begin(gathered)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(gathered)\right.\) \(k, n∈Z\)

Що означає кожен символ у формулі коренів тригонометричних рівнянь дивись у .

Увага!Рівняння \(\sin⁡x=a\) та \(\cos⁡x=a\) не мають рішень, якщо \(a ϵ (-∞;-1)∪(1;∞)\). Тому що синус і косинус при будь-яких ікс більші або рівні \(-1\) і менше або рівні \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

приклад . Розв'язати рівняння \(\cos⁡x=-1,1\).
Рішення: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Відповідь : рішень немає.


приклад . Розв'яжіть тригонометричне рівняння tg\(⁡x=1\).
Рішення:

Розв'яжемо рівняння за допомогою числового кола. Для цього:
1) Побудуємо коло)
2) Побудуємо осі (x) і (y) і вісь тангенсів (вона проходить через точку ((0; 1)) паралельно осі (y)).
3) На осі тангенсів відзначимо точку (1).
4) З'єднаємо цю точку та початок координат – прямий.
5) Зазначимо точки перетину цього прямого та числового кола.
6)Підпишемо значення цих точок: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Запишемо всі значення цих точок. Оскільки вони знаходяться одна від одної на відстані рівно в \(π\), то всі значення можна записати однією формулою:

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

приклад . Розв'яжіть тригонометричне рівняння \(\cos⁡(3x+\frac(π)(4))=0\).
Рішення:


Знову скористаємося числовим колом.
1) Побудуємо коло, осі (x) і (y).
2) На осі косінусів (вісь \(x\)) відзначимо \(0\).
3) Проведемо перпендикуляр до осі косінусів через цю точку.
4) Зазначимо точки перетину перпендикуляра та кола.
5) Підпишемо значення цих точок: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) Випишемо все значення цих точок і прирівняємо їх до косинуса (до того що всередині косинуса).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) Як завжди в рівняннях виражатимемо (x).
Не забувайте ставитися до чисел з (π), так само до (1), (2), (frac(1) (4)) і т.п. Це такі ж числа, як і решта. Жодної числової дискримінації!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Відповідь: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Зводити тригонометричні рівняння до найпростіших – завдання творче, тут потрібно використовувати і , і особливі методи розв'язків рівнянь:
- Метод (найпопулярніший в ЄДІ).
- Метод.
- метод допоміжних аргументів.


Розглянемо приклад розв'язання квадратно-тригонометричного рівняння

приклад . Розв'яжіть тригонометричне рівняння \(2\cos^2⁡x-5\cos⁡x+2=0\)
Рішення:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Зробимо заміну \(t=\cos⁡x).

Наше рівняння перетворилося на типове. Можна його вирішити за допомогою.

\ (D = 25-4 \ cdot 2 \ cdot 2 = 25-16 = 9 \)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

Робимо зворотну заміну.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

Перше рівняння вирішуємо за допомогою числового кола.
Друге рівняння немає рішень т.к. \(\cos⁡x∈[-1;1]\) і двом бути рівним не може ні за яких іксів.

Запишемо всі числа, що лежать у цих точках.

Відповідь: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

Приклад розв'язання тригонометричного рівняння з дослідженням ОДЗ:

Приклад(ЄДІ) . Розв'яжіть тригонометричне рівняння \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Є дріб і є котангенс – отже треба записати. Нагадаю, що котангенс це фактично дріб:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Тому ОДЗ для ctg\(x\): \(\sin⁡x≠0).

ОДЗ: ctg \ (x ≠ 0 \); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k, n∈Z\)

Зазначимо «нерішення» на числовому колі.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Позбавимося рівняння від знаменника, помноживши його на ctg (x). Ми можемо це зробити, оскільки написали вище, що ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Застосуємо формулу подвійного кута для синуса: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Якщо у вас руки потягнулися поділити на косинус - обсмикніть їх! Ділити на вираз зі змінною можна, якщо воно точно не дорівнює нулю (наприклад, такі: \(x^2+1,5^x\)). Натомість винесемо \(\cos⁡x\) за дужки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Розщепимо» рівняння на два.

\(\cos⁡x=0); \(2\cos⁡x-2\sin⁡x=0\)

Перше рівняння з розв'язком за допомогою числового кола. Друге рівняння поділимо на \(2\) і перенесемо \(\sin⁡x) у праву частину.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Коріння, яке вийшло не входить до ОДЗ. Тому їх у відповідь записувати не будемо.
Друге рівняння типове. Поділимо його на \(\sin⁡x\) (\(\sin⁡x=0\) не може бути рішенням рівняння тому що в цьому випадку \(\cos⁡x=1\) або \(\cos⁡ x = -1 \)).

