Таблица содержание элементов в организмах. Проект "биологическая роль химических элементов"

А1. Как называется наука о клетке? 1) цитА1. Как называется наука о клетке? 1) цитология 2) гистология 3) генетика 4) молекулярная биология

А2. Кто из ученых открыл клетку? 1) А.Левенгук 2) Т.Шванн 3) Р.Гук 4) Р.Вирхов
А3. Содержание какого химического элемента преобладает в сухом веществе клетки? 1) азота 2) углерода 3) водорода 4) кислорода
А4. Какая фаза мейоза изображена на рисунке? 1) Анафаза I 2) Метафаза I 3) Метафаза II 4) Анафаза II
А5. Какие организмы относятся к хемотрофам? 1) животные 2) растения 3) нитрифицирующие бактерии 4) грибы А6. Образование двухслойного зародыша происходит в период 1) дробления 2) гаструляции 3) органогенеза 4) постэмбриональный период
А7. Совокупность всех генов организма называется 1) генетика 2) генофонд 3) геноцид 4) генотип А8. Во втором поколении при моногибридном скрещивании и при полном доминировании наблюдается расщепление признаков в соотношении 1) 3:1 2) 1:2:1 3) 9:3:3:1 4) 1:1
А9. К физическим мутагенным факторам относится 1) ультрафиолетовое излучение 2) азотистая кислота 3) вирусы 4) бензпирен
А10. В каком участке эукариотической клетки синтезируются рибосомные РНК? 1) рибосома 2) шероховатая ЭПС 3) ядрышко ядра 4) аппарат Гольджи
А11. Каким термином называется участок ДНК, кодирующий один белок? 1) кодон 2) антикодон 3) триплет 4) ген
А12. Назовите автотрофный организм 1) гриб-подберезовик 2) амеба 3) туберкулезная палочка 4) сосна
А13. Чем представлен хроматин ядра? 1) кариоплазма 2) нити РНК 3) волокнистые белки 4) ДНК и белки
А14. В какой стадии мейоза происходит кроссинговер? 1) профаза I 2) интерфаза 3) профаза II 4) анафаза I
А15. Что образуется в ходе органогенеза из эктодермы? 1) хорда 2) нервная трубка 3) мезодерма 4) энтодерма
А16. Неклеточная форма жизни – это 1) эвглена 2) бактериофаг 3) стрептококк 4) инфузория
А17. Синтез белка на и-РНК называется 1) трансляция 2) транскрипция 3) редупликация 4) диссимиляция
А18. В световой фазе фотосинтеза происходит 1) синтез углеводов 2) синтез хлорофилла 3) поглощение углекислого газа 4) фотолиз воды
А19. Деление клетки с сохранением хромосомного набора называется 1) амитоз 2) мейоз 3) гаметогенез 4) митоз
А20. К пластическому обмену веществ можно отнести 1) гликолиз 2) аэробное дыхание 3) сборка цепи и-РНК на ДНК 4) расщепление крахмала до глюкозы
А21. Выберите неверное утверждение У прокариот молекула ДНК 1) замкнута в кольцо 2) не связана с белками 3) вместо тимина содержит урацил 4) имеется в единственном числе
А22. Где протекает третий этап катаболизма – полное окисление или дыхание? 1) в желудке 2) в митохондриях 3) в лизосомах 4) в цитолазме
А23. К бесполому размножению относится 1) партенокарпическое образование плодов у огурца 2) партеногенез у пчел 3) размножение тюльпана луковицами 4) самоопыление у цветковых растений
А24. Какой организм в постэмбриональном периоде развивается без метаморфоза? 1) ящерица 2) лягушка 3) колорадский жук 4) муха
А25. Вирус иммунодефицита человека поражает 1) половые железы 2) Т-лимфоциты 3) эритроциты 4) кожные покровы и легкие
А26. Дифференцировка клеток начинается на стадии 1) бластулы 2) нейрулы 3) зиготы 4) гаструлы
А27. Что является мономерами белков? 1) моносахариды 2) нуклеотиды 3) аминокислоты 4) ферменты
А28. В каком органоиде происходит накопление веществ и образование секреторных пузырьков? 1) аппарат Гольджи 2) шероховатая ЭПС 3) пластида 4) лизосома
А29. Какая болезнь наследуется сцепленно с полом? 1) глухота 2) сахарный диабет 3) гемофилия 4) гипертония
А30. Укажите неверное утверждение Биологическое значение мейоза состоит в следующем: 1) увеличивается генетическое разнообразие организмов 2) повышается устойчивость вида при изменении условий среды 3) появляется возможность перекомбинации признаков в результате кроссинговера 4) понижается вероятность комбинативной изменчивости организмов.

