Как да намерим сумата на безкрайна геометрична прогресия. Геометрична прогресия с примери

ЧИСЛОВИ ПОРЕДИЦИ VI

§ l48. Сума от безкрайно намаляваща геометрична прогресия

Досега, когато говорим за суми, винаги сме приемали, че броят на членовете в тези суми е краен (например 2, 15, 1000 и т.н.). Но при решаване на някои проблеми (особено висша математика) трябва да се работи със суми безкрайно числоусловия

S= а 1 + а 2 + ... + а н + ... . (1)

Какви са тези суми? А-приори сумата от безкраен брой членове а 1 , а 2 , ..., а н , ... се нарича граница на сумата S н първи П числа, когато П -> :

S=S н = (а 1 + а 2 + ... + а н ). (2)

Ограничение (2), разбира се, може или не може да съществува. Съответно те казват, че сумата (1) съществува или не съществува.

Как можем да разберем дали сборът (1) съществува във всеки конкретен случай? Общо решениеТози въпрос далеч надхвърля обхвата на нашата програма. Има обаче един важен специален случай, което сега трябва да разгледаме. Ще говорим за сумиране на членовете на безкрайно намаляваща геометрична прогресия.

Позволявам а 1 , а 1 р , а 1 р 2, ... е безкрайно намаляваща геометрична прогресия. Това означава, че | р |< 1. Сумма первых П условията на тази прогресия са равни

От основните теореми за границите променливи(виж § 136) получаваме:

Но 1 = 1, а qn = 0. Следователно

И така, сборът от безкрайно намаляваща геометрична прогресия е равен на първия член на тази прогресия, разделен на едно минус знаменателя на тази прогресия.

1) Сборът от геометричната прогресия 1, 1/3, 1/9, 1/27, ... е равен на

а сумата от геометричната прогресия е 12; -6; 3; - 3/2 , ... равно

2) Просто периодична дроб 0,454545 ... превръщам в обикновен.

За да разрешим този проблем, нека си представим дадена дробкато безкраен сбор:

Дясната страна на това равенство е сумата от безкрайно намаляваща геометрична прогресия, чийто първи член е равен на 45/100, а знаменателят е 1/100. Ето защо

С помощта на описания метод може да се получи и общо правилопреобразуване на прости периодични дроби в обикновени (виж глава II, § 38):

За да преобразувате проста периодична дроб в обикновена дроб, трябва да направите по следния начин: в числителя поставете периода на десетичната дроб, а в знаменателя - число, състоящо се от деветки, взети толкова пъти, колкото са цифрите в периода на десетичната дроб.

3) Преобразувайте смесената периодична дроб 0,58333 .... в обикновена дроб.

Нека си представим тази дроб като безкрайна сума:

От дясната страна на това равенство всички членове, започващи от 3/1000, образуват безкрайно намаляваща геометрична прогресия, чийто първи член е равен на 3/1000, а знаменателят е 1/10. Ето защо

С помощта на описания метод може да се получи общо правило за превръщане на смесени периодични дроби в обикновени дроби (виж глава II, § 38). Съзнателно не го представяме тук. Няма нужда да помните това тромаво правило. Много по-полезно е да се знае, че всяка смесена периодична дроб може да бъде представена като сбор от безкрайно намаляваща геометрична прогресия и определено число. И формулата

за сумата от безкрайно намаляваща геометрична прогресия, трябва, разбира се, да запомните.

Като упражнение ви предлагаме освен задачите № 995-1000, дадени по-долу, да разгледате още веднъж задача № 301 § 38.

Упражнения

995. Какво се нарича сбор от безкрайно намаляваща геометрична прогресия?

996. Намерете сумите на безкрайно намаляващи геометрични прогресии:

997. При какви стойности х прогресия

безкрайно ли намалява? Намерете сумата на такава прогресия.

998.V равностранен триъгълниксъс страната А вписан чрез свързване на средните точки на страните му нов триъгълник; нов триъгълник се вписва в този триъгълник по същия начин и така нататък до безкрайност.

а) сумата от периметрите на всички тези триъгълници;

б) сумата от техните площи.

999. Квадрат със страна А вписан чрез свързване на средните точки на страните му нов квадрат; квадрат е вписан в този квадрат по същия начин и така нататък до безкрайност. Намерете сумата от периметрите на всички тези квадрати и сумата от техните площи.

1000. Съставете безкрайно намаляваща геометрична прогресия, така че сумата й да е равна на 25/4, а сумата от квадратите на членовете й да е равна на 625/24.

Геометрична прогресия- Това числова последователност, чийто първи член е различен от нула и всеки следващ член е равен на предходния член, умножен по същото не равно на нуланомер.

Понятие за геометрична прогресия

Геометричната прогресия се обозначава с b1,b2,b3, …, bn, ….

Съотношението на който и да е член на геометричната грешка към предишния му член е равно на същото число, тоест b2/b1 = b3/b2 = b4/b3 = ... = bn/b(n-1) = b( n+1)/bn = …. Това следва пряко от определението аритметична прогресия. Това число се нарича знаменател на геометрична прогресия. Обикновено знаменателят на геометричната прогресия се обозначава с буквата q.

Сумата от безкрайна геометрична прогресия за |q|<1

Един от начините за уточняване на геометрична прогресия е да се уточни нейният първи член b1 и знаменателят на геометричната грешка q. Например b1=4, q=-2. Тези две условия определят геометричната прогресия 4, -8, 16, -32, ….

Ако q>0 (q не е равно на 1), тогава прогресията е монотонна последователност. Например последователността 2, 4,8,16,32, ... е монотонно нарастваща последователност (b1=2, q=2).

Ако знаменателят в геометричната грешка е q=1, тогава всички членове на геометричната прогресия ще бъдат равни един на друг. В такива случаи се казва, че прогресията е постоянна последователност.

За да бъде числова редица (bn) геометрична прогресия, е необходимо всеки от нейните членове, започвайки от втория, да е средно геометрично на съседни членове. Тоест, необходимо е да се изпълни следното уравнение
(b(n+1))^2 = bn * b(n+2), за всяко n>0, където n принадлежи към набора от естествени числа N.