Знову використовуємо коло.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

Це коріння не виключається ОДЗ, тому можна його записувати у відповідь.

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

Тригонометричні рівняння – тема не найпростіша. Аж надто вони різноманітні.) Наприклад, такі:

sin 2 x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

І тому подібне...

Але в цих (і всіх інших) тригонометричних монстрів є дві загальні та обов'язкові ознаки. Перший - ви не повірите - в рівняннях присутні тригонометричні функції. Другий: всі вирази з іксом знаходяться всередині цих функцій.І лише там! Якщо ікс з'явиться десь зовні,наприклад, sin2x + 3x = 3,це вже буде рівняння змішаного типу. Такі рівняння потребують індивідуального підходу. Тут ми їх не розглядатимемо.

Злі рівняння в цьому уроці ми теж вирішувати не будемо.) Тут ми розбиратимемося з найпростішими тригонометричними рівняннями.Чому? Та тому, що рішення будь-якихТригонометричних рівнянь складається з двох етапів. На першому етапі зле рівняння шляхом різних перетворень зводиться до простого. З другого краю - вирішується це найпростіше рівняння. Інакше ніяк.

Так що, якщо на другому етапі у вас проблеми – перший етап особливого сенсу не має.)

Як виглядають елементарні тригонометричні рівняння?

sinx = а

cosx = а

tgx = а

ctgx = а

Тут а позначає будь-яке число. Будь-яке.

До речі, всередині функції може бути не чистий ікс, а якийсь вираз, типу:

cos(3x+π /3) = 1/2

і тому подібне. Це ускладнює життя, але на методі розв'язання тригонометричного рівняння ніяк не позначається.

Як розв'язувати тригонометричні рівняння?

Тригонометричні рівняння можна вирішувати двома шляхами. Перший шлях: з використанням логіки та тригонометричного кола. Цей шлях ми розглянемо тут. Другий шлях – з використанням пам'яті та формул – розглянемо у наступному уроці.

Перший шлях зрозумілий, надійний, і його важко забути.) Він хороший для розв'язання і тригонометричних рівнянь, і нерівностей, і будь-яких хитрих нестандартних прикладів. Логіка сильніша за пам'ять!)

Вирішуємо рівняння за допомогою тригонометричного кола.

Включаємо елементарну логіку та вміння користуватися тригонометричним колом. Не вмієте! Однак... Важко вам у тригонометрії доведеться...) Але не біда. Загляньте в уроки "Тригонометричне коло...... Що це таке?" та "Відлік кутів на тригонометричному колі". Там просто все. На відміну від підручників...)

Ах, ви в курсі!? І навіть освоїли "Практичну роботу з тригонометричним колом"!? Прийміть вітання. Ця тема буде вам близька і зрозуміла.) Що особливо тішить, тригонометричному колу байдуже, яке рівняння ви вирішуєте. Синус, косинус, тангенс, котангенс - йому все одно. Принцип рішення один.

Ось і беремо будь-яке елементарне тригонометричне рівняння. Хоча б це:

cosx = 0,5

Потрібно знайти ікс. Якщо говорити людською мовою, потрібно знайти кут (ікс), косинус якого дорівнює 0,5.

Як ми використовували коло раніше? Ми малювали на ньому куток. У градусах чи радіанах. І відразу бачили тригонометричні функції цього кута. Зараз вчинимо навпаки. Намалюємо на колі косинус, що дорівнює 0,5 і відразу побачимо кут. Залишиться тільки записати відповідь.) Так-так!

Малюємо коло і відзначаємо косинус, що дорівнює 0,5. На осі косинусів, зрозуміло. Ось так:

Тепер намалюємо кут, який дає нам косинус. Наведіть курсор мишки на малюнок (або торкніться картинки на планшеті), та побачитецей самий кут х.

Косинус якого кута дорівнює 0,5?

х = π /3

cos 60°= cos( π /3) = 0,5

Дехто скептично хмикне, так... Мовляв, чи варто було коло городити, коли і так все ясно... Можна, звичайно, хмикати...) Але річ у тому, що це помилкова відповідь. Точніше, недостатній. Знавці кола розуміють, що тут ще ціла купа кутів, які теж дають косинус, що дорівнює 0,5.

Якщо провернути рухливий бік ОА на повний обіг, точка А потрапить у вихідне становище. З тим же косинус, рівним 0,5. Тобто. кут змінитьсяна 360° або 2π радіан, а косинус – ні.Новий кут 60 ° + 360 ° = 420 ° також буде рішенням нашого рівняння, т.к.

Таких повних обертів можна накрутити безліч… І всі ці нові кути будуть рішеннями нашого тригонометричного рівняння. І їх треба якось записати у відповідь. Всі.Інакше рішення не вважається, так...)

