Правила логарифмування. Визначення логарифму, основне логарифмічне тотожність


Продовжуємо вивчати логарифми. У цій статті ми поговоримо про обчислення логарифмів, цей процес називають логарифмуванням. Спочатку ми розберемося з обчисленням логарифмів за визначенням. Далі розглянемо, як знаходять значення логарифмів з їх властивостей. Після цього зупинимося на обчисленні логарифмів через спочатку задані значенняінших логарифмів. Нарешті, навчимося використовувати таблиці логарифмів. Вся теорія має приклади з докладними рішеннями.

Навігація на сторінці.

Обчислення логарифмів за визначенням

У найпростіших випадках можна досить швидко і легко виконати знаходження логарифму за визначенням. Давайте докладно розглянемо, як відбувається цей процес.

Його суть полягає у поданні числа b у вигляді a c , звідки визначення логарифму число c є значенням логарифму. Тобто, знаходження логарифму за визначенням відповідає наступний ланцюжок рівностей: log a b = log a a c = c.

Отже, обчислення логарифму за визначенням зводиться до знаходження такого числа c , що a c = b , а саме c є значення логарифму.

Враховуючи інформацію попередніх абзаців, коли число під знаком логарифму задано деяким ступенем заснування логарифму, то можна відразу вказати, чому дорівнює логарифм – він дорівнює показникуступеня. Покажемо рішення прикладів.

приклад.

Знайдіть log 2 2 −3, а також обчисліть натуральний логарифм числа e 5,3.

Рішення.

Визначення логарифму дозволяє нам відразу сказати, що log 2 2 −3 =−3 . Дійсно, число під знаком логарифму дорівнює підставі 2 -3 ступеня.

Аналогічно знаходимо другий логарифм: lne 5,3 = 5,3.

Відповідь:

log 2 2 −3 =−3 та lne 5,3 =5,3 .

Якщо ж число b під знаком логарифму не задано як ступінь основи логарифму, потрібно уважно подивитися, чи можна дійти уявлення числа b як a c . Часто таке уявлення буває досить очевидним, особливо коли число під знаком логарифму дорівнює підставі в ступені 1, або 2, або 3, ...

приклад.

Обчисліть логарифми log 5 25 і .

Рішення.

Нескладно помітити, що 25 = 5 2 це дозволяє обчислювати перший логарифм: log 5 25 = log 5 5 2 = 2 .

Переходимо до обчислення другого логарифму. Число можна представити у вигляді ступеня числа 7: (за потреби дивіться ). Отже, .

Перепишемо третій логарифм у наступному вигляді. Тепер можна побачити, що , звідки укладаємо, що . Отже, за визначенням логарифму .

Коротко рішення можна було записати так: .

Відповідь:

log 5 25 = 2, і .

Коли під знаком логарифму знаходиться досить велике натуральне число, то його не завадить розкласти на прості множники. Це часто допомагає уявити таке число у вигляді певної міри підстави логарифму, отже, обчислити цей логарифм за визначенням.

приклад.

Знайдіть значення логарифму.

Рішення.

Деякі властивості логарифмів дозволяють одразу вказати значення логарифмів. До таких властивостей відносяться властивість логарифму одиниці та властивість логарифму числа, рівної основи: log 1 1 = log a a 0 = 0 і log a a = log a a 1 = 1 . Тобто коли під знаком логарифму знаходиться число 1 або число a , рівне підставі логарифму, то в цих випадках логарифми рівні 0 і 1 відповідно.

приклад.

Чому рівні логарифми та lg10?

Рішення.

Оскільки , то з визначення логарифму випливає .

У другому прикладі число 10 під знаком логарифму збігається з його основою, тому десятковий логарифмдесяти дорівнює одиницітобто lg10=lg10 1 =1 .

Відповідь:

І lg10=1.

Зазначимо, що обчислення логарифмів за визначенням (яке ми розібрали в попередньому пункті) Має на увазі використання рівності log a a p = p , яка є однією з властивостей логарифмів.

На практиці, коли число під знаком логарифму та основа логарифму легко видаються у вигляді ступеня деякого числа, дуже зручно використовувати формулу , Що відповідає одній з властивостей логарифмів. Розглянемо приклад знаходження логарифму, що ілюструє використання цієї формули.

приклад.

Обчисліть логарифм.

Рішення.

Відповідь:

.

Не згадані вище властивості логарифмів також використовуються для обчислення, але про це поговоримо в наступних пунктах.