Химический состав клетки. Неорганические вещества. 1.Какой из химических элементов содержится в клетках в наименьшем количестве? а)азот

б)кислородв)углерод г)водород 2.Какой из химических элементов одновременно входит в состав костной ткани и нуклеиновых кислот? а)калий б)фосфор в)кальций г)цинк3.При замерзании воды расстояние между молекулами: а)уменьшаетсяб)увеличивается в)не изменяется 4.У детей развивается рахит при недостатке:а)марганца и железа б)кальция и фосфора в)меди и цинка г)серы и азота 5.Какой из элементов входит в молекулу хлорофилла? а)натрий б)калий в)магний г)хлор 6.Выписать из ряда химических элементов: O, C, H, N, Fe, K, S, Zn, Cu, содержащихся в клетке, те, которые являются: а)основой органических соединений б)макроэлементами в)микроэлементами 7.Выписать из предложенного ряда элементов:O, Si, Fe, H, C, N, Al, Mg те, которые преобладают: а)в живой природе б)в неживой природе 8.Каково значение воды для жизнедеятельности клетки: а)среда для химических элементов б)растворитель в)источник кислорода при фотосинтез Химический состав клетки. Органические вещества . 1.Какое из названных химических соединений не является биополимером? а)белокб)глюкоза в)ДНК г)целлюлоза 2.Из каких соединений синтезируется углеводороды при фотосинтезе? а)из O2 и H2O б)из СO2 и H2 в)из CO2 и Н2O г)из CO2 и H2CO3 3. Какой из продуктов целесообразнее давать уставшему марафонцу на дистанции для поддержания сил? а)Кусочек сахара б)немного сливочного масла в)кусок мяса г)немного минеральной воды 4.Способность верблюдов хорошо переносить жажду объясняется тем, что жиры: а)сохраняет воду в организме б)выделяет воду при окислении в)создают теплоизолирующий слой, уменьшающий испарение 5.Наибольшее количество энергии выделяется при расщеплении одного грамма: а)С5H12O5 б)C6H10O6 в)С6H12O6 г)C6H12O5 6.В каком случае правильно написана формула молекулы глюкозы? а)эфир б)спирт в)водаг)соляная кислота

Сообщение о химическом элементе Cu (медь)

1.Значение химического
элемента для организма человека
2.Недостаток данного элемента к чему приводит?
3.К чему приводит избыток данного элемента?
4.В каких продуктах питания содержится

Сегодня обнаружено и выделено в чистом виде много химических элементов таблицы Менделеева, а пятая их часть встречается в каждом живом организме. Они, подобно кирпичикам, являются главными составляющими органических и неорганических веществ.

Какие химические элементы входят в состав клетки, по биологии каких веществ можно судить об их наличии в организме - все это мы рассмотрим далее в статье.

Что такое постоянство химического состава

Для соблюдения стабильности в организме каждая клетка должна поддерживать концентрацию каждой своей составляющей на постоянном уровне. Этот уровень определяется видовой принадлежностью, средой обитания, экологическими факторами.

Чтобы ответить на вопрос, какие химические элементы входят в состав клетки, необходимо четко понимать, что в составе любого вещества находятся какие-либо из составляющих таблицы Менделеева.

Порой идет речь о сотых и тысячных долях процента содержания определенного элемента в клетке, но при этом изменение названного числа хотя бы на тысячную часть уже может нести серьезные последствия для организма.

Из 118 химических элементов в клетке человека должно быть как минимум 24. Нет таких составляющих, которые встречались бы в живом организме, но не входили в состав неживых объектов природы. Этот факт подтверждает тесную связь между живым и неживым в экосистеме.

