Приклади log. Визначення логарифму, основне логарифмічне тотожність

Одним із елементів алгебри примітивного рівня є логарифм. Назва походить з грецької мови від слова "число" або "ступінь" і означає ступінь, в який необхідно звести число, що знаходиться на підставі, для знаходження підсумкового числа.

Види логарифмів

  • log a b – логарифм числа b на підставі a (a > 0, a ≠ 1, b > 0);
  • lg b – десятковий логарифм (логарифм на підставі 10, a = 10);
  • ln b - натуральний логарифм (логарифм на основі e, a = e).

Як вирішувати логарифми?

Логари́м числа b за основою a є показником ступеня, який вимагає, щоб у число b звели основу а. Отриманий результат вимовляється так: "логарифм b на підставі а". Рішення логарифмічних завдань полягає в тому, що вам необхідно визначити цей ступінь за числами за вказаними числами. Існують деякі основні правила, щоб визначити чи вирішити логарифм, а також перетворити сам запис. Використовуючи їх, здійснюється рішення логарифмічних рівнянь, знаходяться похідні, вирішуються інтеграли та здійснюються багато інших операцій. В основному, рішенням самого логарифму є його спрощений запис. Нижче наведено основні формули та властивості:

Для будь-яких a; a > 0; a ≠ 1 і для будь-яких x; y > 0.

  • a log a b = b – основна логарифмічна тотожність
  • log a 1 = 0
  • log a a = 1
  • log a (x · y) = log a x + log a y
  • log a x / y = log a x - log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k · log a x , при k ≠ 0
  • log a x = log a c x c
  • log a x = log b x / log b a – формула переходу до нової основи
  • log a x = 1/log x a


Як вирішувати логарифми – покрокова інструкція рішення

  • Спочатку запишіть необхідне рівняння.

Зверніть увагу: якщо в логарифмі з основи стоїть 10 , запис укорочується, виходить десятковий логарифм. Якщо стоїть натуральне число е, записуємо, скорочуючи до натурального логарифму. Мається на увазі, що результат всіх логарифмів - ступінь, в який зводиться число підстав до отримання числа b.


Безпосередньо рішення і полягає у обчисленні цього ступеня. Перш ніж вирішити вираз із логарифмом, його необхідно спростити за правилом, тобто, користуючись формулами. Основні тотожності ви зможете знайти, повернувшись трохи назад у статті.

Складаючи та віднімаючи логарифми з двома різними числами, але з однаковими підставами, замінюйте одним логарифмом з добутком чи розподілом чисел b та з відповідно. У такому разі можна застосувати формулу переходу до іншої основи (див. вище).

Якщо ви використовуєте вирази для спрощення логарифму, необхідно враховувати деякі обмеження. Тобто: основа логарифму а – лише позитивне число, але з рівне одиниці. Число b, як і а, має бути більшим за нуль.

Є випадки, коли спростивши вираз, ви не зможете обчислити логарифм у числовому вигляді. Буває, що такий вираз не має сенсу, адже багато ступенів – ірраціональні числа. За такої умови залиште рівень числа у вигляді запису логарифму.



Логарифм числа b (b > 0) на підставі a (a > 0, a ≠ 1)- Показник ступеня, в який потрібно звести число a, щоб отримати b.

Логарифм числа b на підставі 10 можна записати як lg(b), а логарифм на основі e (натуральний логарифм) – ln(b).

Часто використовується при вирішенні задач з логарифмами:

Властивості логарифмів

Існує чотири основні властивості логарифмів.

Нехай a > 0, a ≠ 1, x > 0 та y > 0.

Властивість 1. Логарифм твору

Логарифм творудорівнює сумі логарифмів:

log a (x ⋅ y) = log a x + log a y

Властивість 2. Логарифм приватного

Логарифм приватногодорівнює різниці логарифмів:

log a (x / y) = log a x - log a y

Властивість 3. Логарифм ступеня

Логарифм ступенядорівнює добутку ступеня на логарифм:

Якщо ступеня знаходиться основа логарифму, то діє інша формула:

Властивість 4. Логарифм кореня

Даною властивість можна отримати з властивості логарифм ступеня, так як корінь n-го ступеня дорівнює ступеню 1/n:

Формула переходу від логарифму в одній підставі до логарифму при іншій основі

Ця формула також часто застосовується при вирішенні різних завдань на логарифми:

Окремий випадок:

Порівняння логарифмів (нерівності)

Нехай у нас є 2 функції f(x) та g(x) під логарифмами з однаковими основами і між ними стоїть знак нерівності:

Щоб їх порівняти, потрібно спочатку подивитися на основу логарифмів a:

  • Якщо a > 0, то f(x) > g(x) > 0
  • Якщо 0< a < 1, то 0 < f(x) < g(x)

Як вирішувати задачі з логарифмами: приклади

Завдання з логарифмамивключені до складу ЄДІ з математики для 11 класу у завданні 5 та завданні 7, ви можете знайти завдання з рішеннями на нашому сайті у відповідних розділах. Також завдання з логарифмами зустрічаються у банку завдань з математики. Всі приклади можна знайти через пошук по сайту.