Знаходження логарифмів через інші відомі логарифми

Інформація цього пункту продовжує тему використання властивостей логарифмів під час їх обчислення. Але тут основна відмінність полягає в тому, що властивості логарифмів використовуються для того, щоб виразити вихідний логарифм через інший логарифм, значення якого відомо. Наведемо приклад пояснення. Припустимо, ми знаємо, що log 2 3≈1,584963 тоді ми можемо знайти, наприклад, log 2 6 , виконавши невелике перетворення за допомогою властивостей логарифму: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

У наведеному прикладі нам було достатньо використати властивість логарифму твору. Однак набагато частіше доводиться застосовувати ширший арсенал властивостей логарифмів, щоб обчислити вихідний логарифм через задані.

приклад.

Обчисліть логарифм 27 на підставі 60 якщо відомо, що log 60 2=a і log 60 5=b .

Рішення.

Отже, нам потрібно знайти log 60 27 . Нескладно помітити, що 27=3 3 і вихідний логарифм в силу властивості логарифму ступеня можна переписати як 3 log 60 3 .

Тепер подивимося, як log 60 3 висловити через відомі логарифми. Властивість логарифму числа, що дорівнює основі, дозволяє записати рівність log 60 60 = 1 . З іншого боку log 60 60 = log60 (2 2 · 3 · 5) = log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким чином, 2·log 60 2+log 60 3+log 60 5=1. Отже, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Нарешті, обчислюємо вихідний логарифм: log 60 27 = 3 · log 60 3 = 3·(1−2·a−b)=3−6·a−3·b.

Відповідь:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Окремо варто сказати про значення формули переходу до нової основи логарифму виду . Вона дозволяє від логарифмів з будь-якими підставами переходити до логарифм з конкретною основою, значення яких відомі або є можливість їх відшукати. Зазвичай від вихідного логарифму за формулою переходу переходять до логарифм по одній з підстав 2 e або 10 так як по цих підстав існують таблиці логарифмів, що дозволяють з певним ступенем точності обчислювати їх значення. У наступному пунктіми покажемо, як це робиться.

Таблиці логарифмів, їх використання

Для наближеного обчислення значень логарифмів можна використовувати таблиці логарифмів. Найчастіше використовується таблиця логарифмів на підставі 2 таблиця натуральних логарифмів і таблиця десяткових логарифмів. При роботі в десятковій системічислення зручно користуватися таблицею логарифмів на підставі десять. З її допомогою і вчитимемося знаходити значення логарифмів.










Подана таблиця дозволяє з точністю до однієї десятитисячної знаходити значення десяткових логарифмів чисел від 1000 до 9999 (з трьома знаками після коми). Принцип знаходження значення логарифму за допомогою таблиці десяткових логарифмів розберемо на конкретному прикладі- так зрозуміліше. Знайдемо lg1,256.

У лівому стовпці таблиці десяткових логарифмів знаходимо дві перші цифри числа 1,256, тобто, знаходимо 1,2 (це число для наочності обведено синьою лінією). Третю цифру числа 1,256 (цифру 5) знаходимо в першій чи останньому рядкуліворуч від подвійної лінії (це число обведене червоною лінією). Четверту цифру вихідного числа 1,256 (цифру 6) знаходимо в першому або останньому рядку праворуч від подвійної лінії (це число обведене зеленою лінією). Тепер знаходимо числа у осередках таблиці логарифмів на перетині зазначеного рядка та зазначених стовпців (ці числа виділені помаранчевим кольором). Сума зазначених чисел дає значення десяткового логарифму, що шукається, з точністю до четвертого знака після коми, тобто, lg1,236≈0,0969+0,0021=0,0990.

А чи можна, використовуючи наведену таблицю, знаходити значення десяткових логарифмів чисел, що мають більше трьох цифр після коми, а також за межі від 1 до 9,999? Так можна. Покажемо, як це робиться на прикладі.

Обчислимо lg102,76332. Спочатку потрібно записати число в стандартному вигляді : 102,76332 = 1,0276332 · 10 2 . Після цього мантису слід округлити до третього знака після коми, маємо 1,0276332·10 2 ≈1,028·10 2, при цьому вихідний десятковий логарифм приблизно дорівнює логарифмуотриманого числа, тобто приймаємо lg102,76332≈lg1,028·10 2 . Тепер застосовуємо властивості логарифму: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Нарешті, знаходимо значення логарифму lg1,028 по таблиці десяткових логарифмів lg1,028 0,0086 +0,0034 = 0,012 . У результаті весь процес обчислення логарифму виглядає так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012.