Сега нека поставим (Xn) - геометрична прогресия. Знаменателят на геометричната прогресия q и |q|∞).
Ако сега означим с S сумата от безкрайна геометрична прогресия, тогава ще се приложи следната формула:
S=x1/(1-q).

Нека да разгледаме един прост пример:

Намерете сумата от безкрайната геометрична прогресия 2, -2/3, 2/9, - 2/27, ….

За да намерим S, използваме формулата за сбора на безкрайна аритметична прогресия. |-1/3|< 1. x1 = 2. S=2/(1-(-1/3)) = 3/2.

Нека разгледаме определена серия.

7 28 112 448 1792...

Абсолютно ясно е, че стойността на всеки от неговите елементи е точно четири пъти по-голяма от предишната. Това означава, че тази серия е прогресия.

Геометричната прогресия е безкрайна последователност от числа. основна характеристикакоето е, че следващото число се получава от предишното чрез умножаване по някакво конкретно число. Това се изразява със следната формула.

a z +1 =a z ·q, където z е номерът на избрания елемент.

Съответно z ∈ N.

Периодът, в който се изучава геометрична прогресия в училище, е 9 клас. Примерите ще ви помогнат да разберете концепцията:

0.25 0.125 0.0625...

Въз основа на тази формула знаменателят на прогресията може да се намери, както следва:

Нито q, нито b z могат да бъдат нула. Освен това всеки от елементите на прогресията не трябва да е равен на нула.

Съответно, за да разберете следващото число в поредица, трябва да умножите последното по q.

За да зададете тази прогресия, трябва да посочите нейния първи елемент и знаменател. След това е възможно да се намери всеки от следващите членове и тяхната сума.

Разновидности

В зависимост от q и a 1 тази прогресия се разделя на няколко вида:

  • Ако и 1, и q повече от един, тогава такава последователност се увеличава с всеки следващ елементгеометрична прогресия. Пример за това е представен по-долу.

Пример: a 1 =3, q=2 - и двата параметъра са по-големи от единица.

Тогава числовата последователност може да бъде записана така:

3 6 12 24 48 ...

  • Ако |q| е по-малко от едно, тоест умножението по него е еквивалентно на деление, тогава прогресия с подобни условия е намаляваща геометрична прогресия. Пример за това е представен по-долу.

Пример: a 1 =6, q=1/3 - a 1 е по-голямо от едно, q е по-малко.

Тогава числовата последователност може да бъде записана по следния начин:

6 2 2/3 ... - всеки елемент повече елемент, след него, 3 пъти.

  • Променлив знак. Ако q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Пример: a 1 = -3, q = -2 - и двата параметъра са по-малки от нула.

Тогава числовата последователност може да бъде записана така:

3, 6, -12, 24,...

Формули

Има много формули за удобно използване на геометричните прогресии:

  • Z-членна формула. Позволява ви да изчислите елемент под определено число, без да изчислявате предишни числа.

Пример:р = 3, а 1 = 4. Изисква се да се преброи четвъртият елемент от прогресията.

Решение:а 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сумата от първите елементи, чието количество е равно на z. Позволява ви да изчислите сумата от всички елементи на последователност доa zвключително.

Тъй като (1-р) е в знаменателя, тогава (1 - q)≠ 0, следователно q не е равно на 1.

Забележка: ако q=1, тогава прогресията ще бъде поредица от безкрайно повтарящи се числа.

Сума от геометрична прогресия, примери:а 1 = 2, р= -2. Изчислете S5.

Решение:С 5 = 22 - изчисление по формулата.

  • Сума, ако |р| < 1 и если z стремится к бесконечности.

Пример:а 1 = 2 , р= 0,5. Намерете сумата.

Решение:Sz = 2 · = 4

Sz = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Някои свойства:

  • Характерно свойство. Ако е налице следното условие работи за всякаквиz, тогава дадено числова серия- геометрична прогресия:

a z 2 = a z -1 · аz+1

  • Също така, квадратът на всяко число в геометрична прогресия се намира чрез добавяне на квадратите на всеки две други числа в дадена серия, ако те са на еднакво разстояние от този елемент.

a z 2 = a z - T 2 + a z + T 2 , КъдетоT- разстоянието между тези числа.

  • Елементиразличават се по qведнъж.
  • Логаритмите на елементите на една прогресия също образуват прогресия, но аритметична, тоест всеки от тях е по-голям от предходния с определено число.

Примери за някои класически задачи

За да разберете по-добре какво е геометрична прогресия, примерите с решения за 9 клас могат да помогнат.

  • Условия:а 1 = 3, а 3 = 48. Намеретер.

Решение: всеки следващ елемент е по-голям от предишния вр веднъж.Необходимо е да се изразят някои елементи по отношение на други, като се използва знаменател.

следователноа 3 = р 2 · а 1

При заместванер= 4

  • Условия:а 2 = 6, а 3 = 12. Изчислете S 6.

Решение:За да направите това, просто намерете q, първия елемент и го заменете във формулата.

а 3 = р· а 2 , следователно,р= 2

a 2 = q · 1,Ето защо a 1 = 3

S 6 = 189

  • · а 1 = 10, р= -2. Намерете четвъртия елемент от прогресията.

Решение: за да направите това, достатъчно е да изразите четвъртия елемент през първия и през знаменателя.

a 4 = q 3· a 1 = -80

Пример за приложение:

  • Банков клиент направи депозит в размер на 10 000 рубли, при условията на който всяка година клиентът ще има 6% от тях, добавени към главницата. Колко пари ще има в сметката след 4 години?

Решение: Първоначалната сума е 10 хиляди рубли. Това означава, че една година след инвестицията в сметката ще има сума равна на 10 000 + 10 000 · 0,06 = 10000 1,06

Съответно сумата в сметката след още една година ще бъде изразена, както следва:

(10000 · 1,06) · 0,06 + 10000 · 1,06 = 1,06 · 1,06 · 10000

Тоест всяка година сумата се увеличава с 1,06 пъти. Това означава, че за да се намери сумата на средствата в сметката след 4 години, е достатъчно да се намери четвъртият елемент от прогресията, който се дава от първия елемент, равен на 10 хиляди, и знаменателят, равен на 1,06.