Що таке логарифм

Логарифми завжди вважалися складною темою у шкільному курсі математики. Існує багато різних визначень логарифму, але більшість підручників чомусь використовують найскладніші та найневдаліші з них.

Ми ж визначимо логарифм просто та наочно. Для цього складемо таблицю:

Отже, маємо ступеня двійки.

Логарифми – властивості, формули, як вирішувати

Якщо взяти число з нижнього рядка, можна легко знайти ступінь, у якому доведеться звести двійку, щоб вийшло це число. Наприклад, щоб отримати 16, треба два звести до четвертого ступеня. А щоб отримати 64, треба два звести на шостий ступінь. Це видно з таблиці.

А тепер – власне, визначення логарифму:

на підставі a від аргументу x - це ступінь, у якому треба звести число a, щоб отримати число x.

Позначення: log a x = b, де a - основа, x - аргумент, b - власне, чому дорівнює логарифм.

Наприклад, 2 3 = 8 ⇒log 2 8 = 3 (логарифм на підставі 2 від числа 8 дорівнює трьом, оскільки 2 3 = 8). З тим самим успіхом log 2 64 = 6, оскільки 2 6 = 64.

Операцію знаходження логарифму числа за заданою основою називають. Отже, доповнимо нашу таблицю новим рядком:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

На жаль, не всі логарифми вважаються так легко. Наприклад, спробуйте знайти log 2 5. Числа 5 немає в таблиці, але логіка підказує, що логарифм лежатиме десь на відрізку . Тому що 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такі числа називаються ірраціональними: цифри після коми можна писати нескінченно, і вони ніколи не повторюються. Якщо логарифм виходить ірраціональним, його краще і залишити: log 2 5, log 3 8, log 5 100.

Важливо розуміти, що логарифм - це вираз із двома змінними (підстава та аргумент). Багато хто спочатку плутає, де знаходиться підстава, а де - аргумент. Щоб уникнути прикрих непорозумінь, просто погляньте на картинку:

Перед нами - не що інше як визначення логарифму. Згадайте: логарифм – це ступінь, В яку треба звести підставу, щоб отримати аргумент. Саме основа зводиться у ступінь - на картинці воно виділено червоним. Виходить, що основа завжди знаходиться внизу! Це чудове правило я розповідаю своїм учням на першому ж занятті – і жодної плутанини не виникає.

Як рахувати логарифми

З визначенням розібралися - залишилося навчитися рахувати логарифми, тобто. позбавлятися знаку «log». Для початку зазначимо, що з визначення випливає два важливі факти:

  1. Аргумент і основа завжди повинні бути більшими за нуль. Це випливає з визначення рівня раціональним показником, до якого зводиться визначення логарифму.
  2. Підстава повинна бути відмінною від одиниці, оскільки одиниця в будь-якій мірі все одно залишається одиницею. Через це питання «у яку міру треба звести одиницю, щоб отримати двійку» позбавлене сенсу. Немає такої міри!

Такі обмеження називаються областю допустимих значень(ОДЗ). Виходить, що ОДЗ логарифму має такий вигляд: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Зауважте, що жодних обмежень на число b (значення логарифму) не накладається. Наприклад, логарифм може бути негативним: log 2 0,5 = −1, т.к. 0,5 = 2 −1.

Втім, зараз ми розглядаємо лише числові вирази, де знати ОДЗ логарифму не потрібно. Усі обмеження вже враховані упорядниками завдань. Але коли підуть логарифмічні рівняння та нерівності, вимоги ОДЗ стануть обов'язковими. Адже в основі та аргументі можуть стояти вельми неслабкі конструкції, які зовсім необов'язково відповідають наведеним вище обмеженням.

Тепер розглянемо загальну схему обчислення логарифмів. Вона складається із трьох кроків:

  1. Уявити основу a і аргумент x у вигляді ступеня з мінімально можливою основою, більшою за одиницю. Принагідно краще позбутися десяткових дробів;
  2. Вирішити щодо змінної рівняння: x = a b ;
  3. Отримане число b буде відповіддю.