Роль различных элементов, входящих в состав клетки

Так какие химические элементы входят в состав клетки? Их роль в жизнедеятельности организма, следует заметить, напрямую зависит от частоты встречаемости и концентрации их в цитоплазме. Однако, несмотря на разное содержание элементов в клетке, значимость каждого из них в равной степени высока. Дефицит любого из них может привести к пагубному воздействию на организм, отключив из метаболизма важнейшие биохимические реакции.

Перечисляя, какие химические элементы входят в состав клетки человека, нужно упомянуть три основных вида, которые мы рассмотрим далее:

Основные биогенные элементы клетки

Неудивительно, что элементы О, С, Н, N относятся к биогенным, ведь именно они образуют все органические и многие неорганические вещества. Невозможно представить белки, жиры, углеводы или нукленовые кислоты без этих важнейших для организма составляющих.

Функция этих элементов определила их высокое содержание в организме. На их долю в совокупности приходится 98% от всей сухой массы тела. В чем еще может проявляться активность этих ферментов?

  1. Кислород. Его содержание в клетке около 62% от общей сухой массы. Функции: построение органических и неорганических веществ, участие в цепи дыхания;
  2. Углерод. Его содержание достигает 20%. Основная функция: входит в состав всех ;
  3. Водород. Его концентрация принимает значение в 10%. Кроме того, что этот элемент является составляющей органических веществ и воды, он также учавствует в преобразованиях энергии;
  4. Азот. Количество не превышает 3-5%. Его основная роль - это образование аминокислот, нуклеиновых кислот, АТФ, многих витаминов, гемоглобина, гемоцианина, хлорофилла.

Вот какие химические элементы входят в состав клетки и образуют большинство необходимых для нормальной жизнедеятельности веществ.

Значение макроэлементов

Макроэлементы также помогут подсказать, какие химические элементы входят в состав клетки. Из курса биологии становится понятно, что, кроме основных, 2% сухой массы составляют другие составляющие периодической таблицы. И к макроэлементам относятся те из них, содержание которых не ниже 0,01%. Их основные функции представлены в виде таблицы.

Кальций (Са)

Отвечает за сокращение мышечных волокон, входит в состав пектина, костей и зубов. Усиливает свертываемость крови.

Фосфор (Р)

Входит в состав важнейшего источника энергии - АТФ.

Участвует в образовании дисульфидных мостиков при сворачивании белка в третичную структуру. Входит в состав цистеина и метионина, некоторых витаминов.

Ионы калия участвуют в клетки, а также влияют на потенциал мембраны.

Главный анион организма

Натрий (Na)

Аналог калия, участвующий в тех же процессах.

Магний (Mg)

Ионы магния - это регуляторы процесса В центре молекулы хлорофилла также распологается атом магния.

Участвует в транспорте электронов по ЭТЦ дыхания и фотосинтеза, является структурным звеном миоглобина, гемоглобина и многих ферментов.

Надеемся, из перечисленного несложно определить, какие химические элементы входят в состав клетки и относятся к макроэлементам.

Микроэлементы

Есть и такие составляющие клетки, без которых организм не может нормально функционировать, однако их содержание всегда меньше 0,01%. Давайте определим, какие химические элементы входят в состав клетки и относятся к группе микроэлементов.

Входит в состав ферментов ДНК- и РНК-полимераз, а также многих гормонов (например, инсулин).

Участвует в процессах фотосинтеза, синтеза гемоцианина и некоторых ферментов.

Является структурной составляющей гормонов Т3 и Т4 щитовидной железы

Марганец (Mn)

менее 0,001

Входит в состав ферментов, костей. Участвует в азотфиксации у бактерий

менее 0,001

Влияет на процесс роста растений.

Входит в состав костей и эмали зубов.

Органические и неорганические вещества

Кроме перечисленных, еще какие химические элементы входят в состав клетки? Ответы можно найти, просто изучив строение большинства веществ организма. Среди них выделяют молекулы органического и неорганического происхождения, и каждая из этих групп имеет в составе фиксированный набор элементов.

Основные классы органических веществ - это белки, нуклеиновые кислоты, жиры и углеводы. Они построены полностью из основных биогенных элементов: скелет молекулы всегда образован углеродом, а водород, кислород и азот входят в состав радикалов. У животных доминирующим классом являются белки, а у растений - полисахариды.