S = 1,06 1,06 1,06 1,06 10000 = 12625

Примери за задачи, включващи пресмятане на суми:

Геометричната прогресия се използва в различни задачи. Пример за намиране на сумата може да бъде даден по следния начин:

а 1 = 4, р= 2, изчислиS 5.

Решение: всички данни, необходими за изчислението, са известни, просто трябва да ги замените във формулата.

С 5 = 124

  • а 2 = 6, а 3 = 18. Изчислете сбора на първите шест елемента.

Решение:

В geom. прогресия, всеки следващ елемент е q пъти по-голям от предходния, тоест, за да изчислите сумата, трябва да знаете елементаа 1 и знаменателр.

а 2 · р = а 3

р = 3

По същия начин трябва да намеритеа 1 , знаейкиа 2 Ир.

а 1 · р = а 2

a 1 =2

С 6 = 728.

Геометричната прогресия, заедно с аритметичната прогресия, е важен числов ред, който се изучава в училищния курс по алгебра в 9-ти клас. В тази статия ще разгледаме знаменателя на геометрична прогресия и как стойността му влияе върху свойствата му.

Дефиниция на геометричната прогресия

Първо, нека дадем определението на тази числова серия. Такъв ред се нарича геометрична прогресия рационални числа, което се формира чрез последователно умножаване на първия му елемент по постоянно число, наречено знаменател.

Например числата в редицата 3, 6, 12, 24, ... са геометрична прогресия, защото ако умножите 3 (първия елемент) по 2, получавате 6. Ако умножите 6 по 2, получавате 12 и така нататък.

Членовете на разглежданата редица обикновено се означават със символа ai, където i е цяло число, указващо номера на елемента в серията.

Горната дефиниция на прогресията може да бъде написана на математически език, както следва: an = bn-1 * a1, където b е знаменателят. Лесно е да проверите тази формула: ако n = 1, тогава b1-1 = 1 и получаваме a1 = a1. Ако n = 2, тогава an = b * a1 и отново стигаме до дефиницията на въпросната редица от числа. Подобни разсъждения могат да бъдат продължени за големи стойности на n.

Знаменател на геометричната прогресия


Числото b напълно определя какъв характер ще има цялата редица от числа. Знаменателят b може да бъде положителен, отрицателен или по-голям или по-малък от едно. Всички горепосочени опции водят до различни последователности:

  • b > 1. Има нарастваща серия от рационални числа. Например 1, 2, 4, 8, ... Ако елемент a1 е отрицателен, тогава цялата последователност ще се увеличи само по абсолютна стойност, но ще намалее в зависимост от знака на числата.
  • b = 1. Често този случай не се нарича прогресия, тъй като има обикновена поредица от еднакви рационални числа. Например -4, -4, -4.

Формула за количество

Преди да разгледаме специфични задачикато се използва знаменателят на разглеждания тип прогресия, трябва да се даде важна формулаза сумата от първите n елемента. Формулата изглежда така: Sn = (bn - 1) * a1 / (b - 1).

Можете сами да получите този израз, ако разгледате рекурсивната последователност от членове на прогресията. Също така имайте предвид, че в горната формула е достатъчно да знаете само първия елемент и знаменателя, за да намерите сумата произволен бройчленове.

Безкрайно намаляваща последователност


По-горе беше дадено обяснение какво представлява. Сега, знаейки формулата за Sn, нека я приложим към тази редица от числа. Тъй като всяко число, чийто модул не надвишава 1, когато е повишено до големи градусиклони към нула, т.е. b∞ => 0, ако е -1

Тъй като разликата (1 - b) винаги ще бъде положителна, независимо от стойността на знаменателя, знакът на сумата на безкрайно намаляваща геометрична прогресия S∞ се определя еднозначно от знака на нейния първи елемент a1.

Сега нека разгледаме няколко задачи, в които ще покажем как да приложим придобитите знания върху конкретни числа.

Задача № 1. Изчисляване на неизвестни елементи на прогресия и сбор

При дадена геометрична прогресия знаменателят на прогресията е 2, а първият й елемент е 3. На какво ще бъдат равни нейните 7-ми и 10-ти член и на каква е сумата от седемте й начални елемента?

Условието на проблема е съвсем просто и предполага директна употребагорните формули. И така, за да изчислим номер на елемент n, използваме израза an = bn-1 * a1. За 7-ия елемент имаме: a7 = b6 * a1, замествайки известните данни, получаваме: a7 = 26 * 3 = 192. Правим същото за 10-ия член: a10 = 29 * 3 = 1536.

Нека използваме добре познатата формула за сумата и да определим тази стойност за първите 7 елемента от редицата. Имаме: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Задача № 2. Определяне на сумата от произволни елементи на прогресия

Нека -2 равен знаменателгеометрична прогресия bn-1 * 4, където n е цяло число. Необходимо е да се определи сумата от 5-ти до 10-ти елемент от тази серия включително.

Поставеният проблем не може да бъде решен директно с помощта на известни формули. Може да се реши по 2 начина различни методи. За пълнота на представяне на темата представяме и двете.

Метод 1. Идеята е проста: трябва да изчислите двете съответстващи суми на първите членове и след това да извадите другата от едната. Изчисляваме по-малката сума: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Сега нека изчислим голямо количество: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Имайте предвид, че в последен изразОбобщени са само 4 условия, тъй като 5-ият вече е включен в сумата, която трябва да се изчисли според условията на проблема. Накрая вземаме разликата: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Преди да заместите числата и да броите, можете да получите формула за сумата между m и n члена на въпросната серия. Правим точно същото като в метод 1, само че първо работим със символното представяне на сумата. Имаме: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1) . Можете да замените в получения израз известни числаи изчислете краен резултат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Задача № 3. Какво е знаменателят?


Нека a1 = 2, намерете знаменателя на геометричната прогресия, при условие че нейните безкрайно количествое 3 и знаем, че това е низходяща поредица от числа.