От і все! Якщо логарифм виявиться ірраціональним, це буде видно вже на першому етапі. Вимога, щоб основа була більше одиниці, дуже актуальна: це знижує ймовірність помилки та значно спрощує викладки. Аналогічно з десятковими дробами: якщо одразу перевести їх у звичайні, помилок буде в рази менше.

Подивимося, як працює ця схема на конкретних прикладах:

Завдання. Обчисліть логарифм: log 5 25

  1. Представимо основу та аргумент як ступінь п'ятірки: 5 = 5 1 ; 25 = 5 2;
  2. Складемо і розв'яжемо рівняння:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Отримали відповідь: 2.

Завдання. Обчисліть логарифм:

Завдання. Обчисліть логарифм: log 4 64

  1. Представимо основу та аргумент як ступінь двійки: 4 = 2 2 ; 64 = 2 6;
  2. Складемо і розв'яжемо рівняння:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Отримали відповідь: 3.

Завдання. Обчисліть логарифм: log 16 1

  1. Представимо основу та аргумент як ступінь двійки: 16 = 2 4 ; 1 = 2 0;
  2. Складемо і розв'яжемо рівняння:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Отримали відповідь: 0.

Завдання. Обчисліть логарифм: log 7 14

  1. Представимо основу та аргумент як ступінь сімки: 7 = 7 1 ; 14 у вигляді ступеня сімки не представляється, оскільки 7 1< 14 < 7 2 ;
  2. З попереднього пункту випливає, що логарифм не рахується;
  3. Відповідь – без змін: log 7 14.

Невелике зауваження до останнього прикладу. Як переконатися, що число не є точним ступенем іншого числа? Дуже просто – достатньо розкласти його на прості множники. Якщо в розкладанні є хоча б два різні множники, число не є точним ступенем.

Завдання. З'ясуйте, чи є точними ступенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точний ступінь, т.к. множник лише один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не є точним ступенем, оскільки є два множники: 3 і 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точний ступінь;
35 = 7 · 5 - знову не є точним ступенем;
14 = 7 · 2 - знову не точний ступінь;

Зауважимо також, що найпростіші числа завжди є точними ступенями самих себе.

Десятковий логарифм

Деякі логарифми зустрічаються настільки часто, що мають спеціальну назву та позначення.

від аргументу x - це логарифм на підставі 10, тобто. ступінь, у який треба звести число 10, щоб одержати число x. Позначення lg x.

Наприклад, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - і т.д.

Відтепер, коли у підручнику зустрічається фраза типу «Знайдіть lg 0,01», знайте: це не друкарська помилка. Це десятковий логарифм. Втім, якщо вам незвично таке позначення, його можна переписати:
lg x = log 10 x

Все, що правильне для простих логарифмів, вірно і для десяткових.

Натуральний логарифм

Існує ще один логарифм, який має власну позначку. У певному сенсі він навіть більш важливий, ніж десятковий. Йдеться про натуральний логарифм.

від аргументу x - це логарифм на основі e, тобто. ступінь, у якому треба звести число e, щоб одержати число x. Позначення: ln x.

Багато хто спитає: що ще за число e? Це ірраціональне число, його точне значення знайти та записати неможливо. Наведу лише перші його цифри:
e = 2,718281828459 ...

Не заглиблюватимемося, що це за число і навіщо потрібно. Просто пам'ятайте, що e - основа натурального логарифму:
ln x = log e x

Отже, ln e = 1; ln e 2 = 2; ln e 16 = 16 - і т.д. З іншого боку, ln 2 – ірраціональне число. Взагалі, натуральний логарифм будь-якого раціонального числа є ірраціональним. Крім, зрозуміло, одиниці: ln1 = 0.

Для натуральних логарифмів справедливі всі правила, які правильні для звичайних логарифмів.

Дивіться також:

Логарифм. Властивості логарифму (ступінь логарифму).

Як уявити число у вигляді логарифму?

Використовуємо визначення логарифму.

Логарифм - це показник ступеня, в який треба звести основу, щоб отримати число, що стоїть під знаком логарифму.

Таким чином, щоб представити деяке число c у вигляді логарифму на підставі a, треба під знак логарифму поставити ступінь з тією самою основою, що й основа логарифму, а в показник ступеня записати це число c:

У вигляді логарифму можна представити абсолютно будь-яке число - позитивне, негативне, ціле, дробове, раціональне, ірраціональне:

Щоб у стресових умовах контрольної або іспиту не переплутати a та c, можна скористатися таким правилом для запам'ятовування:

те, що внизу йде вниз, те, що вгорі, йде вгору.