Неорганические вещества - это все минеральные соли и, конечно же, вода. Среди всей неорганики в клетке больше всего Н 2 О, в которой растворены остальные вещества.

Все сказанное выше поможет вам определить, какие химические элементы входят в состав клетки, и их функции в организме больше не будут для вас загадкой.

>> Химия: Химические элементы в клетках живых организмов

В составе веществ, образующих клетки всех живых организмов (человека, животных, растений), обнаружено более 70 элементов. Эти элементы принято делить на две группы: макроэлементы и микроэлементы.

Макроэлементы содержатся в клетках в больших количествах. В первую очередь, это углерод, кислород, азот и водород. В сумме они составляют почти 98% всего содержимого клетки. Кроме названных элементов к макроэлементам относят также магний, калий, кальций, натрий, фосфор , серу и хлор. Суммарное их содержание 1,9%. Таким образом, на долю остальных химических элементов приходится около 0,1%. Это микроэлементы. К ним относят железо, цинк, марганец, бор, медь, иод, кобальт, бром, фтор, алюминий и др.

В молоке млекопитающих обнаружено 23 микроэлемента: литий, рубидий, медь, серебро, барий, стронций, титан, мышьяк, ванадий, хром, молибден, иод, фтор, марганец, железо, кобальт, никель и др.

В состав крови млекопитающих входит 24 микроэлемента, а в состав головного мозга человека - 18 микроэлементов.

Как можно заметить, в клетке нет каких-либо особенных элементов, характерных только для живой природы, т. е. на атомном уровне различий между живой и неживой природой нет. Эти различия обнаруживаются лишь на уровне сложных веществ - на молекулярном уровне. Так, наряду с неорганическими веществами (водой и минеральными солями) клетки живых организмов содержат вещества, характерные только для них, - органические вещества (белки, жиры, углеводы, нуклеиновые кислоты, витамины , гормоны и др.). Эти вещества построены в основном из углерода, водорода, кислорода и азота, т. е. из макроэлементов. Микроэлементы содержатся в этих веществах в незначительных количествах, тем не менее их роль в нормальной жизнедеятельности организмов огромна. Например, соединения бора, марганца, цинка, кобальта резко увеличивают урожайность отдельных сельскохозяйственных растений и повышают их сопротивляемость к различного рода заболеваниям.

Человек и животные получают нужные им для нормальной жизнедеятельности микроэлементы через растения, которыми питаются. Если в пище не хватает марганца, то возможна задержка роста, замедление наступления половой зрелости, нарушение обмена веществ при формировании скелета . Добавка долей миллиграмма солей марганца к суточному рациону животных устраняет эти заболевания.

Кобальт входит в состав витамина В12, отвечающего за работу кроветворных органов. Недостаток кобальта в пище часто вызывает серьезное заболевание, которое приводит к истощению организма и даже к гибели.

Значение микроэлементов для человека впервые было выявлено при изучении такого заболевания, как эндемический зоб, которое вызывалось недостатком иода в пище и воде. Прием соли, содержащей иод, приводит к выздоровлению, а добавка его к пище в малых количествах предупреждает заболевание. С этой целью проводят иодирование пищевой поваренной соли , в которую добавляют 0,001-0,01% иодида калия.

В состав большинства биологических катализаторов-ферментов входят цинк, молибден и некоторые другие металлы. Эти элементы, содержащиеся в клетках живых организмов в очень малых количествах, обеспечивают нормальную работу тончайших биохимических механизмов, являются подлинными регуляторами процессов жизнедеятельности.

Многие микроэлементы содержатся в витаминах - органических веществах различной химической природы, поступающих в организм с пищей в малых дозах и оказывающих большое влияние на обмен веществ и общую жизнедеятельность организма. По своему биологическому действию они близки к ферментам, но ферменты образуются клетками организма, а витамины обычно поступают с пищей. Источниками витаминов служат растения: цитрусовые, шиповник, петрушка, лук, чеснок и многие другие. Некоторые витамины - А, В1, В2, К - получают синтетическим путем. Свое название витамины получили от двух слов: вита - жизнь и амин - содержащий азот.