Въз основа на условията на проблема не е трудно да се познае коя формула трябва да се използва за решаването му. Разбира се, за безкрайно намаляващата сума на прогресията. Имаме: S∞ = a1 / (1 - b). Откъдето изразяваме знаменателя: b = 1 - a1 / S∞. Остава само да се замени известни стойностии вземете необходимото число: b = 1 - 2 / 3 = -1 / 3 или -0,333(3). Можем да проверим качествено този резултат, ако помним, че за този тип последователност модулът b не трябва да надхвърля 1. Както може да се види, |-1 / 3|

Задача № 4. Възстановяване на поредица от числа

Нека са дадени 2 елемента от числова серия, например 5-ият е равен на 30, а 10-ият е равен на 60. Необходимо е да се възстанови цялата серия от тези данни, като се знае, че тя отговаря на свойствата на геометрична прогресия.

За да решите задачата, първо трябва да запишете съответния израз за всеки известен член. Имаме: a5 = b4 * a1 и a10 = b9 * a1. Сега разделете втория израз на първия, получаваме: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Оттук определяме знаменателя, като вземаме корен пети от съотношението на членовете, известни от постановката на проблема, b = 1,148698. Заместваме полученото число в един от изразите за известен елемент, получаваме: a1 = a5 / b4 = 30 / (1.148698)4 = 17.2304966.

Така намерихме знаменателя на прогресията bn и геометричната прогресия bn-1 * 17.2304966 = an, където b = 1.148698.

Къде се използват геометричните прогресии?


Ако нямаше практическо приложение на тази редица от числа, тогава нейното изследване би се свело до чисто теоретичен интерес. Но такова приложение съществува.


По-долу са 3-те най-известни примера:

  • Парадоксът на Зенон, в който пъргавият Ахил не може да настигне бавната костенурка, е разрешен с помощта на концепцията за безкрайно намаляваща последователност от числа.
  • Ако поставите пшенични зърна на всяко поле на шахматната дъска, така че на 1-во поле да поставите 1 зърно, на 2-ро - 2, на 3-то - 3 и т.н., тогава за да запълните всички полета на дъската, ще ви трябва 18446744073709551615 зърна!
  • В играта "Ханойската кула", за да преместите дискове от една пръчка на друга, е необходимо да извършите 2n - 1 операции, тоест техният брой нараства експоненциално с броя на използваните дискове n.

Първо ниво

Геометрична прогресия. Изчерпателно ръководствос примери (2019)

Числова последователност

И така, нека седнем и да започнем да записваме някои числа. Например:

Можете да пишете всякакви числа и може да има колкото искате (в нашия случай ги има). Колкото и числа да пишем, винаги можем да кажем кое е първо, кое второ и така до последното, тоест можем да ги номерираме. Това е пример за числова последователност:

Числова последователносте набор от числа, на всяко от които може да бъде присвоен уникален номер.

Например за нашата последователност:

Присвоеният номер е специфичен само за един номер в поредицата. С други думи, в редицата няма три втори числа. Второто число (като числото th) винаги е едно и също.

Числото с числото се нарича n-ти член на редицата.

Обикновено наричаме цялата последователност с някаква буква (например,) и всеки член на тази последователност е една и съща буква с индекс, равен на номера на този член: .

В нашия случай:

Най-често срещаните видове прогресия са аритметична и геометрична. В тази тема ще говорим за втория вид - геометрична прогресия.

Защо е необходима геометричната прогресия и нейната история?

Още в древни времена италианският математик монах Леонардо от Пиза (по-известен като Фибоначи) се е занимавал с практическите нужди на търговията. Монахът бил изправен пред задачата да определи с помощта на които най-малко количествотегло можете ли да претеглите стоките? В своите трудове Фибоначи доказва, че такава система от тежести е оптимална: Това е една от първите ситуации, в които хората трябваше да се справят с геометрична прогресия, за която вероятно вече сте чували и имате поне обща концепция. След като разберете напълно темата, помислете защо такава система е оптимална?

В момента в житейска практика, геометричната прогресия се проявява при инвестиране на пари в банка, когато сумата на лихвата се начислява върху сумата, натрупана по сметката за предходния период. С други думи, ако поставите пари на срочен депозит в спестовна банка, тогава след една година депозитът ще се увеличи с първоначалната сума, т.е. новата сума ще бъде равна на вноската, умножена по. След друга година тази сума ще се увеличи с, т.е. получената по това време сума отново ще бъде умножена по и т.н. Подобна ситуацияописани в задачи за изчисляване на т.нар сложна лихва- процентът се взема всеки път от сумата, която е в сметката, като се вземат предвид предишни лихви. Ще говорим за тези задачи малко по-късно.

Има много повече прости случаи, където се прилага геометрична прогресия. Например разпространението на грип: един човек зарази друг човек, те от своя страна заразиха друг човек и по този начин втората вълна на заразата е човек, а той от своя страна зарази друг... и така нататък. .

Между другото, финансовата пирамида, същата МММ, е просто и сухо изчисление, основано на свойствата на геометричната прогресия. Интересно? Нека да го разберем.

Геометрична прогресия.

Да кажем, че имаме числова последователност:

Веднага ще отговорите, че това е лесно и името на такава редица е аритметична прогресия с разликата на нейните членове. Какво ще кажете за това:

Ако извадите предишното от следващото число, ще видите това всеки път, когато получите нова разлика(и т.н.), но последователността определено съществува и се забелязва лесно - всяка следващото числопъти повече от предишния!

Този тип числова последователност се нарича геометрична прогресияи е обозначен.

Геометричната прогресия () е числова последователност, чийто първи член е различен от нула и всеки член, започвайки от втория, е равен на предишния, умножен по същото число. Това число се нарича знаменател на геометрична прогресия.

Ограниченията, че първият член ( ) не е равен и не са случайни. Нека приемем, че няма такива и първият член все още е равен и q е равно на, хм.. нека бъде, тогава се оказва:

Съгласете се, че това вече не е прогресия.