Наприклад, потрібно подати число 2 у вигляді логарифму на підставі 3.

У нас є два числа – 2 і 3. Ці числа – основа та показник ступеня, який ми запишемо під знак логарифму. Залишається визначити, яке з цих чисел потрібно записати вниз, в основу ступеня, а яке вгору, в показник.

Основа 3 в записі логарифму стоїть внизу, значить, коли ми представлятимемо двійку у вигляді логарифму на підставі 3, 3 також запишемо вниз, в основу.

2 стоїть вище за трійку. І в записі ступеня двійку запишемо вище за трійку, тобто, в показник ступеня:

Логарифми. Початковий рівень.

Логарифми

Логарифмомпозитивного числа bна підставі a, де a > 0, a ≠ 1, називається показник ступеня, в який треба звести число a, Щоб отримати b.

Визначення логарифмуможна коротко записати так:

Ця рівність справедлива за b > 0, a > 0, a ≠ 1.Його зазвичай називають логарифмічним тотожністю.
Дія знаходження логарифму числа називають логарифмування.

Властивості логарифмів:

Логарифм твору:

Логарифм приватного від поділу:

Заміна основи логарифму:

Логарифм ступеня:

Логарифм кореня:

Логарифм зі статечним підґрунтям:





Десяткові та натуральні логарифми.

Десятичним логарифмомчисла називають логарифм цього числа на підставі 10 і пишуть   lg b
Натуральним логарифмомчисла називають логарифм цього числа на підставі e, де e- Ірраціональне число, приблизно дорівнює 2,7. При цьому пишуть ln b.

Інші нотатки з алгебри та геометрії

Основні властивості логарифмів

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими основами: log a x та log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x + log a y = log a (x · y);
  2. log a x − log a y = log a (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм виявляється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу.

У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a = 1 - це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. log a 1 = 0 - це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Скачайте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

З розвитком суспільства, ускладнення виробництва розвивалася і математика. Рух від простого до складного. Від звичайного обліку шляхом складання і віднімання, за її багаторазовому повторенні, дійшли поняття множення і поділу. Скорочення операції, що багаторазово повторюється, множення стало поняттям зведення в ступінь. Перші таблиці залежності чисел від основи та числа зведення у ступінь були складені ще у VIII столітті індійським математиком Варасена. З них можна відраховувати час виникнення логарифмів.

Історичний нарис

Відродження Європи у XVI столітті стимулювало та розвиток механіки. Т потрібний великий обсяг обчислення, пов'язаних з множенням та розподілом багатозначних чисел. Стародавні таблиці надали велику послугу. Вони дозволяли замінювати складні операції більш прості – додавання і віднімання. Великим кроком уперед стала робота математика Міхаеля Штіфеля, опублікована в 1544, в якій він реалізував ідею багатьох математиків. Що дозволило використовувати таблиці не тільки для ступенів у вигляді простих чисел, але і для раціональних довільних.

В 1614 шотландець Джон Непер, розвиваючи ці ідеї, вперше ввів новий термін «логарифм числа». Були складені нові складні таблиці для розрахунку логарифмів синусів та косінусів, а також тангенсів. Це дуже скоротило працю астрономів.

Стали з'являтися нові таблиці, які успішно використовувалися вченими упродовж трьох століть. Пройшло чимало часу, перш ніж нова операція в алгебрі набула свого закінченого вигляду. Було дано визначення логарифму, та його властивості були вивчені.

Лише у XX столітті з появою калькулятора та комп'ютера людство відмовилося від стародавніх таблиць, які успішно працювали протягом XIII століть.

Сьогодні ми називаємо логарифмом b на основі a число x, яке є ступенем числа а, щоб вийшло число b. Як формули це записується: x = log a(b).

Наприклад, log 3(9) дорівнюватиме 2. Це очевидно, якщо дотримуватися визначення. Якщо 3 звести до ступеня 2, то отримаємо 9.

Так, сформульоване визначення ставить лише одне обмеження, числа a та b повинні бути речовими.

Різновиди логарифмів

Класичне визначення називається речовий логарифм і є рішенням рівняння a x = b. Варіант a = 1 є прикордонним і не становить інтересу. Увага: 1 у будь-якому ступені дорівнює 1.

Речове значення логарифмувизначено тільки при підставі та аргументі більше 0, при цьому основа не повинна дорівнювати 1.