Математика вміє це робити просто та елегантно. В одній короткій відповіді записувати безлічрішень. Ось як це виглядає для нашого рівняння:

х = π /3 + 2π n, n ∈ Z

Розшифрую. Все-таки писати осмисленоприємніше, ніж тупо малювати якісь загадкові літери, правда?)

π /3 - це той самий кут, який ми побачилина колі та визначилиза таблицею косінусів.

- Це один повний оборот у радіанах.

n - кількість повних, тобто. цілихоборотів. Зрозуміло, що n може бути 0, ±1, ±2, ±3.... і так далі. Що й вказано коротким записом:

n ∈ Z

n належить ( ) безлічі цілих чисел ( Z ). До речі, замість літери n цілком можуть вживатися літери k, m, t і т.д.

Цей запис означає, що ви можете взяти будь-яке ціле n . Хоч -3, хоч 0, хоч +55. Яке бажаєте. Якщо підставте це число в запис відповіді, отримайте конкретний кут, який обов'язково буде вирішенням нашого суворого рівняння.

Або, іншими словами, х = π /3 - це єдиний корінь із нескінченної множини. Щоб отримати все інше коріння, достатньо до π /3 додати будь-яку кількість повних оборотів ( n ) у радіанах. Тобто. 2π n радіан.

Всі? Ні. Я спеціально насолоду розтягую. Щоб запам'яталося краще.) Ми отримали лише частину відповідей до нашого рівняння. Цю першу частину рішення я запишу ось як:

х 1 = π /3 + 2π n, n ∈ Z

х 1 - не один корінь, це ціла серія коренів, записана у короткій формі.

Але є ще кути, які теж дають косинус, що дорівнює 0,5!

Повернемося до нашої картинки, за якою записували відповідь. Ось вона:

Наводимо мишку на картинку та бачимоще один кут, який також дає косинус 0,5.Як ви вважаєте, чому він дорівнює? Трикутнички однакові... Так! Він дорівнює куту х , Тільки відкладений у негативному напрямку. Це кут -х. Але ікс ми вже вирахували. π /3 або 60 °. Отже, можна сміливо записати:

х 2 = - π /3

Ну і, зрозуміло, додаємо всі кути, які виходять через повні оберти:

х 2 = - π /3 + 2π n, n ∈ Z

Ось тепер все.) По тригонометричному колі ми побачили(хто розуміє, звичайно) Усекути, що дають косинус, рівний 0,5. І записали ці кути у короткій математичній формі. У відповіді вийшло дві нескінченні серії коренів:

х 1 = π /3 + 2π n, n ∈ Z

х 2 = - π /3 + 2π n, n ∈ Z

Це правильна відповідь.

Сподіваюся, загальний принцип розв'язання тригонометричних рівняньза допомогою кола зрозумілий. Зазначаємо на колі косинус (синус, тангенс, котангенс) із заданого рівняння, малюємо відповідні йому кути та записуємо відповідь.Звичайно, треба збагнути, що за кути ми побачилина колі. Іноді це не так очевидно. Ну так я й казав, що тут логіка потрібна.)

Наприклад розберемо ще одне тригонометричне рівняння:

Прошу врахувати, що число 0,5 - це не єдине можливе число в рівняннях!) Просто мені його писати зручніше, ніж коріння та дроби.

Працюємо за загальним принципом. Малюємо коло, відзначаємо (на осі синусів, звичайно!) 0,5. Малюємо відразу всі кути, що відповідають цьому синусу. Отримаємо таку картину:

Спочатку знаємося з кутом х у першій чверті. Згадуємо таблицю синусів та визначаємо величину цього кута. Справа нехитра:

х = π /6

Згадуємо про повні оберти і з чистою совістю записуємо першу серію відповідей:

х 1 = π /6 + 2π n, n ∈ Z

Половина справи зроблено. А ось тепер треба визначити другий кут...Це хитріші, ніж у косинусах, так... Але логіка нас врятує! Як визначити другий кут через х? Та легко! Трикутнички на картинці однакові, і червоний кут х дорівнює куту х . Тільки відрахований він від кута в негативному напрямку. Тому і червоний.) А нам відповіді потрібен кут, відрахований правильно, від позитивної півосі ОХ, тобто. від кута 0 градусів.

Наводимо курсор на малюнок і все бачимо. Перший кут я прибрав, щоб не ускладнював картинку. Цікавий нас кут (намальований зеленим) дорівнюватиме:

π - х

Ікс ми знаємо, це π /6 . Отже, другий кут буде:

π - π /6 = 5π /6

Знову згадуємо про добавку повних обертів та записуємо другу серію відповідей:

х 2 = 5π /6 + 2π n, n ∈ Z

От і все. Повноцінна відповідь складається з двох серій коріння:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Рівняння з тангенсом і котангенсом можна легко вирішувати за тим самим загальним принципом розв'язання тригонометричних рівнянь. Якщо, звичайно, знаєте, як намалювати тангенс та котангенс на тригонометричному колі.