Както разбирате, ще получим същите резултати, ако има число, различно от нула, a. В тези случаи просто няма да има прогресия, тъй като цялата редица от числа ще бъде или изцяло нули, или едно число, а всички останали ще бъдат нули.

Сега нека поговорим по-подробно за знаменателя на геометричната прогресия, тоест o.

Нека повторим: - това е числото колко пъти се променя всеки следващ термин?геометрична прогресия.

Какво мислите, че може да бъде? Точно така, положително и отрицателно, но не нула (говорихме за това малко по-горе).

Да приемем, че нашата е положителна. Нека в нашия случай, a. Каква е стойността на втория член и? Можете лесно да отговорите на това:

Това е вярно. Съответно, ако, тогава всички следващи термини на прогресията имат същия знак- Те са положителни.

Ами ако е отрицателен? Например, a. Каква е стойността на втория член и?

Това е съвсем друга история

Опитайте се да преброите условията на тази прогресия. Колко получихте? Аз имам. Така ако, тогава знаците на членовете на геометричната прогресия се редуват. Тоест, ако видите прогресия с редуващи се знаци за нейните членове, тогава нейният знаменател е отрицателен. Това знание може да ви помогне да се тествате, когато решавате задачи по тази тема.

Сега нека се упражняваме малко: опитайте се да определите кои числови последователности са геометрична прогресия и кои са аритметична прогресия:

Схванах го? Нека сравним нашите отговори:

  • Геометрична прогресия - 3, 6.
  • Аритметична прогресия - 2, 4.
  • Не е нито аритметична, нито геометрична прогресия - 1, 5, 7.

Нека се върнем към последната ни прогресия и се опитаме да намерим нейния член, точно както в аритметичната. Както може би се досещате, има два начина да го намерите.

Ние последователно умножаваме всеки член по.

И така, членът от описаната геометрична прогресия е равен на.

Както вече се досетихте, сега вие сами ще извлечете формула, която ще ви помогне да намерите всеки член на геометричната прогресия. Или вече сте го разработили за себе си, описвайки как да намерите члена стъпка по стъпка? Ако е така, тогава проверете правилността на вашите разсъждения.

Нека илюстрираме това с примера за намиране на тия член на тази прогресия:

С други думи:

Намерете сами стойността на члена на дадената геометрична прогресия.

Се случи? Нека сравним нашите отговори:

Моля, обърнете внимание, че сте получили точно същото число като в предишния метод, когато последователно умножихме по всеки предишен член на геометричната прогресия.
Нека се опитаме да "обезличим" тази формула- Нека да го представим в общ вид и да получим:

Изведената формула е вярна за всички стойности - както положителни, така и отрицателни. Проверете това сами, като изчислите членовете на геометричната прогресия с следните условия: , А.

броихте ли Нека сравним резултатите:

Съгласете се, че би било възможно да се намери член на прогресия по същия начин като член, но има възможност за неправилно изчисляване. И ако вече сме намерили члена на геометричната прогресия, тогава какво може да бъде по-просто от използването на „скъсената“ част от формулата.

Безкрайно намаляваща геометрична прогресия.

Съвсем наскоро говорихме за това какво може да бъде по-голямо или по-малко от нула, но има специални значенияза което се нарича геометрична прогресия безкрайно намаляваща.

Защо мислите, че е дадено това име?
Първо, нека напишем някаква геометрична прогресия, състояща се от членове.
Да кажем тогава:

Виждаме, че всеки следващ член е по-малък от предишния с коефициент, но ще има ли някакво число? Веднага ще отговорите - „не“. Затова е безкрайно намаляваща – намалява и намалява, но никога не става нула.

За да разберем ясно как изглежда това визуално, нека се опитаме да начертаем графика на нашата прогресия. И така, за нашия случай формулата приема следната форма:

На графиките, от които сме свикнали да начертаваме зависимостта, следователно:

Същността на израза не се е променила: в първия запис показахме зависимостта на стойността на член на геометрична прогресия от неговия пореден номер, а във втория запис просто взехме стойността на член на геометрична прогресия като , и обозначава поредния номер не като, а като. Всичко, което остава да се направи, е да се изгради графика.
Да видим какво имаш. Ето графиката, която измислих:

Виждаш ли? Функцията намалява, клони към нула, но никога не я пресича, така че е безкрайно намаляваща. Нека отбележим нашите точки на графиката и в същото време какво означава координатата и:

Опитайте се да изобразите схематично графика на геометрична прогресия, ако нейният първи член също е равен. Анализирайте каква е разликата с предишната ни графика?

успяхте ли Ето графиката, която измислих:

Сега, след като сте разбрали напълно основите на темата за геометричната прогресия: знаете какво е, знаете как да намерите нейния член и също така знаете какво е безкрайно намаляваща геометрична прогресия, нека преминем към нейното основно свойство.

Свойство на геометричната прогресия.

Спомняте ли си свойствата на членовете на аритметичната прогресия? Да, да, как да намеря стойността определен бройпрогресия, когато има предишни и последващи стойности на членовете на тази прогресия. Помниш ли? Това:

Сега сме изправени пред абсолютно същия въпрос за членовете на геометричната прогресия. Да изтегля подобна формула, нека започнем да рисуваме и разсъждаваме. Ще видите, че е много лесно и ако забравите, можете да го извадите сами.

Нека вземем друга проста геометрична прогресия, в която знаем и. Как да намеря? С аритметичната прогресия е лесно и просто, но какво да кажем тук? Всъщност в геометрията също няма нищо сложно - просто трябва да запишете всяка стойност, дадена ни според формулата.

Може да попитате какво трябва да направим по въпроса сега? Да, много просто. Първо, нека изобразим тези формули на снимка и се опитаме да направим различни манипулации с тях, за да стигнем до стойността.

Нека се абстрахираме от числата, които ни се дават, нека се съсредоточим само върху тяхното изразяване чрез формулата. Трябва да намерим маркираната стойност оранжево, познавайки съседните членове. Нека се опитаме да произвеждаме с тях различни действия, в резултат на което можем да получим.