Особливе місце у галузі математикиграють логарифми, які будуть називатися залежно від величини їхньої основи:

Правила та обмеження

Основною властивістю логарифмів є правило: логарифм добутку дорівнює логарифмічній сумі. log abp = log a (b) + log a (p).

Як варіант цього твердження буде: log c(b/p) = log с(b) - log c(p), функція приватного дорівнює різниці функцій.

З попередніх двох правил легко видно, що: log a (b p) = p * log a (b).

Серед інших властивостей можна виділити:

Зауваження. Не треба робити поширену помилку - логарифм суми не дорівнює сумі логарифмів.

Багато століть операція пошуку логарифму була досить трудомістким завданням. Математики користувалися відомою формулою логарифмічної теорії розкладання на багаточлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), де n - натуральне число більше 1, що визначає точність обчислення.

Логарифми з іншими підставами обчислювалися, використовуючи теорему про перехід від однієї підстави до іншої та властивості логарифму твору.

Так як цей спосіб дуже трудомісткий і при вирішенні практичних завданьважкоздійсненним, то використовували заздалегідь складені таблиці логарифмів, що значно прискорювало всю роботу.

У деяких випадках використовували спеціально складені графіки логарифмів, що давало меншу точність, але прискорювало пошук потрібного значення. Крива функції y = log a (x), побудована за кількома точками, дозволяє за допомогою звичайної лінійки знаходити значення функції у будь-якій іншій точці. Інженери тривалий час для цього використовували так званий міліметровий папір.

У XVII столітті з'явилися перші допоміжні аналогові обчислювальні умови, які до XIX століття набули закінченого вигляду. Найбільш вдалий пристрій отримав назву логарифмічна лінійка. При всій простоті пристрою, її поява значно прискорило процес всіх інженерних розрахунків, і це важко переоцінити. Нині вже мало хто знайомий із цим пристроєм.

Поява калькуляторів та комп'ютерів зробила безглуздим використання будь-яких інших пристроїв.

Рівняння та нерівності

Для розв'язання різних рівнянь та нерівностей з використанням логарифмів застосовуються такі формули:

  • Перехід від однієї основи до іншої: log a(b) = log c(b) / log c(a);
  • Як наслідок попереднього варіанта: log a(b) = 1 / log b(a).

Для вирішення нерівностей корисно знати:

  • Значення логарифму буде позитивним тільки в тому випадку, коли основа та аргумент одночасно більша або менша за одиницю; якщо хоча б одна умова порушена, значення логарифму буде негативним.
  • Якщо функція логарифму застосовується до правої та лівої частини нерівності, і основа логарифму більше одиниці, то знак нерівності зберігається; інакше він змінюється.

Приклади завдань

Розглянемо кілька варіантів застосування логарифмів та їх властивості. Приклади з розв'язуванням рівнянь:

Розглянемо варіант розміщення логарифму у ступені:

  • Завдання 3. Обчислити 25 log 5 (3). Рішення: в умовах задачі запис аналогічний наступній (5^2)^log5(3) або 5^(2 * log 5(3)). Запишемо по-іншому: 5^log 5(3*2), або квадрат числа як аргумент функції можна записати як квадрат самої функції (5^log 5(3))^2. Використовуючи властивості логарифмів, цей вираз дорівнює 32. Відповідь: внаслідок обчислення отримуємо 9.

Практичне застосування

Будучи виключно математичним інструментом, здається далеким від реального життя, що логарифм несподівано набув великого значення для опису об'єктів реального світу. Важко знайти науку, де її не застосовують. Це повною мірою стосується не тільки природних, а й гуманітарних областей знань.

Логарифмічні залежності

Наведемо кілька прикладів числових залежностей:

Механіка та фізика

Історично механіка та фізика завжди розвивалися з використанням математичних методів дослідження та одночасно служили стимулом для розвитку математики, у тому числі логарифмів. Теорія більшості законів фізики написана мовою математики. Наведемо лише два приклади опису фізичних законів з використанням логарифму.

Вирішувати задачу розрахунку такої складної величини як швидкість ракети можна, застосовуючи формулу Ціолковського, яка започаткувала теорію освоєння космосу:

V = I * ln (M1/M2), де

  • V – кінцева швидкість літального апарату.
  • I – питомий імпульс двигуна.
  • M 1 - Початкова маса ракети.
  • M2 – кінцева маса.

Інший важливий приклад- це використання у формулі іншого великого вченого Макса Планка, яка служить для оцінки рівноважного стану термодинаміки.