Насамкінець варто відзначити, що використовуючи таблицю десяткових логарифмів можна обчислити наближене значення будь-якого логарифму. Для цього достатньо за допомогою формули переходу перейти до десяткових логарифмів, знайти їх значення по таблиці, і виконати обчислення, що залишилися.

Наприклад обчислимо log 2 3 . За формулою переходу до нової основи логарифму маємо. З таблиці десяткових логарифмів знаходимо lg3 ≈ 0,4771 та lg2 ≈ 0,3010 . Таким чином, .

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Сьогодні ми поговоримо про формулах логарифміві дамо показові приклади рішення.

Самі собою мають на увазі шаблони рішення відповідно до основних властивостей логарифмів. Перш за все застосовувати формули логарифмів для вирішення нагадаємо для вас, спочатку всі властивості:

Тепер на основі цих формул (властивостей), покажемо приклади вирішення логарифмів.

Приклади розв'язання логарифмів виходячи з формул.

Логарифмпозитивного числа b на підставі a (позначається log a b) - це показник ступеня, в який треба звести a щоб отримати b, при цьому b > 0, a > 0, а 1.

Згідно визначення log a b = x, що рівносильно a x = b, тому log a a x = x.

Логарифми, Приклади:

log 28 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятковий логарифм- це звичайний логарифм, на основі якого знаходиться 10. Позначається як lg.

log 10100 = 2, т.к. 10 2 = 100

Натуральний логарифм- також звичайний логарифм логарифм, але вже з основою е (е = 2,71828... - ірраціональне число). Позначається як ln.

Формули або властивості логарифмів бажано запам'ятати, тому що вони знадобляться нам надалі при вирішенні логарифмів, логарифмічних рівняньта нерівностей. Давайте ще раз відпрацюємо кожну формулу на прикладах.

  • Основне логарифмічне тотожність
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм твору дорівнює сумілогарифмів
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Логарифм приватного дорівнює різниці логарифмів
    log a (b/c) = log a b - log a c

    9 log 5 50 / 9 log 5 2 = 9 log 5 50 - log 5 2 = 9 log 5 25 = 9 2 = 81

  • Властивості ступеня логарифмованого числа та основи логарифму

    Показник ступеня логарифмованого числа log a b m = mlog a b

    Показник ступеня основи логарифму log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    якщо m = n, отримаємо log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Перехід до нової основи
    log a b = log c b/log c a,

    якщо c = b, отримаємо log b b = 1

    тоді log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Як бачите, формули логарифмів не такі складні, як здаються. Тепер розглянувши приклади розв'язання логарифмів, ми можемо переходити до логарифмічних рівнянь. Приклади розв'язання логарифмічних рівнянь ми докладніше розглянемо у статті: " ". НЕ пропустіть!

Якщо у вас залишилися питання щодо вирішення, пишіть їх у коментарях до статті.

Замітка: вирішили здобути освіту іншого класу навчання за кордоном як варіант розвитку подій.

Інструкція

Запишіть задане логарифмічний вираз. Якщо у виразі використовується логарифм 10, його запис коротшає і виглядає так: lg b - це десятковий логарифм. Якщо ж логарифм має у вигляді основи число е, записують вираз: ln b – натуральний логарифм. Мається на увазі, що результатом будь-якого є ступінь, в який треба звести число основи, щоб вийшло число b.

При знаходженні від суми двох функцій необхідно просто їх по черзі продиференціювати, а результати скласти: (u+v)" = u"+v";

При знаходженні похідної від добутку двох функцій необхідно похідну від першої функції помножити на другу і додати похідну другої функції, помножену на першу функцію: (u*v)" = u"*v+v"*u;

Для того, щоб знайти похідну від частки двох функцій необхідно, від твору похідної ділимого, помноженої на функцію дільника, відняти твір похідної дільника, помноженої на функцію ділимого, і все це розділити на функцію дільника зведену в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Якщо дана складна функція, то необхідно перемножити похідну від внутрішньої функціїта похідну від зовнішньої. Нехай y=u(v(x)), тоді y"(x)=y"(u)*v"(x).

Використовуючи отримані вище, можна продиференціювати практично будь-яку функцію. Отже, розглянемо кілька прикладів:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Також зустрічаються завдання на обчислення похідної у точці. Нехай задана функція y=e^(x^2+6x+5), необхідно визначити значення функції у точці х=1.
1) Знайдіть похідну функції: y"=e^(x^2-6x+5)*(2*x +6).

2) Обчисліть значення функції в заданій точці y"(1)=8*e^0=8

Відео на тему

Корисна порада

Вивчіть таблицю елементарних похідних. Це помітно заощадить час.