Допълнение.
Нека се опитаме да съберем два израза и ще получим:

от даден израз, както виждате, не можем да го изразим по никакъв начин, затова ще опитаме друг вариант - изваждане.

Изваждане.

Както можете да видите, ние също не можем да изразим това, затова нека се опитаме да умножим тези изрази един по друг.

Умножение.

Сега погледнете внимателно какво имаме, като умножим членовете на дадената ни геометрична прогресия в сравнение с това, което трябва да се намери:

Познайте за какво говоря? Точно така, за да намерим трябва да вземем Корен квадратенот числата на геометричната прогресия, съседни на желаното, умножени едно по друго:

Ето. Вие сами сте извели свойството на геометричната прогресия. Опитайте се да напишете тази формула общ изглед. Се случи?

Забравихте условието за? Помислете защо е важно, например, опитайте се да го изчислите сами. Какво ще стане в този случай? Точно така, пълни глупости, защото формулата изглежда така:

Съответно, не забравяйте това ограничение.

Сега нека изчислим на какво се равнява

Верен отговор - ! Ако не сте забравили второто при изчисляването възможно значение, тогава сте страхотен човек и можете веднага да преминете към обучение, а ако сте забравили, прочетете какво е обсъдено по-долу и обърнете внимание защо е необходимо да запишете двата корена в отговора.

Нека начертаем и двете си геометрични прогресии - едната със стойност, а другата със стойност и да проверим дали и двете имат право на съществуване:

За да се провери дали такава геометрична прогресия съществува или не, е необходимо да се види дали тя е еднаква между всички дадени членове? Изчислете q за първия и втория случай.

Вижте защо трябва да напишем два отговора? Защото знакът на търсения термин зависи от това дали е положителен или отрицателен! И тъй като не знаем какво е, трябва да напишем и двата отговора с плюс и минус.

Сега, след като сте усвоили основните точки и сте извели формулата за свойството на геометричната прогресия, намерете, знаейки и

Сравнете вашите отговори с правилните:

Какво мислите, ако ни бяха дадени не стойностите на членовете на геометричната прогресия, съседни на желаното число, а на равно разстояние от него. Например, трябва да намерим и даден и. Можем ли да използваме формулата, която сме извели в този случай? Опитайте се да потвърдите или отхвърлите тази възможност по същия начин, като опишете от какво се състои всяка стойност, както сте направили, когато първоначално сте извели формулата, при.
Какво получи?

Сега погледнете внимателно отново.
и съответно:

От това можем да заключим, че формулата работи не само със съседнитес желаните членове на геометричната прогресия, но и с равноотдалечениот това, което членовете търсят.

Така нашата първоначална формула приема формата:

Тоест, ако в първия случай казахме това, сега казваме, че може да бъде равно на всяко естествено число, което е по-малко. Основното е, че е еднакво и за двете дадени числа.

Упражнявайте се върху конкретни примери, просто бъдете изключително внимателни!

  1. , . Намирам.
  2. , . Намирам.
  3. , . Намирам.

Решихте ли? Надявам се, че сте били изключително внимателни и сте забелязали малка уловка.

Нека сравним резултатите.

В първите два случая ние спокойно прилагаме горната формула и получаваме следните стойности:

В третия случай, при по-внимателно разглеждане серийни номерададени ни числа, ние разбираме, че те не са на еднакво разстояние от търсеното от нас число: е предишната дата, но се премахва на позицията, така че не е възможно да се приложи формулата.

Как да го решим? Всъщност не е толкова трудно, колкото изглежда! Нека запишем от какво се състои всяко дадено ни число и числото, което търсим.

Така че имаме и. Да видим какво можем да направим с тях? Предлагам да разделите на. Получаваме:

Заменяме нашите данни във формулата:

Следващата стъпка, която можем да намерим - за това трябва да предприемем кубичен коренот полученото число.

Сега нека погледнем отново какво имаме. Имаме го, но трябва да го намерим, а то от своя страна е равно на:

Намерихме всички необходими данни за изчислението. Заместете във формулата:

Нашият отговор: .

Опитайте сами да разрешите друг подобен проблем:
Дадено: ,
Намирам:

Колко получихте? Аз имам - .

Както можете да видите, по същество имате нужда запомни само една формула- . Всички останали можете да изтеглите сами без никакви затруднения по всяко време. За да направите това, просто напишете най-простата геометрична прогресия на лист хартия и запишете на какво е равно всяко от нейните числа, съгласно описаната по-горе формула.

Сумата от членовете на геометрична прогресия.

Сега нека разгледаме формулите, които ни позволяват бързо да изчислим сумата от членовете на геометрична прогресия в даден интервал:

За да изведете формулата за сумата от членовете на крайна геометрична прогресия, умножете всички части на горното уравнение по. Получаваме:

Погледнете внимателно: какво е общото между последните две формули? Точно така, обикновени членове, например, и така нататък, с изключение на първия и последния член. Нека се опитаме да извадим 1-вото от 2-то уравнение. Какво получи?

Сега изразете члена на геометричната прогресия чрез формулата и заместете получения израз в нашата последна формула:

Групирайте израза. Трябва да получите:

Всичко, което остава да се направи, е да се изрази:

Съответно в този случай.

Какво ако? Коя формула работи тогава? Представете си геометрична прогресия при. Каква е тя? Правилен ред еднакви числа, съответно формулата ще изглежда така:

Има много легенди както за аритметичната, така и за геометричната прогресия. Една от тях е легендата за Сет, създателят на шаха.

Много хора знаят, че играта шах е измислена в Индия. Когато хиндуисткият крал я срещна, той беше възхитен от нейното остроумие и разнообразието от възможни позиции в нея. След като научил, че е изобретен от един от неговите поданици, кралят решил лично да го награди. Той извикал изобретателя при себе си и му наредил да поиска от него всичко, което поиска, като обещал да изпълни и най-изкусното желание.

Сета поискал време за размисъл и когато на следващия ден Сета се явил пред краля, той изненадал краля с безпрецедентната скромност на молбата си. Той поиска да даде житно зърно за първото поле на шахматната дъска, житно зърно за второто, житно зърно за третото, четвъртото и т.н.