S = k * ln (Ω), де

  • S – термодинамічна властивість.
  • k - Постійна Больцмана.
  • Ω – статистична вага різних станів.

Хімія

Менш очевидним буде використання формул у хімії, що містять відношення логарифмів. Наведемо також лише два приклади:

  • Рівняння Нернста, умова окислювально-відновного потенціалу середовища щодо активності речовин та константи рівноваги.
  • Розрахунок таких констант, як показник автопролізу та кислотність розчину теж не обходяться без нашої функції.

Психологія та біологія

І вже зовсім незрозуміло, до чого тут психологія. Виявляється, сила відчуття добре описується цією функцією як зворотне відношення значення інтенсивності подразника до нижнього значення інтенсивності.

Після вищенаведених прикладів не дивує, що у біології широко використовується тема логарифмів. Для біологічних форм, відповідні логарифмічним спіралям, можна писати цілі томи.

Інші області

Здається, неможливе існування світу без зв'язку з цією функцією, і вона править усіма законами. Особливо коли закони природи пов'язані з геометричною прогресією. Варто звернутися до сайту МатПрофі, і таких прикладів знайдеться безліч у таких сферах діяльності:

Список може бути нескінченним. Освоївши основні закономірності цієї функції, можна поринути у світ нескінченної мудрості.

Інструкція

Запишіть заданий логарифмічний вираз. Якщо у виразі використовується логарифм 10, його запис укорочується і виглядає так: lg b - це десятковий логарифм. Якщо ж логарифм має у вигляді основи число е, записують вираз: ln b – натуральний логарифм. Мається на увазі, що результатом будь-якого є ступінь, в який треба звести число основи, щоб вийшло число b.

При знаходженні від суми двох функцій необхідно просто їх по черзі продиференціювати, а результати скласти: (u+v)" = u"+v";

При знаходженні похідної від добутку двох функцій необхідно похідну від першої функції помножити на другу і додати похідну другої функції, помножену на першу функцію: (u*v)" = u"*v+v"*u;

Для того, щоб знайти похідну від частки двох функцій необхідно, від твору похідної ділимого, помноженої на функцію дільника, відняти твір похідної дільника, помноженої на функцію ділимого, і все це розділити на функцію дільника зведену в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Якщо дана складна функція, необхідно перемножити похідну від внутрішньої функції і похідну від зовнішньої. Нехай y=u(v(x)), тоді y"(x)=y"(u)*v"(x).

Використовуючи отримані вище, можна продиференціювати практично будь-яку функцію. Отже, розглянемо кілька прикладів:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Також зустрічаються завдання на обчислення похідної у точці. Нехай задана функція y=e^(x^2+6x+5), необхідно визначити значення функції у точці х=1.
1) Знайдіть похідну функції: y"=e^(x^2-6x+5)*(2*x +6).

2) Обчисліть значення функції у заданій точці y"(1)=8*e^0=8

Відео на тему

Корисна порада

Вивчіть таблицю елементарних похідних. Це помітно заощадить час.

Джерела:

  • похідна константи

Отже, чим відрізняється ірраціональне рівняння від раціонального? Якщо невідома змінна перебуває під знаком квадратного кореня, рівняння вважається ірраціональним.

Інструкція

Основний метод розв'язання таких рівнянь – метод зведення обох частин рівнянняу квадрат. Втім. це природно, насамперед необхідно позбутися знака. Технічно цей метод не складний, але іноді це може спричинити неприємності. Наприклад, рівняння v(2х-5) = v(4х-7). Звівши обидві його сторони квадрат, ви отримаєте 2х-5=4х-7. Таке рівняння вирішити не складе труднощів; х = 1. Але число 1 не буде цього рівняння. Чому? Підставте одиницю в рівняння замість значення х. Таке значення не припустимо квадратного кореня. Тому 1 - сторонній корінь, отже дане рівняння немає коренів.

Отже, ірраціональне рівняння вирішується за допомогою методу зведення у квадрат обох його частин. І вирішивши рівняння, необхідно обов'язково відсікти стороннє коріння. Для цього підставте знайдене коріння в оригінальне рівняння.

Розгляньте ще один.
2х+vх-3=0
Звичайно ж, це рівняння можна вирішити за тим самим, що й попереднє. Перенести складові рівняння, що не мають квадратного кореня, в праву частину і далі використовувати метод зведення в квадрат. вирішити отримане раціональне рівняння та коріння. Але й інший, більш витончений. Введіть нову змінну; vх = y. Відповідно, ви отримаєте рівняння виду 2y2+y-3=0. Тобто звичайне квадратне рівняння. Знайдіть його коріння; y1=1 та y2=-3/2. Далі вирішіть два рівняння vх = 1; vх = -3/2. Друге рівняння коренів немає, з першого знаходимо, що х=1. Не забудьте про необхідність перевірки коренів.