Джерела:

  • похідна константи

Отже, чим відрізняється ір раціональне рівняннявід раціонального? Якщо невідома змінна знаходиться під знаком квадратного кореня, то рівняння вважається ірраціональним.

Інструкція

Основний метод розв'язання таких рівнянь – метод зведення обох частин рівнянняу квадрат. Втім. це природно, насамперед необхідно позбутися знака. Технічно цей метод не складний, але іноді це може спричинити неприємності. Наприклад, рівняння v(2х-5) = v(4х-7). Звівши обидві його сторони квадрат, ви отримаєте 2х-5=4х-7. Таке рівняння вирішити не складе труднощів; х = 1. Але число 1 не буде цього рівняння. Чому? Підставте одиницю в рівняння замість значення х. Таке значення не припустимо квадратного кореня. Тому 1 - сторонній корінь, і отже дане рівнянняне має коріння.

Отже, ірраціональне рівняння вирішується за допомогою методу зведення квадрата обох його частин. І вирішивши рівняння, необхідно обов'язково, щоб відсікти стороннє коріння. Для цього підставте знайдене коріння в оригінальне рівняння.

Розгляньте ще один.
2х+vх-3=0
Звичайно ж, це рівняння можна вирішити за тим самим, що й попереднє. Перенести складові рівняння, що не мають квадратного кореня, в праву частину і далі використовувати метод зведення в квадрат. вирішити отримане раціональне рівняння та коріння. Але й інший, більш витончений. Введіть нову змінну; vх = y. Відповідно, ви отримаєте рівняння виду 2y2+y-3=0. Тобто звичайне квадратне рівняння. Знайдіть його коріння; y1=1 та y2=-3/2. Далі вирішіть два рівняння vх = 1; vх = -3/2. Друге рівняння коренів немає, з першого знаходимо, що х=1. Не забудьте про необхідність перевірки коренів.

Вирішувати тотожності досить просто. Для цього потрібно здійснювати тотожні перетворення, Поки поставленої мети не буде досягнуто. Таким чином, за допомогою найпростіших арифметичних дійпоставлене завдання буде вирішено.

Вам знадобиться

  • - папір;
  • - Ручка.

Інструкція

Найпростіший таких перетворень – алгебраїчні скороченого множення (такі як квадрат суми (різниці), різниця квадратів, сума (різниця), куб суми (різниці)). Крім того існує безліч і тригонометричних формул, які за своєю суттю тими самими тотожностями.

Справді, квадрат суми двох доданків дорівнює квадратупершого плюс подвоєний добуток першого на друге і плюс квадрат другого, тобто (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab +b^2.

Спростіть обох

Загальні засади рішення

Повторіть за підручником з математичного аналізуабо вищої математики, Що являє собою певний інтеграл. Як відомо, рішення певного інтегралує функція, похідна якої дасть підінтегральний вираз. Ця функціяназивається первісною. за даним принципомта будується основних інтегралів.
Визначте на вигляд підінтегральної функції, який з табличних інтегралів підходить в даному випадку. Не завжди вдається це визначити одразу ж. Часто, табличний вигляд стає помітним лише після кількох перетворень зі спрощення підінтегральної функції.

Метод заміни змінних

Якщо підінтегральною функцією є тригонометрична функція, в аргументі якої є певний багаточлен, то спробуйте використовувати метод заміни змінних. Для того, щоб це зробити, замініть багаточлен, що стоїть в аргументі підінтегральної функції, на деяку нову змінну. За співвідношенням між новою та старою змінною визначте нові межі інтегрування. Диференціюванням даного виразузнайдіть новий диференціал у . Таким чином, ви отримаєте новий видколишнього інтеграла, близький чи навіть відповідний будь-якому табличному.

Рішення інтегралів другого роду

Якщо інтеграл є інтегралом другого роду, векторний вид підінтегральної функції, вам буде необхідно користуватися правилами переходу від даних інтегралів до скалярних. Одним із таких правил є співвідношення Остроградського-Гаусса. Цей закондозволяє перейти від потоку ротора деякої векторної функції до потрійного інтеграла дивергенції даного векторного поля.

Підстановка меж інтегрування

Після знаходження первинної необхідно підставити межі інтегрування. Спочатку підставте значення верхньої межіу вираз для первісної. Ви отримаєте кілька. Далі відніміть з отриманого числа інше число, отримане нижньої межі первісну. Якщо одна з меж інтегрування є нескінченністю, то при підстановці її в первісну функціюнеобхідно перейти до межі і знайти, чого прагне вираз.
Якщо інтеграл є двовимірним або тривимірним, то вам доведеться зображувати геометричні межі інтегрування, щоб розуміти, як розраховувати інтеграл. Адже у випадку, скажімо, тривимірного інтеграла межами інтегрування можуть бути цілі площини, що обмежують обсяг, що інтегрується.