Кралят беше ядосан и изгони Сет, като каза, че молбата на слугата е недостойна за щедростта на краля, но обеща, че слугата ще получи своите зърна за всички квадратчета на дъската.

И сега въпросът: използвайки формулата за сумата от членовете на геометрична прогресия, изчислете колко зърна трябва да получи Сет?

Да започнем да разсъждаваме. Тъй като според условието Сет е поискал житно зърно за първото поле на шахматната дъска, за второто, за третото, за четвъртото и т.н., тогава виждаме, че в проблема ние говорим заотносно геометричната прогресия. На какво се равнява в този случай?
вярно

Общо полета на шахматната дъска. Съответно,. Имаме всички данни, всичко, което остава, е да ги включим във формулата и да изчислим.

Да си представим поне приблизително „мащаба“ даден номер, преобразувайте, като използвате свойствата на степента:

Разбира се, ако искате, можете да вземете калкулатор и да изчислите какво число ще получите в крайна сметка, а ако не, ще трябва да повярвате на думата ми: крайната стойност на израза ще бъде.
Това е:

квинтилион квадрилион трилион милиард милиона хиляди.

Пфу) Ако искате да си представите огромността на това число, тогава преценете колко голям хамбар би бил необходим, за да побере цялото количество зърно.
Ако хамбарът е m висок и m широк, дължината му трябва да се простира с km, т.е. два пъти по-далеч от Земята до Слънцето.

Ако царят беше силен в математиката, той можеше да покани самия учен да преброи зърната, защото за да преброи един милион зърна, щеше да му трябва поне един ден неуморно броене, а като се има предвид, че е необходимо да се преброят квинтилиони, зърната ще трябва да се брои през целия му живот.

Сега нека решим проста задача, включваща сумата от членовете на геометрична прогресия.
Ученикът от 5А клас Вася се разболя от грип, но продължава да ходи на училище. Всеки ден Вася заразява двама души, които от своя страна заразяват още двама и т.н. В класа има само хора. След колко дни целият клас ще е болен от грип?

И така, първият член на геометричната прогресия е Вася, тоест човек. Членът на геометричната прогресия са двамата души, които е заразил в първия ден от пристигането си. обща сумачленове на прогресията е равен на броя на учениците в 5A. Съответно говорим за прогресия, при която:

Нека заместим нашите данни във формулата за сумата от членовете на геометрична прогресия:

Целият клас ще се разболее до дни. Не вярвате на формули и числа? Опитайте се сами да изобразите „заразата“ на учениците. Се случи? Вижте как изглежда при мен:

Пресметнете сами за колко дни ще се разболеят учениците от грип, ако всеки зарази по един човек, а в класа има само един човек.

Каква стойност получихте? Оказа се, че всички започват да се разболяват след ден.

Както виждаш, подобна задачаа рисунката към нея наподобява пирамида, в която всяка следваща „вкарва” нови хора. Но рано или късно идва момент, когато последният не може да привлече никого. В нашия случай, ако си представим, че класът е изолиран, човекът от затваря веригата (). По този начин, ако човек е участвал в финансова пирамида, в който се дават пари, ако доведете други двама участници, след това лицето (или общ случай) не биха довели никого и следователно биха загубили всичко, което са инвестирали в тази финансова измама.

Всичко, което беше казано по-горе, се отнася до намаляваща или нарастваща геометрична прогресия, но, както си спомняте, имаме специален вид- безкрайно намаляваща геометрична прогресия. Как да изчислим сбора на членовете му? И защо има този тип прогресия определени характеристики? Нека да го разберем заедно.

И така, първо, нека да погледнем отново този чертеж на безкрайно намаляваща геометрична прогресия от нашия пример:

Сега нека разгледаме формулата за сумата от геометрична прогресия, получена малко по-рано:
или

Към какво се стремим? Точно така, графиката показва, че клони към нула. Тоест при, ще бъде почти равно, съответно при изчисляване на израза ще получим почти. В тази връзка смятаме, че при изчисляване на сумата на безкрайно намаляваща геометрична прогресия тази скоба може да бъде пренебрегната, тъй като ще бъде равна.

- формулата е сумата от членовете на безкрайно намаляваща геометрична прогресия.

ВАЖНО!Използваме формулата за сумата от членове на безкрайно намаляваща геометрична прогресия само ако условието изрично посочва, че трябва да намерим сумата безкраенброй членове.

Ако е посочено конкретно число n, тогава използваме формулата за сумата от n членове, дори ако или.

Сега нека практикуваме.

  1. Намерете сумата на първите членове на геометричната прогресия с и.
  2. Намерете сумата от членовете на безкрайно намаляваща геометрична прогресия с и.

Надявам се, че сте били изключително внимателни. Нека сравним нашите отговори:

Вече знаете всичко за геометричната прогресия и е време да преминете от теория към практика. Най-честите задачи с геометрична прогресия, срещани на изпита, са задачи за изчисляване на сложна лихва. Това са тези, за които ще говорим.

Задачи за изчисляване на сложна лихва.

Вероятно сте чували за така наречената формула за сложна лихва. Разбирате ли какво означава? Ако не, нека го разберем, защото след като разберете самия процес, веднага ще разберете какво общо има геометричната прогресия с него.

Всички отиваме в банката и знаем, че има различни условияпо депозити: това е срокът, и допълнителна услуга, и лихва с две различни начининеговите изчисления – прости и сложни.

СЪС проста лихвавсичко е повече или по-малко ясно: лихвата се начислява веднъж в края на срока на депозита. Тоест, ако кажем, че депозираме 100 рубли за една година, те ще бъдат кредитирани едва в края на годината. Съответно до края на депозита ще получим рубли.

Сложна лихва- това е вариант, в който се среща капитализация на лихвата, т.е. добавянето им към сумата на депозита и последващо изчисляване на дохода не от първоначалната, а от натрупаната сума на депозита. Писането с главни букви не се случва постоянно, а с известна честота. По правило тези периоди са равни и най-често банките използват месец, тримесечие или година.