Вирішувати тотожності досить просто. Для цього потрібно здійснювати тотожні перетворення, доки поставленої мети не буде досягнуто. Таким чином, за допомогою найпростіших арифметичних дій поставлене завдання буде вирішено.

Вам знадобиться

  • - папір;
  • - Ручка.

Інструкція

Найпростіший таких перетворень – алгебраїчні скороченого множення (такі як квадрат суми (різниці), різниця квадратів, сума (різниця), куб суми (різниці)). Крім того існує безліч і тригонометричних формул, які за своєю суттю тими самими тотожностями.

Справді, квадрат суми двох доданків дорівнює квадрату першого плюс подвоєний добуток першого на друге і плюс квадрат другого, тобто (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Спростіть обох

Загальні засади рішення

Повторіть підручник з математичного аналізу або вищої математики, що являє собою певний інтеграл. Як відомо, рішення певного інтеграла є функція, похідна якої дасть підінтегральний вираз. Ця функція називається первісною. За цим принципом і будується основних інтегралів.
Визначте вид підінтегральної функції, який з табличних інтегралів підходить в даному випадку. Не завжди вдається це визначити одразу ж. Часто, табличний вигляд стає помітним лише після кількох перетворень зі спрощення підінтегральної функції.

Метод заміни змінних

Якщо підінтегральною функцією є тригонометрична функція, в аргументі якої певний багаточлен, спробуйте використовувати метод заміни змінних. Для того, щоб це зробити, замініть багаточлен, що стоїть в аргументі підінтегральної функції, на деяку нову змінну. За співвідношенням між новою та старою змінною визначте нові межі інтегрування. Диференціюванням даного виразу знайдіть новий диференціал у . Таким чином, ви отримаєте новий вид колишнього інтеграла, близький або навіть відповідний будь-якому табличному.

Рішення інтегралів другого роду

Якщо інтеграл є інтегралом другого роду, векторний вид підінтегральної функції, то вам буде потрібно скористатися правилами переходу від даних інтегралів до скалярних. Одним із таких правил є співвідношення Остроградського-Гаусса. Цей закон дозволяє перейти від потоку ротора деякої векторної функції до потрійного інтеграла дивергенції даного векторного поля.

Підстановка меж інтегрування

Після знаходження первинної необхідно підставити межі інтегрування. Спочатку підставте значення верхньої межі у вираз для первісної. Ви отримаєте кілька. Далі відніміть з отриманого числа інше число, отримане нижньої межі первісну. Якщо один із меж інтегрування є нескінченністю, то при підстановці її в першорядну функцію необхідно перейти до межі і знайти, чого прагне вираз.
Якщо інтеграл є двовимірним або тривимірним, то вам доведеться зображувати геометричні межі інтегрування, щоб розуміти, як розраховувати інтеграл. Адже у випадку, скажімо, тривимірного інтеграла межами інтегрування можуть бути цілі площини, що обмежують обсяг, що інтегрується.

Логарифмом числа N на підставі а називається показник ступеня х , в яку потрібно звести а , щоб отримати число N

За умови, що
,
,

З визначення логарифму випливає, що
, тобто.
- ця рівність є основною логарифмічною тотожністю.

Логарифми на підставі 10 називаються десятковими логарифмами. Замість
пишуть
.

Логарифми з основи e називаються натуральними та позначаються
.

Основні властивості логарифмів.

    Логарифм одиниці за будь-якої підстави дорівнює нулю

    Логарифм добутку дорівнює сумі логарифмів співмножників.

3) Логарифм приватного дорівнює різниці логарифмів


Множник
називається модулем переходу від логарифмів на підставі a до логарифмів на підставі b .

За допомогою властивостей 2-5 часто вдається звести логарифм складного виразу результату простих арифметичних дій над логарифмами.

Наприклад,

Такі перетворення логарифму називаються логарифмуванням. Перетворення зворотні логарифмування називаються потенціюванням.

Глава 2. Елементи вищої математики.

1. Межі

Межею функції
є кінцеве число А, якщо при прагненні xx 0 для кожного наперед заданого
, знайдеться таке число
, що як тільки
, то
.

Функція, що має межу, відрізняється від нього на нескінченно малу величину:
, де -б.м.в., тобто.
.

приклад. Розглянемо функцію
.