Випливають із його визначення. І так логарифм числа bна підставі авизначається як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x=log a b, рівнозначне рішенню рівняння a x = b.Наприклад, log 2 8 = 3тому що 8 = 2 3 . Формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа .

З логарифмами, як і з будь-якими числами, можна виконувати операції складання, відніманняі всіляко трансформувати. Але через те, що логарифми - це не зовсім ординарні числа, тут застосовні свої особливі правила, які називаються основними властивостями.

Складання та віднімання логарифмів.

Візьмемо два логарифми з однаковими підставами: log a xі log a y. Тоді зними можна виконувати операції складання та віднімання:

log a x + log a y = log a (x · y);

log a x - log a y = log a (x: y).

log a(x 1 . x 2 . x 3 ... x k) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k.

З теореми логарифму приватногоможна отримати ще одну властивість логарифму. Загальновідомо, що log a 1= 0, отже,

log a 1 /b= log a 1 - log a b= - log a b.

А значить має місце рівність:

log a 1 / b = - log a b.

Логарифми двох взаємно зворотних чиселпо тому самому підставі будуть різні друг від друга виключно знаком. Так:

Log 3 9 = - log 3 1/9; log 5 1/125 = -log 5 125.

Одним із елементів алгебри примітивного рівня є логарифм. Назва походить з грецької мовивід слова "число" або "ступінь" і означає ступінь, в який необхідно звести число, що знаходиться на підставі, для знаходження підсумкового числа.

Види логарифмів

  • log a b – логарифм числа b на підставі a (a > 0, a ≠ 1, b > 0);
  • lg b – десятковий логарифм (логарифм на підставі 10, a = 10);
  • ln b - натуральний логарифм (логарифм на основі e, a = e).

Як вирішувати логарифми?

Логари́м числа b за основою a є показником ступеня, який вимагає, щоб у число b звели основу а. Отриманий результат вимовляється так: "логарифм b на підставі а". Рішення логарифмічних завданьполягає в тому, що вам необхідно визначити цей ступіньза числами по вказаним числам. Існують деякі основні правила, щоб визначити чи вирішити логарифм, а також перетворити сам запис. Використовуючи їх, здійснюється рішення логарифмічних рівнянь, знаходяться похідні, вирішуються інтеграли та здійснюються багато інших операцій. В основному, рішенням самого логарифму є його спрощений запис. Нижче наведено основні формули та властивості:

Для будь-яких a; a > 0; a ≠ 1 і для будь-яких x; y > 0.

  • a log a b = b – основна логарифмічна тотожність
  • log a 1 = 0
  • log a a = 1
  • log a (x · y) = log a x + log a y
  • log a x / y = log a x - log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k · log a x , при k ≠ 0
  • log a x = log a c x c
  • log a x = log b x / log b a – формула переходу до нової основи
  • log a x = 1/log x a


Як вирішувати логарифми – покрокова інструкція рішення

  • Спочатку запишіть необхідне рівняння.

Зверніть увагу: якщо в логарифмі з основи стоїть 10 , запис укорочується, виходить десятковий логарифм. Якщо стоїть натуральна кількість е, то записуємо, скорочуючи до натурального логарифму. Мається на увазі, що результат всіх логарифмів - ступінь, в який зводиться число підстав до отримання числа b.


Безпосередньо рішення і полягає у обчисленні цього ступеня. Перш ніж вирішити вираз із логарифмом, його необхідно спростити за правилом, тобто, користуючись формулами. Основні тотожності ви зможете знайти, повернувшись трохи назад у статті.

Складаючи та віднімаючи логарифми з двома різними числами, але з однаковими підставами, замінюйте одним логарифмом з добутком чи розподілом чисел b та з відповідно. У такому разі можна застосувати формулу переходу до іншої основи (див. вище).

Якщо ви використовуєте вирази для спрощення логарифму, необхідно враховувати деякі обмеження. А тобто: основа логарифму а – тільки додатне число, але не рівну одиниці. Число b, як і а, має бути більшим за нуль.

Є випадки, коли спростивши вираз, ви не зможете обчислити логарифм у числовому вигляді. Буває, що такий вираз не має сенсу, адже багато ступенів – ірраціональні числа. За такої умови залиште рівень числа у вигляді запису логарифму.