Да приемем, че депозираме същите рубли годишно, но с месечна капитализация на депозита. Какво правим?

Разбираш ли всичко тук? Ако не, нека го разберем стъпка по стъпка.

Донесохме рубли в банката. До края на месеца трябва да имаме сума в сметката си, състояща се от нашите рубли плюс лихвата върху тях, тоест:

Съгласен?

Можем да го извадим от скоби и тогава получаваме:

Съгласете се, тази формула вече е по-подобна на това, което написахме в началото. Всичко, което остава, е да разбера процентите

В изложението на проблема ни се казва за годишни ставки. Както знаете, ние не умножаваме по - ние превръщаме процентите в десетични знаци, това е:

нали Сега може да попитате откъде идва числото? Много просто!
Повтарям: изложението на проблема казва за ГОДИШЕНлихва, която се натрупва МЕСЕЧНО. Както знаете, съответно за година от месеци банката ще ни начисли част от годишната лихва на месец:

Разбра ли? Сега се опитайте да напишете как би изглеждала тази част от формулата, ако кажа, че лихвата се изчислява ежедневно.
успяхте ли Нека сравним резултатите:

Много добре! Нека се върнем към нашата задача: напишете колко ще бъде кредитирана в нашата сметка през втория месец, като се има предвид, че върху натрупаната сума на депозита се начислява лихва.
Ето какво получих:

Или с други думи:

Мисля, че вече сте забелязали закономерност и сте видели геометрична прогресия във всичко това. Напишете на какво ще се равнява неговият член или с други думи каква сума пари ще получим в края на месеца.
Направих? Да проверим!

Както можете да видите, ако вложите пари в банката за една година при проста лихва, ще получите рубли, а ако при сложна лихва, ще получите рубли. Ползата е малка, но това се случва само през годината, но за повече дълъг периодкапитализацията е много по-изгодна:

Нека да разгледаме друг тип проблем: сложна лихва. След това, което сте разбрали, ще ви е елементарно. И така, задачата:

Компанията Звезда започва да инвестира в индустрията през 2000 г. с капитал в долари. Всяка година от 2001 г. насам получава печалба, равна на капитала от предходната година. Каква печалба ще получи фирма Звезда в края на 2003 г., ако печалбите не бяха изтеглени от обращение?

Капитал на фирма Звезда през 2000г.
- капитал на фирма Звезда 2001г.
- капитал на фирма Звезда 2002г.
- капитал на фирма Звезда 2003г.

Или можем да напишем накратко:

За нашия случай:

2000, 2001, 2002 и 2003 г.

Съответно:
рубли
Моля, обърнете внимание, че в тази задача нямаме деление нито на, нито на, тъй като процентът е даден ГОДИШНО и се изчислява ГОДИШНО. Тоест, когато четете задача за сложна лихва, обърнете внимание какъв процент е даден и в какъв период се изчислява и едва след това преминете към изчисления.
Сега знаете всичко за геометричната прогресия.

обучение.

  1. Намерете члена на геометричната прогресия, ако е известно, че и
  2. Намерете сумата от първите членове на геометричната прогресия, ако е известно, че и
  3. Компанията MDM Capital започва да инвестира в индустрията през 2003 г. с капитал в долари. Всяка година от 2004 г. насам получава печалба, равна на капитала от предходната година. Фирма MSK Парични потоци"започна да инвестира в индустрията през 2005 г. в размер на $10 000, като започна да реализира печалба през 2006 г. в размер на. С колко долара е по-голям капиталът на едната компания от другата в края на 2007 г., ако печалбите не са изтеглени от обръщение?

Отговори:

  1. Тъй като формулировката на проблема не казва, че прогресията е безкрайна и трябва да намерите сумата конкретно числонеговите членове, тогава изчислението се извършва по формулата:

  2. MDM Capital Company:

    2003, 2004, 2005, 2006, 2007.
    - се увеличава със 100%, тоест 2 пъти.
    Съответно:
    рубли
    Компания MSK Cash Flows:

    2005, 2006, 2007.
    - се увеличава с, тоест с пъти.
    Съответно:
    рубли
    рубли

Нека да обобщим.

1) Геометрична прогресия ( ) е числова последователност, чийто първи член е различен от нула, а всеки член, започвайки от втория, е равен на предходния, умножен по същото число. Това число се нарича знаменател на геометрична прогресия.

2) Уравнението на членовете на геометричната прогресия е .

3) може да приема всякакви стойности с изключение на и.

  • ако, тогава всички следващи членове на прогресията имат един и същ знак - те са положителни;
  • ако, тогава всички следващи условия на прогресията алтернативни знаци;
  • когато - прогресията се нарича безкрайно намаляваща.

4) , с - свойство на геометрична прогресия (съседни членове)

или
, при (равноотдалечени термини)

Когато го намерите, не забравяйте това трябва да има два отговора.

Например,

5) Сумата от членовете на геометричната прогресия се изчислява по формулата:
или

Ако прогресията намалява безкрайно, тогава:
или

ВАЖНО!Използваме формулата за сумата от членове на безкрайно намаляваща геометрична прогресия само ако условието изрично посочва, че трябва да намерим сумата от безкраен брой членове.

6) Задачи, включващи сложна лихва, също се изчисляват с помощта на формулата за тия член на геометрична прогресия, при условие че пари в бройне са изтеглени от обращение:

ГЕОМЕТРИЧНА ПРОГРЕСИЯ. НАКРАТКО ЗА ГЛАВНОТО

Геометрична прогресия( ) е числова редица, чийто първи член е различен от нула, а всеки член, започвайки от втория, е равен на предходния, умножен по същото число. Този номер се нарича знаменател на геометрична прогресия.

Знаменател на геометричната прогресияможе да приема всякаква стойност освен и.

  • Ако, тогава всички следващи членове на прогресията имат един и същ знак - те са положителни;
  • ако, тогава всички следващи членове на прогресията редуват знаци;
  • когато - прогресията се нарича безкрайно намаляваща.

Уравнение на членовете на геометричната прогресия - .

Сума от членовете на геометрична прогресияизчислено по формулата:
или