При прагненні
, функція y прагне до нуля:

1.1. Основні теореми про межі.

    Межа постійної величини дорівнює цій постійній величині

.

    Межа суми (різниці) кінцевого числа функцій дорівнює сумі (різниці) меж цих функцій.

    Межа добутку кінцевого числа функцій дорівнює добутку меж цих функцій.

    Межа частки двох функцій дорівнює приватній межі цих функцій, якщо межа знаменника не дорівнює нулю.

Чудові межі

,
, де

1.2. Приклади обчислення меж

Однак не всі межі обчислюються так просто. Найчастіше обчислення межі зводиться до розкриття невизначеності типу: або .

.

2. Похідна функції

Нехай ми маємо функцію
, безперервну на відрізку
.

Аргумент отримав деяке приріст
. Тоді і функція отримає збільшення
.

Значення аргументу відповідає значення функції
.

Значення аргументу
відповідає значення функції.

Отже, .

Знайдемо межу цього відношення при
. Якщо ця межа існує, то вона називається похідною цієї функції.

Визначення 3Виробної даної функції
за аргументом називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу довільним чином прагне до нуля.

Похідна функції
може бути позначена таким чином:

; ; ; .

Визначення 4Операція знаходження похідної від функції називається диференціюванням.

2.1. Механічний сенс похідної.

Розглянемо прямолінійний рух деякого твердого тіла чи матеріальної точки.

Нехай у певний момент часу точка, що рухається
знаходилась на відстані від початкового положення
.

Через деякий проміжок часу
вона перемістилася на відстань
. Ставлення =- Середня швидкість матеріальної точки
. Знайдемо межу цього відношення, враховуючи що
.

Отже визначення миттєвої швидкості руху матеріальної точки зводиться до знаходження похідної від шляху за часом.

2.2. Геометричне значення похідної

Нехай ми маємо графічно задану деяку функцію
.

Мал. 1. Геометричний зміст похідної

Якщо
, то крапка
, буде переміщатися кривою, наближаючись до точки
.

Отже
, тобто. значення похідної за даного значення аргументу чисельно дорівнює тангенсу кута утвореного дотичної в даній точці з позитивним напрямом осі
.

2.3. Таблиця основних формул диференціювання.

Ступінна функція

Показова функція

Логарифмічна функція

Тригонометрична функція

Зворотна тригонометрична функція

2.4. Правила диференціювання.

Похідна від

Похідна суми (різниці) функцій


Похідна робота двох функцій


Похідна приватного двох функцій


2.5. Похідна від складної функції.

Нехай дана функція
така, що її можна подати у вигляді

і
, де змінна є проміжним аргументом, тоді

Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу по x.

Приклад1.

Приклад2.

3. Диференціал функції.

Нехай є
, що диференціюється на деякому відрізку
і нехай у цієї функції є похідна

,

тоді можна записати

(1),

де - нескінченно мала величина,

так як при

Помножуючи всі члени рівності (1) на
маємо:

Де
- Б.М.В. вищого ладу.

Величина
називається диференціалом функції
і позначається

.

3.1. Геометричне значення диференціалу.

Нехай дана функція
.

Рис.2. Геометричний зміст диференціала.

.

Очевидно, що диференціал функції
дорівнює приросту ординати дотичної в цій точці.

3.2. Похідні та диференціали різних порядків.

Якщо є
тоді
називається першою похідною.

Похідна від першої похідної називається похідною другого порядку та записується
.

Похідний n-го порядку від функції
називається похідна (n-1)-го порядку та записується:

.

Диференціал від диференціалу функції називається другим диференціалом чи диференціалом другого порядку.

.

.

3.3 Вирішення біологічних завдань із застосуванням диференціювання.

Задача1. Дослідження показали, що зростання колонії мікроорганізмів підпорядковується закону
, де N – чисельність мікроорганізмів (у тис.), t -Час (Дні).

б) Чи буде в цей період чисельність колонії збільшуватися чи зменшуватись?

Відповідь. Чисельність колонії збільшуватиметься.

Задача 2. Вода в озері періодично тестується контролю вмісту хвороботворних бактерій. Через t днів після тестування концентрація бактерій визначається співвідношенням

.

Коли в озері настане мінімальна концентрація бактерій і чи можна буде в ньому купатися?

РішенняФункція досягає max або min, коли її похідна дорівнює нулю.

,

Визначимо max чи min буде через 6 днів. Для цього візьмемо другу похідну.


Відповідь: Через 6 днів буде мінімальна концентрація бактерій.