Микроэлементы входят также в состав гормонов - биологически активных веществ, регулирующих работу органов и систем органов человека и животных. Название свое они берут от греческого слова хармао - побеждаю. Гормоны вырабатываются железами внутренней секреции и поступают в кровь, которая разносит их по всему организму. Некоторые гормоны получают синтетическим путем.

1. Макроэлементы и микроэлементы.

2. Роль микроэлементов в жизнедеятельности растений, животных и человека.

3. Органические вещества: белки, жиры, углеводы.

4. Ферменты.

5. Витамины.

6. Гормоны.

На каком уровне форм существования химического элемента начинается различие между живой и неживой природой?

Почему отдельные макроэлементы называют также биогенными? Перечислите их.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Все организмы на нашей планете состоят из клеток, которые схожи между собой химическим составом. В данной статье мы кратко расскажем о химическом составе клетки, его роли в жизнедеятельности всего организма, узнаем, какая наука изучает данный вопрос.

Группы элементов химического состава клетки

Наука, которая изучает составные части и строение живой клетки, называется цитологией.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

К макроэлементам относятся водород, углерод, кислород и азот. На их долю припадает почти 98% всех составных элементов.

Микроэлементы имеются в количестве десятых и сотых долей процента. И совсем малое содержание ультрамикроэлементов - сотые и тысячные доли процента.

ТОП-4 статьи которые читают вместе с этой

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому, что живая, что неживая природа состоит из одних и тех же элементов. Этим доказывается их взаимосвязь.

Несмотря на количественное содержание химического элемента, отсутствие или уменьшение хотя бы одного из них ведёт к гибели всего организма. Ведь у каждого из них есть своё значение.

Роль химического состава клетки

Макроэлементы являются основой биополимеров, а именно белков, углеводов, нуклеиновых кислот и липидов.

Микроэлементы входят в состав жизненно важных органических веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет щелочную среду. Чаще всего она слабощелочная, ведь соотношение минеральных солей не изменяется.

Гемоглобин содержит железо, хлорофилл - магний, белки - серу, нуклеиновые кислоты - фосфор, обмен веществ происходит при достаточном количестве кальция.

Рис. 2. Состав клетки

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные - растворяются в воде;
  • Гидрофобные - не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме.

Рис. 3. Вещества клетки.

Таблица “Свойства химического состава клетки”

Чтобы наглядно понять, какие химические элементы входят в состав клетки, мы внесли их в следующую таблицу:

Элементы

Значение

Макроэлементы

Кислород, углерод, водород, азот

Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.

Содержится в нуклеиновых кислотах, ферментах, костной ткани и зубной эмали.

Микроэлементы

Является основой белков, ферментов и витаминов.

Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.

Один из компонентов желудочного сока, провокатор ферментов.

Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.

Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.

Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.

Составная часть гемоглобина, хрусталика, роговицы, синтезирует хлорофилл. Транспортирует кислород по организму.

Ультрамикроэлементы

Составная часть процессов кровообразования, фотосинтеза, ускоряет внутриклеточные процессы окисления.

Марганец

Активизирует фотосинтез, участвует в кровообразовании, обеспечивает высокую урожайность.

Составная часть зубной эмали.

Регулирует рост растений.

Что мы узнали?

Каждая клетка живой природы имеет свой набор химических элементов. По своему составу предметы живой и неживой природы имеют сходства, это доказывает тесную их взаимосвязь. Каждая клеточка состоит из макроэлементов, микроэлементов и ультрамикроэлементов, у каждого из которых есть своя роль. Отсутствие хотя бы одного из них ведёт к заболеванию и даже гибели всего организма.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 807.


Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Химический состав клетки

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В 12 гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Неорганические вещества

Вода. Н 2 О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли. Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н 2 РО 4 и НРО 4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н 2 СО 3 и НСО 3 - . Анионы связывают ионы Н и гидроксид-ионы (ОН -), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки

Белки. Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH 2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы. Углеводы, или сахариды – органические вещества с общей формулой (СН 2 О) n . У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). Схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Рис.1.Расположение нуклеотидов в молекуле ДНК

Из рис.1. видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липоиды. Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО 2 и Н 2 О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти - растительном) мире - запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) - внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов - от одноклеточных диатомовых водорослей до гигантских акул - жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липоиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.