У наведених вище прикладах я використовував табличне значення синуса та косинуса: 0,5. Тобто. одне з тих значень, які учень знати зобов'язаний.А тепер розширимо наші можливості на всі інші значення.Вирішувати, так вирішувати!)

Отже, нехай нам треба вирішити таке тригонометричне рівняння:

Такого значення косинуса у коротких таблицях немає. Холоднокровно ігноруємо цей страшний факт. Малюємо коло, відзначаємо на осі косінусів 2/3 і малюємо відповідні кути. Отримуємо таку картинку.

Розбираємось, для початку, з кутом у першій чверті. Знати б, чому дорівнює ікс, одразу відповідь записали б! Не знаємо... Провал!? Спокій! Математика своїх у біді не кидає! Вона на цей випадок вигадала арккосинуси. Не в курсі? Даремно. З'ясуйте, Це набагато простіше, ніж ви думаєте. За цим посиланням жодного складного заклинання щодо "зворотних тригонометричних функцій" немає... Зайве це в цій темі.

Якщо ви знаєте, досить сказати собі: "Ікс - це кут, косинус якого дорівнює 2/3". І відразу, чисто за визначенням арккосинусу, можна записати:

Згадуємо про додаткові звороти та спокійно записуємо першу серію коренів нашого тригонометричного рівняння:

х 1 = arccos 2/3 + 2π n, n ∈ Z

Фактично автоматично записується і друга серія коренів, для другого кута. Все те саме, тільки ікс (arccos 2/3) буде з мінусом:

х 2 = - arccos 2/3 + 2π n, n ∈ Z

І всі справи! Це правильна відповідь. Навіть простіше, ніж із табличними значеннями. До речі, найуважніші помітять, що ця картинка з рішенням через арккосинус нічим, по суті, не відрізняється від картинки рівняння cosx = 0,5.

Саме так! Загальний принцип на те і загальний! Я спеціально намалював дві майже однакові картинки. Коло показує нам кут х за його косинус. Табличний це косинус, чи ні – колу невідомо. Що це за кут, π /3, або арккосинус який - це вже вирішувати.

З синусом та сама пісня. Наприклад:

Знову малюємо коло, відзначаємо синус, що дорівнює 1/3, малюємо кути. Виходить така картина:

І знову картинка майже та сама, що й для рівняння sinx = 0,5.Знову починаємо з кута першої чверті. Чому дорівнює ікс, якщо його синус дорівнює 1/3? Не питання!

Ось і готова перша пачка коренів:

х 1 = arcsin 1/3 + 2π n, n ∈ Z

Розбираємось з другим кутом. У прикладі з табличним значенням 0,5 він дорівнював:

π - х

Так і тут він буде такий самий! Тільки ікс інший, arcsin 1/3. Ну і що!? Можна сміливо записувати другу пачку коренів:

х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

Це абсолютно правильна відповідь. Хоча й не дуже звично. Зате зрозуміло, сподіваюся.)

Ось так вирішуються тригонометричні рівняння за допомогою кола. Цей шлях наочний і зрозумілий. Саме він рятує у тригонометричних рівняннях з відбором коренів на заданому інтервалі, у тригонометричних нерівностях – ті взагалі вирішуються практично завжди по колу. Коротше, в будь-яких завданнях, які трохи складніші за стандартні.

Чи застосуємо знання на практиці?)

Розв'язати тригонометричні рівняння:

Спочатку простіше, прямо з цього уроку.

Тепер складніше.

Підказка: тут доведеться поміркувати над колом. Особисто.)

А тепер зовні прості... Їх ще окремими випадками називають.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Підказка: тут треба збагнути по колу, де дві серії відповідей, а де одна... І як замість двох серій відповідей записати одну. Так, щоб жоден корінь із нескінченної кількості не загубився!)

Ну і зовсім прості):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Підказка: тут треба знати, що таке арксінус, арккосинус? Що таке Арктангенс, Арккотангенс? Найпростіші визначення. Зате згадувати жодних табличних значень не треба!

Відповіді, зрозуміло, безладно):

х 1= arcsin0,3 + 2π n, n ∈ Z
х 2= π - arcsin0,3 + 2

Чи не все виходить? Буває. Прочитайте урок ще раз. Тільки вдумливо(є таке застаріле слово...) І за посиланнями походьте. Основні посилання - про світ. Без нього в тригонометрії – як дорогу переходити із зав'язаними очима. Іноді виходить.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.